Supplement of Atmos. Chem. Phys., 19, 10319–10334, 2019 https://doi.org/10.5194/acp-19-10319-2019-supplement © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.





## Supplement of

## Distinctions in source regions and formation mechanisms of secondary aerosol in Beijing from summer to winter

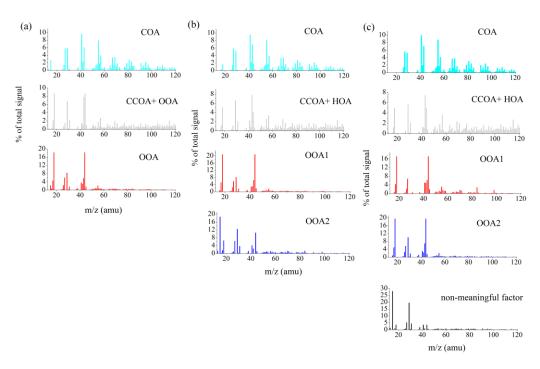
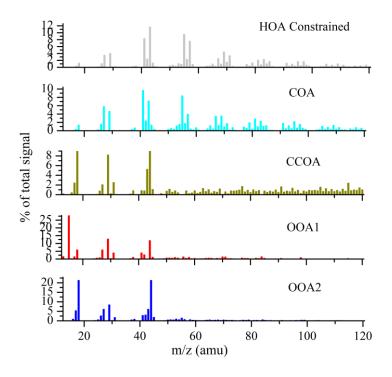
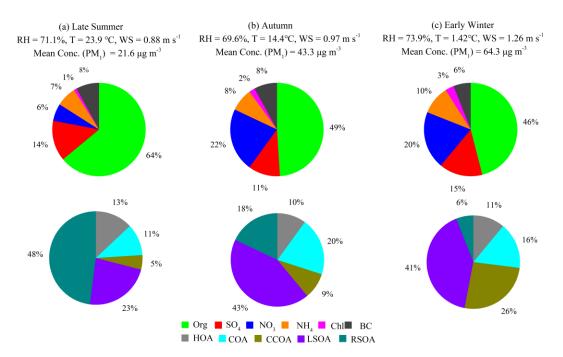
Jing Duan et al.

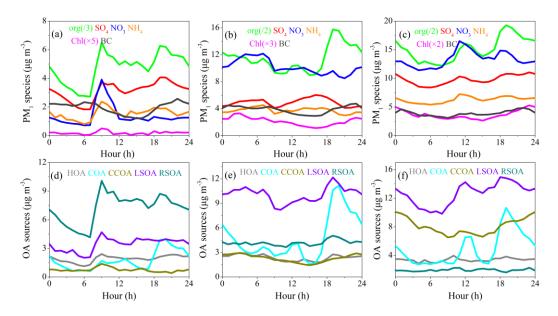
Correspondence to: Ru-Jin Huang (rujin.huang@ieecas.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

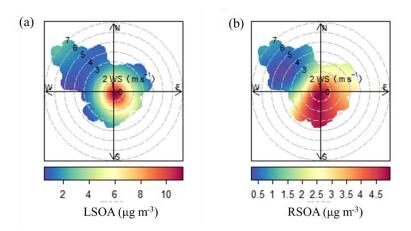
**Table S1.** Summary of mass concentrations of aerosol species, gaseous pollutants and meteorological parameters during entire study and different seasons.  $PM_1$  chemical composition during clean days (C), M-polluted days (M) and H-polluted days (H) in different seasons are also shown.

| Species               | Entire<br>study | Late Summer       |      |      | Autumn |      |      |       |        | Early Winter |      |       |
|-----------------------|-----------------|-------------------|------|------|--------|------|------|-------|--------|--------------|------|-------|
|                       |                 | Entire            | С    | M    | Entire | С    | M    | Н     | Entire | С            | M    | Н     |
| Aerosol spe           | ecies (µg n     | 1 <sup>-3</sup> ) |      |      |        |      |      |       |        |              |      |       |
| $PM_1$                | 44.7            | 21.6              | 15.6 | 46.9 | 43.3   | 9.3  | 54.2 | 110.5 | 64.3   | 8.1          | 43.5 | 109.7 |
| OA                    | 22.4            | 13.8              | 10.5 | 28.1 | 21.2   | 5.8  | 25.5 | 50.8  | 29.6   | 4.5          | 20.4 | 49.4  |
| HOA                   | 2.2             | 1.8               | 1.3  | 3.9  | 2.1    | 0.4  | 2.5  | 6.1   | 3.3    | 0.2          | 1.2  | 6.4   |
| COA                   | 3.9             | 1.4               | 1.5  | 2.0  | 4.3    | 1.9  | 4.6  | 8.1   | 4.7    | 1.1          | 4.3  | 6.9   |
| CCOA                  | 3.1             | 0.7               | 0.5  | 1.7  | 2.0    | 0.6  | 2.3  | 4.6   | 7.7    | 1.1          | 5.3  | 12.8  |
| LSOA                  | 9.0             | 3.2               | 2.2  | 6.7  | 9.2    | 1.5  | 10.2 | 25.4  | 12.1   | 1.5          | 7.5  | 20.7  |
| RSOA                  | 4.2             | 6.6               | 5.0  | 13.8 | 3.8    | 1.5  | 5.9  | 6.6   | 1.8    | 0.6          | 2.0  | 2.5   |
| SO <sub>4</sub>       | 5.6             | 3.1               | 1.9  | 8.0  | 4.8    | 8.0  | 7.6  | 11.0  | 9.6    | 1.5          | 6.5  | 16.5  |
| $NO_3$                | 8.7             | 1.3               | 0.9  | 3.3  | 9.5    | 0.6  | 12.5 | 27.6  | 12.9   | 0.7          | 8.7  | 23.0  |
| $NH_4$                | 3.8             | 1.5               | 0.9  | 3.8  | 3.5    | 0.5  | 3.7  | 11.0  | 6.4    | 0.7          | 4.4  | 9.9   |
| Chl                   | 0.8             | 0.2               | 0.05 | 0.5  | 8.0    | 0.1  | 0.7  | 2.2   | 1.8    | 0.2          | 1.3  | 3.3   |
| ВС                    | 3.4             | 1.7               | 1.4  | 3.3  | 3.5    | 1.5  | 4.3  | 7.7   | 3.9    | 0.4          | 2.2  | 7.7   |
| Gaseous poll          | utants          |                   |      |      |        |      |      |       |        |              |      |       |
| SO <sub>2</sub> (ppb) | 5.0             | 3.0               | 2.7  | 3.5  | 4.4    | 3.0  | 4.4  | 6.2   | 7.9    | 3.7          | 5.2  | 11.7  |
| CO (ppm)              | 0.9             | 0.5               | 0.6  | 0.4  | 0.7    | 0.3  | 0.8  | 1.2   | 1.7    | 0.2          | 0.9  | 3.0   |
| NO (ppb)              | 19.1            | 4.7               | 3.7  | 4.2  | 18.1   | 8.9  | 15.5 | 28.2  | 32.7   | 4.3          | 18.9 | 55.9  |
| $NO_2$ (ppb)          | 29.9            | 18.7              | 14.6 | 23.1 | 32.0   | 22.3 | 32.3 | 48.7  | 34.0   | 11.9         | 25.5 | 49.1  |
| O <sub>3</sub> (ppb)  | 18.0            | 35.4              | 31.5 | 54.1 | 17.5   | 27.2 | 16.1 | 20.8  | 5.7    | 19.7         | 4.9  | 2.7   |
| Meteorologic          | cal param       | eters             |      |      |        |      |      |       |        |              |      |       |
| RH (%)                | 72.5            | 71.1              | 71.4 | 64.5 | 69.6   | 56.7 | 82.3 | 75.9  | 73.9   | 34.3         | 79.4 | 82.7  |
| T (°C)                | 12.7            | 23.9              | 24.2 | 27.0 | 14.4   | 17.9 | 14.9 | 14.5  | 1.5    | -3.0         | 1.3  | 2.8   |
| WS (m s-1)            | 0.95            | 0.88              | 0.89 | 0.93 | 0.97   | 1.23 | 0.63 | 0.55  | 1.26   | 3.60         | 1.12 | 0.63  |

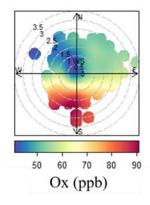






Figure S1. PMF profiles of OA sources for 4, 5 and 6 factor solutions.




**Figure S2.** ME-2 profiles of OA sources. The HOA profile is from that of Ng et al. (2011b), and the COA profile is from 4-factor PMF result. The others are unconstrained factors.




**Figure S3.** Mass fractions of  $PM_1$  species and OA factors in later summer (a), autumn (b) and early winter (c).



**Figure S4.** Diurnal cycles of  $PM_1$  species and OA factors during late summer (a, d), autumn (b, e) and early winter (c, f).



**Figure S5.** Bivariate polar plots of LSOA (a) and RSOA (b) as functions of wind direction and wind speed (m  $s^{-1}$ ) during the entire study period.



**Figure S6.** Bivariate polar plots of  $O_x$  as functions of wind direction and wind speed (m s<sup>-1</sup>) during late summer.