

Supplement of

Amplification of light absorption of black carbon associated with air pollution

Yuxuan Zhang et al.

Correspondence to: Qiang Zhang (qiangzhang@tsinghua.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

2 Figure S1. Location of the observation site (red star).

Figure S1 shows the geographic location of our observation site (namely red star
marked in the Fig. S4). The site (40°00'17" N, 116°19'34" E) is located in megacity
Beijing, the capital of China. The air pollution levels in our site can be influence by
the air mass from adjacent regions (i.e., Tianjin, Heibei, Inner Mongolia, Shanxi,
Shandong).

Figure S2. (a) The correlation between the absorption coefficient from AE33 at 660
nm (σ_{ab,AE}) and MAAP at 670 nm (σ_{ab,MAAP}). (b) Variety of multiple-scattering
compensation factor *C* with different Aethalometer measurements.

Aethalometer artefacts are mainly from the loading effect and multiple-scattering 5 effect (Weingartner et al., 2003; Segura et al., 2014). In terms of the loading effect, the 6 compensation algorithm has been incorporated into Aethalometer model AE33 7 (Drinovec et al., 2015). In this study, we focused on the multiple-scattering 8 9 compensation, which was characterized by enhancement parameter C. The factor C10 for our sites was determined by comparing the absorption coefficient derived from AE33 ($\sigma_{ab,AE}$) with the ones from MAAP ($\sigma_{ab,MAAP}$). Noted that the AE33 and MAAP 11 measurements used to calculate the factor C were at different wavelengths, namely 12 660 nm and 670 nm, respectively. Considering that the absorption is inversely 13 proportional to wavelength (Bond and Bergstrom, 2006), the difference in wavelength 14 would lead to an uncertainty of ~1.5% for the corrected absorption coefficients in AE 15

measurement. As shown in Fig. S2a, the slope 2.6 was taken as the value of factor C1 to compensate the Aethalometer data. The specifically site-calculated values of the 2 factor C varies in the range of 1.9-4 in this work (Fig. S2b), consistent with previous 3 studies (Drinovec et al., 2015; Weingartner et al., 2003; Segura et al., 2014). In this 4 study, the uncertainty in the factor C was dominated by the uncertainty in MAAP 5 measurements. We corrected the MAAP data using the algorithm reported by 6 Hyvärinen et al. (2013). They estimated that the uncertainty in absorption coefficients 7 derived from MAAP based on the developed algorithm was ~15% by comparing the 8 results from a PAS against those derived from the MAAP in Beijing. This indicated 9 that the factor C used in our study (~2.6) would exhibit an uncertainty of ~15% from 10 the uncertainty in MAAP measurements. Considering the uncertainty on the AE33 11 measurements was mainly from the factor C, the absorption coefficient from AE33 12 was estimated to have an uncertainty of $\sim 15\%$. 13

14

15 Figure S3. SP2 detection efficiency of particle (η) in each rBC size-bin.

Figure S3 shows the SP2 detection efficiency concentration (η) in each rBC size-bin. In our study, the SP2 detection efficiency was determined with a DMA-SP2/CPC system. Monodispersed Aquadag particles generated by DMA were simultaneously measured by SP2 and CPC. The size-resolved η was calculated by dividing the particle number concentration from SP2 measurement by that from CPC measurement. The SP2 detection efficiency (Fig. S3) have been considered in the 1 calculation of rBC mass concentration.

2

3 Figure. S4. Non-refractory compositions of PM₁ particles during the campaign period. The RI_s value used in this study are 1.50-0i based on the chemical compositions of 4 coating materials during the campaign period. The components of coating materials 5 was similar to non-refractory compositions in PM₁ particles (Peng et al., 2016). Figure 6 7 S4 reveals that the fraction of inorganic and organic components in coating materials of BC-containing particles are ~51% and ~49%, respectively. It is known from the 8 literature (Schkolnik et al., 2007; Mallet et al., 2003; Marley et al., 2001) that major 9 inorganic components of ambient aerosol from urban emission (nitrate, sulfate, 10 mineral dust, sea salt and trace metal) have a refractory of (1.5-1.6)-0i and there is a 11 range of (1.4-1.5)-0i for the refractory of organic components. In this study, we used 12 the values of 1.55-0i and 1.45-0i as refractive indexes of inorganic and organic 13 components of coating materials. The refractive index of a mixture particle can be 14 calculated as the volume weighted average of the refractive indices of all components 15 (Hänel, et al. 1968; Marley et al., 2001; Bond and Bergstrom, 2006; Schkolnik et al., 16 2007), as $\tilde{m} = \sum_i \tilde{m}_i c_i$, where \tilde{m} is the refractive index of a mixture particle; \tilde{m}_i is 17 the refractive index of particle species; c is the volume ratio of particle species. Based 18 on the equation, the refractive index of coating materials of BC-containing particles 19 (RI_s) was ~1.50-0i during the campaign period. 20

Figure S5. The relative difference between the sizes of BC-containing particles (*D*_p)
derived from Mie calculation with *RI*_c of 2.26-1.26i and 1.95-0.79i.

4 Various values (e.g., 2.26-1.26i, 1.95-0.79i) of refractive index of BC core (RI_c) have be used in literature (Bond and Bergstrom, 2006; Cappa et al., 2012; Taylor et al., 5 2015). Figure S5 shows the relative difference between the sizes of BC-containing 6 particles (D_p) derived from Mie calculation with RI_c of 2.26-1.26i and 1.95-0.79i. For 7 8 BC-containing particles with 75-300 nm rBC cores, the relative difference is 3-10%, indicating that the D_p values were not sensitive to RI_c values in our study. This could 9 be attributed to significantly larger in volume of coating materials than that of rBC 10 11 cores.

1

Figure S6. Size distribution of refractory BC (rBC) as a function of the PM₁
concentration: (a) number size distribution and (b) mass size distribution.

Figure S6 shows the size distribution of rBC as a function of the PM_1 concentration. Above the detection limit of SP2 incandescence (rBC with size larger than ~75 nm), the number size distribution of rBC cores shows a peak at ~95 nm under different PM_1 concentration (Fig. S6 (a)), and there are about 95% of rBC particles in number concentration lower than 200 nm. As shown in Fig. S6 (b)), the mass size distribution of rBC cores shows a wide mode at ~95-200 nm under different PM concentration.

Figure S7. The detect efficiency of SP2 scattering for BC-containing particles with
size-resolved rBC cores (75-200 nm) under different PM₁ concentration. In this study,
the detect efficiency of SP2 scattering in terms of BC-containing particles at a certain
rBC core size is defined as the ratio of the number concentration of particles above the
detection limit of SP2 scattering and total particles.

7 Figure S7 shows the detect efficiency of SP2 scattering for BC-containing particles with size-resolved rBC cores (75-200 nm) under different PM1 concentration. 8 For BC-containing particles above the detection limit of our SP2 incandescence (rBC 9 cores larger than ~75 nm), the detect efficiency of SP2 scattering is defined as the 10 ratio of the number concentration of particles above the detection limit of SP2 11 scattering and total particles. The SP2 scattering exhibited a high detection efficiency 12 (90-100%) for observed BC-containing particles with rBC cores more than 75 nm, 13 which could be attributed to large BC-containing particles (~180-500 nm shown in 14 15 Fig. S8) in our site due to atmospheric aging. High detection efficiency of SP2 scattering is favor to retrieve the thickness of coating materials on rBC cores (>75 nm 16 size studied in this work) based on scattering signal. 17

10

Figure S8. Frequency of the D_p/D_c ratio of BC-containing particles with size-resolved rBC cores as a function of PM1 concentrations.

Figure S8 shows frequency distribution of the D_p/D_c ratio of BC-containing particles with size-resolved rBC cores under different PM₁ concentrations. For BC-containing particles with 75-300 nm rBC cores, their particle size was in the range of 180-500 nm. The particle size (D_p) of BC-containing particles with rBC cores at a certain size significantly increased with increasing PM₁ concentration, revealing more coating materials on BC surface under more polluted environment.

Figure. S9. The time series of MAC derived from Mie calculation for BC cores (i.e.,bare BC) at 880 nm.

13 In this study, we used Mie mode to calculate optical properties of all

BC-containing particles including bare BC and aged BC. Note that Mie theory is 1 fundamentally ill-suited to calculation of optical properties for bare BC particles, 2 3 which would lead to an uncertainty of their light absorption. Based on Mie calculation, we obtained the MAC of rBC core (MAC_c) at 880 nm in the range of 3.8-4.5 m²/g with 4 an average of ~4.3 m^2/g during the campaign period (Fig. S9). Bond and Bergstrom 5 (2006) suggested a value of 7.5 m^2/g for the MAC of bare BC at 550 nm. Considering 6 that the absorption is inversely proportional to wavelength (Bond and Bergstrom, 7 2006), the MAC of bare rBC at 880 nm is estimated to be ~4.7 m²/g, which was 8 slightly greater than that (~4.3 m²/g) obtained from Mie calculation in our study. This 9 indicated the uncertainty of MAC for bare rBC from Mie calculation was ~8%. We 10 estimated that the uncertainties of calculated BC light absorption related to MAC of 11 bare rBC from Mie calculation was ~8%. 12

13

Figure S10. Variations in the coating thickness of BC-containing particles with
the (a) PM₁ and (b) rBC mass concentrations.

Figure S10 shows the coating thickness of BC-containing particles increased with PM₁ and rBC concentration. The simultaneous increase in the rBC mass concentration and the amount of coating materials on the BC surface could significantly enhance the light absorption of BC-containing particles.

Figure S11. Changes of the light absorption coefficient at 880 nm (σ_{ab,880nm}) with PM₁
mass concentrations.

Figure S11 shows the changes of the light absorption coefficient at 880 nm ($\sigma_{ab,880nm}$) with PM₁ mass concentrations. The $\sigma_{ab,880nm}$ and rBC mass concentrations increased with increasing PM₁ mass concentrations. The simultaneous increase in the rBC mass concentration and the amount of coating materials shown in Fig. S10 revealed that the increase of $\sigma_{ab,880nm}$ (~18 fold from ~10 µg m⁻³ of PM₁ to ~230 µg m⁻³ of PM₁) could be attributed to simultaneous increase in the rBC mass concentration and the amount of coating materials on the BC surface.

11

Figure S12. (a) Changes of growth rate of calculated E_{ab} (k_{Eab}) with PM₁ mass concentration. (b) Variations in the diameter of BC-containing particles (D_p) with the normalized PM₁ concentrations.

As shown in Figure S12, the changes of growth rate of $E_{ab}(k_{Eab})$ decreased with 5 increasing PM_1 mass concentration. During the campaign period, the k_{Eab} of 6 BC-containing particles was in the 0.5-1.5% h⁻¹. The decrease of k_{Eab} associated with 7 air pollution indicated the enhancement of light absorption capability of 8 BC-containing particles slowed with further air pollution, because BC aging process 9 10 by condensational growth was less effective for more-aged BC particles with larger 11 size under more pollution environment (Fig. S12b). The net change in diameter for a given amount of material deposited decreases with increasing particle size due to 12 surface-to-volume scaling, which would expect the growth rate of particles to 13

Figure S13 shows the the relationship between the change rate of calculated E_{ab} (k_{Eab}) and the change rates of rBC mass concentrations (k_{rBC}) with pollution development. Linear relationships were estimated, i.e., $k_{Eab} \approx 0.027 k_{rBC}$. Compared with the values of k_{rBC} , the significantly smaller k_{Eab} value indicated that the light absorption capability of BC increased more slowly than rBC mass concentrations.

10

11 Table S1 The DRF of externally mixed BC from global climate models. The modeled

Global climate Model	Mixing state	Modeled MAC (m ² g ⁻¹)	Modeled DRF (W m ⁻²)	Reference
AeroCom models				
GISS	External	8.4	0.22	Schulz et al. (2006)
LOA	External	8.0	0.32	Schulz et al. (2006)
LSCE	External	4.4	0.30	Schulz et al. (2006)
SPRINTARS	External	9.8	0.32	Schulz et al. (2006)
UIO-CTM	External	7.2	0.22	Schulz et al. (2006)
UMI	External	6.8	0.25	Schulz et al. (2006)
Other models				
BCC_AGCM	External	4.3	0.10	Zhang et al. (2012)
CAM3 ECA	External	10.6	0.57	Kim et al. (2008)
GISS-GCM II	External	7.8	0.51	Chung and Seinfeld (2002)
Average values		7.5	0.31	

values were taken from Bond et al. (2013).

13

The DRF values for BC-containing particles at different pollution levels were

obtained by scaling the average DRF (0.31 W m⁻²) of externally mixed BC from various climate models (Bond et al. 2013) with a scaling factor of the calculated E_{ab} under different PM₁ concentrations (Fig. 2b). The DRF (0.31 W m⁻²) of externally mixed BC was the global averages from the global climate models listed in Table S1. In order to point out the effect of BC light-absorption capability on DRF under different PM₁ concentrations, we did not consider the changes of BC amount for DRF calculation.

Site	Measurement Period	PM (µg m ⁻³)	BC (μg m ⁻³)	Reference
Beijing (urban site)	1 to 31 January 2013	PM _{2.5} : ~4.4-855 (mean: 162)	~0.2-25	Zheng et al., 2015
Xi'an, Shaanxi (urban site)	23 December 2012 to 18 January 2013	PM _{2.5} : ~10-600	~0.3-44.5 (mean: 8.8)	Wang et al., 2014
Nanjing, Jiangsu (urban site)	1 January to 31 December 2015	PM ₁ : ~10-250 (mean: 48)	~0.5-20 (mean: 2.9)	Zhao et al., 2017
Shanghai (urban site)	5 to 10 December 2013	PM _{2.5} : ~40-636 (mean: 221)	~0.6-12.1 (mean: 3.2)	Gong et al., 2016
Jiaxing, Zhejiang (suburban site)	29 June to 15 July 2010 11 to 23 December 2010	PM ₁ : Summer ~4.6-104 (mean: 32.9) Winter 5.8-160 (mean: 41.9)	Summer ~0.4-11.7 (mean: 3.0) Winter ~0.52-49.5 (mean: 7.1)	Huang et al., 2013
Guangzhou, Guangdong (urban site)	5 October to 5 November 2004	PM _{2.5} : ~63-152 (mean:103)	~3-20 (mean:103)	Andreae et al., 2008
Heshan, Guangdong (suburban site)	From 21 November to 1 December 2010	PM _{2.5} : 23.5-145.2 (mean: 74.6)	2.9-13.8 (mean: 8.2)	Zhang et al., 2014

1 Table S2. Previous studies on the BC and PM (PM_1 or $PM_{2.5}$) mass concentrations in China.

Table S2 lists the BC and PM (PM₁ or PM_{2.5}) mass concentrations in China in previous study. In this study, the PM₁ and rBC concentrations were 10-230 μ g m⁻³ and 0.7-11 μ g m⁻³ in Beijing during the campaign period (17 to 30 November 2014), which was consistent with previous studies in other polluted regions in China (Table S2). The consistency indicated that the enhancement of the light absorption capability of BC-containing particles associated with air pollution not only occurred in Beijing but also might be observed in other polluted regions in China.

8 References

9 Andreae, M. O., Schmid, O., Yang, H., Chand, D., Zhen Yu, J., Zeng, L.-M., and

10 Zhang, Y.-H.: Optical properties and chemical composition of the atmospheric aerosol

11 in urban Guangzhou, China, *Atmos. Environ.*, 42, 6335-6350, 2008.

Bond, T. C., and Bergstrom, R. W.: Light Absorption by Carbonaceous Particles: An
Investigative Review, *Aerosol Sci. Technol.*, 40, 27-67, 2006.

14 Cappa, C. D., Onasch, T. B., Massoli, P., Worsnop, D. R., Bates, T. S., Cross, E. S.,

15 Davidovits, P., Hakala, J., Hayden, K. L., Jobson, B. T., Kolesar, K. R., Lack, D. A.,

16 Lerner, B. M., Li, S.-M., Mellon, D., Nuaaman, I., Olfert, J. S., Petäjä, T., Quinn, P.

17 K., Song, C., Subramanian, R., Williams, E. J., and Zaveri, R. A.: Radiative

18 Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon,

- 19 *Science*, 337, 1078-1081, 2012.
- Chung, S. H., and Seinfeld, J. H.: Global distribution and climate forcing of
 carbonaceous aerosols, *J. Geophys. Res.-Atmos.*, 107, AAC 14-11-AAC 14-33,
 10.1029/2001JD001397, 2002.
- 23 Drinovec, L., Močnik, G., Zotter, P., Prévôt, A., Ruckstuhl, C., Coz, E., Rupakheti,

24 M., Sciare, J., Müller, T., and Wiedensohler, A.: The" dual-spot" Aethalometer: an

improved measurement of aerosol black carbon with real-time loading compensation,

26 Atmos. Meas. Tech., 8, 1965-1979, 2015.

Gong, X., Zhang, C., Chen, H., Nizkorodov, S. A., Chen, J., and Yang, X.: Size
distribution and mixing state of black carbon particles during a heavy air pollution

episode in Shanghai, Atmos. Chem. Phys., 16, 5399-5411, 2016.

- Hänel, G.: The real part of the mean complex refractive index and the mean density of
 samples of atmospheric aerosol particles, *Tellus*, 20, 371-379, 1968.
- 3 Huang, X.-F., Xue, L., Tian, X.-D., Shao, W.-W., Sun, T.-L., Gong, Z.-H., Ju, W.-W.,
- Jiang, B., Hu, M., and He, L.-Y.: Highly time-resolved carbonaceous aerosol characterization in Yangtze River Delta of China: Composition, mixing state and secondary formation, *Atmos. Environ.*, 64, 200-207, 2013.
- 7 Hyvärinen, A.-P., Vakkari, V., Laakso, L., Hooda, R. K., Sharma, V. P., Panwar, T. S.,
- 8 Beukes, J. P., van Zyl, P. G., Josipovic, M., Garland, R. M., Andreae, M. O., Pöschl,
- 9 U., and Petzold, A.: Correction for a measurement artifact of the Multi-Angle
- 10 Absorption Photometer (MAAP) at high black carbon mass concentration levels,
- 11 Atmos. Meas. Tech., 6, 81-90, 2013.
- Kim, D., Wang, C., Ekman, A. M. L., Barth, M. C., and Rasch, P. J.: Distribution and
 direct radiative forcing of carbonaceous and sulfate aerosols in an interactive
 size-resolving aerosol–climate model, *J. Geophys. Res.-Atmos.*, 113,
 10.1029/2007JD009756, 2008.
- Mallet, M., J.C. Roger, S. Despiau, O. Dubovik and J.P. Putaud (2003),
 Microphysical and optical properties of aerosol particles in urban zone during
 ESCOMPTE. *Atmos. Res.*, 69(1-2), 73-97.
- 19 Marley, N.A., J.S. Gaffney, C. Baird, C.A. Blazer, P. J. Drayton and J. E. Frederick
- 20 (2001), An empirical method for the determination of the complex refractive index of
- size fractionated atmospheric aerosols for radiative transfer calculations, *Aerospace*.
- 22 Sci. Technol. 34(6), 535-549.
- Schkolnik, G., D. Chand, A. Hoffer, M.O. Andreae, C. Erlick, E. Swietlicki and Y.
 Rudich (2007), Constraining the density and complex refractive index of elemental
 and organic carbon in biomass burning aerosol using optical and chemical
 measurements, *Atmos. Environ.*, 41, 1107-1118.
- 27 Schulz, M., Textor, C., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T.,
- 28 Boucher, O., Dentener, F., Guibert, S., Isaksen, I. S. A., Iversen, T., Koch, D.,
- 29 Kirkevåg, A., Liu, X., Montanaro, V., Myhre, G., Penner, J. E., Pitari, G., Reddy, S.,
- 30 Seland, Ø., Stier, P., and Takemura, T.: Radiative forcing by aerosols as derived from

the AeroCom present-day and pre-industrial simulations, *Atmos. Chem. Phys.*, 6,
 5225-5246, 2006.

- Segura, S., Estellés, V., Titos, G., Lyamani, H., Utrillas, M. P., Zotter, P., Prévôt, A. S.
 H., Mo^{*}cnik, G., Alados-Arboledas, L., and Martínez-Lozano, J. A.: Determination
 and analysis of in situ spectral aerosol optical properties by a multi-instrumental
 approach, *Atmos. Meas. Tech.*, 7, 2373–2387, 2014.
- 7 Taylor, J. W., Allan, J. D., Liu, D., Flynn, M., Weber, R., Zhang, X., Lefer, B. L.,
- 8 Grossberg, N., Flynn, J., and Coe, H.: Assessment of the sensitivity of core / shell
- 9 parameters derived using the single-particle soot photometer to density and refractive
- 10 index, Atmos. Meas. Tech., 8, 1701-1718, 2015.
- 11 Wang, Q., Huang, R. J., Cao, J., Han, Y., Wang, G., Li, G., Wang, Y., Dai, W., Zhang,
- 12 R., and Zhou, Y.: Mixing State of Black Carbon Aerosol in a Heavily Polluted Urban
- 13 Area of China: Implications for Light Absorption Enhancement, Aerosol Sci. Technol.,
- 14 48, 689-697, 2014.
- 15 Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., and Baltensperger,
- 16 U.: Absorption of light by soot particles: determination of the absorption coefficient
- by means of aethalometers, J. Aerosol Sci., 34, 1445–1463, 2003.
- 18 Zhang, G., Bi, X., He, J., Chen, D., Chan, L. Y., Xie, G., Wang, X., Sheng, G., Fu, J.,
- and Zhou, Z.: Variation of secondary coatings associated with elemental carbon by
- single particle analysis, *Atmos. Environ.*, 92, 162-170, 2014.
- 21 Zhang, H., Wang, Z., Wang, Z., Liu, Q., Gong, S., Zhang, X., Shen, Z., Lu, P., Wei,
- 22 X., Che, H., and Li, L.: Simulation of direct radiative forcing of aerosols and their
- 23 effects on East Asian climate using an interactive AGCM-aerosol coupled system,
- 24 *Clim. Dyn.*, 38, 1675-1693, 10.1007/s00382-011-1131-0, 2012.
- 25 Zhao, Q., Shen, G., Li, L., Chen, F., Qiao, Y., Li, C., Liu, Q., and Han, J.: Ambient
- 26 Particles (PM10, PM2.5 and PM1.0) and PM2.5 Chemical Components in Western
- 27 Yangtze River Delta (YRD): An Overview of Data from 1-year Online Continuous
- 28 Monitoring at Nanjing, *Aerosol Sci. Eng.*, 2017.
- 29 Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang,
- 30 T., Kimoto, T., Chang, D., Pöschl, U., Cheng, Y. F., and He, K. B.: Exploring the

- 1 severe winter haze in Beijing: the impact of synoptic weather, regional transport and
- 2 heterogeneous reactions, *Atmos. Chem. Phys.*, 15, 2969-2983, 2015.