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Abstract. The Beijing area has suffered from severe air pol-
lution in recent years, including ozone pollution in the sum-
mer. In addition to the anthropogenic emissions inventory,
understanding local ozone pollution requires a reliable bio-
genic volatile organic compound (BVOC) emission inven-
tory. Forest coverage rose from 20.6 to 35.8 % from 1998 to
2013 in Beijing according to the National Forest Resource
Survey (NFRS), and accurate representations of land cover
for recent years is crucial for estimating BVOC emissions
and their impacts on air quality. In this study, we established
a high-resolution BVOC emission inventory in Beijing us-
ing the Model of Emissions of Gases and Aerosols from Na-
ture (MEGAN) v2.1 with three independent leaf area index
(LAI) products and three independent land cover products.
Various combinations of the Global LAnd Surface Satellite
(GLASS), Moderate-Resolution Imaging Spectroradiometer
(MODIS) MCD15, and GEOland (GEO) v2 LAI datasets and
the Finer Resolution Observation and Monitoring of Global
Land Cover (FROM-GLC), MODIS MCD12Q1 plant func-
tional type (PFT) products, and Climate Change Initiative
Land Cover (CCI LC) products are used in five model sen-
sitivity experiments (E1–E5), and the experiment using the
FROM-GLC with the highest spatial resolution of 30 m and
GLASS LAI products was treated as the baseline. These
sensitivity calculations were driven by hourly, 3 km meteo-
rological fields from the Weather Research and Forecasting
(WRF) model. The following results were obtained: (1) ac-
cording to the baseline estimate, the total amount of BVOC

emissions is 75.9 Gg for the Beijing area, and isoprene,
monoterpenes, sesquiterpenes and other VOCs account for
37.6, 14.6, 1.8 and 46 % of the total, respectively. Approxi-
mately three-quarters of BVOC emissions occur in the sum-
mer. (2) According to the sensitivity experiments, the LAI
input does not significantly affect the BVOC emissions. Us-
ing MODIS MCD15Q1 and GEO v2 LAI led to slight de-
clines of 2.6 and 1.4 %, respectively, of BVOC emissions in
the same area. (3) The spatial distribution of PFTs from dif-
ferent inputs strongly influenced the spatial distribution of
BVOC emissions. Furthermore, the cross-walking table for
converting land cover classes to PFTs also has a strong im-
pact on BVOC emissions; the sensitivity experiments showed
that the estimate of BVOC emissions by CCI LC ranged from
42.1 to 70.2 Gg depending on the cross-walking table used.

1 Introduction

Biogenic volatile organic compounds (BVOCs) play a sig-
nificant role in the atmospheric environment because of the
large quantities emitted and their high reactivity (Fuentes
et al., 2000; Guenther et al., 1995). BVOCs can form sec-
ondary organic aerosol (SOA) (Claeys et al., 2004; Kavouras
et al., 1998) as well as affect tropospheric ozone (O3) and
nitrogen oxide radicals (NOx) (Fuentes et al., 2000; Seinfeld
and Pandis, 2012). BVOC emissions are affected by meteoro-
logical conditions, including solar radiation, temperature and
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concentration of carbon dioxide (Arneth et al., 2007; Guen-
ther et al., 2006; Guenther et al., 1993). Furthermore, the
changing climate will lead to changes in environmental con-
ditions and anthropogenic activities, which have an impact
on the BVOC emissions, leading to feedback effects on cli-
mate and human beings (Penuelas and Staudt, 2010). Under
the influence of global warming, as estimated by Stavrakou
et al. (2014), the isoprene emissions in East Asia and China
increased by 0.2 and 0.5 % yr−1, respectively, from 1979 to
2005. In addition, considering the severe air quality prob-
lem in China, addressing the contribution from natural and
anthropogenic sources could benefit attempts to improve air
quality.

Klinger et al. (2002) estimated the total amount of BVOC
emissions in China at about 21.0 Tg, with terpenoids ac-
counting for approximately 8.06 Tg. That terpenoid emis-
sion estimate is similar to the 10.9 Tg estimated by Tie
et al. (2006). Since subtropical regions in China have se-
vere ozone pollution and abundant forests, multiple studies
have focused on local biogenic emissions and their poten-
tial effects on urban air quality (Wang et al., 2011, 2013;
Leung et al., 2010). As a typical city in northern China,
Beijing faces severe ozone pollution in summer (Wang et
al., 2006; Safieddine et al., 2016; Zhao et al., 2010). Fur-
thermore, model and satellite results both indicate that the
North China Plain suffers relatively more severe O3 pollu-
tion than southern regions in China during summer (Zhao et
al., 2010; Safieddine et al., 2016). Because Beijing is sur-
rounded by temperate forests, it is necessary to consider the
influence from biogenic emissions on local air pollution. Pre-
vious studies have carried out some calculations of local
BVOC emissions (Wang et al., 2003; Klinger et al., 2002),
but these estimates were made for an earlier period (1998–
2000), and the China Forestry Database (http://data.forestry.
gov.cn/lysjk) provided by the National Forest Resources Sur-
veys shows that the forest coverage rate in Beijing rose from
20.6 to 35.8 % from 1998 to 2013. Furthermore, the domi-
nant tree species of the local forests are Quercus and Popu-
lus, which are strong isoprene emitters (Wang et al., 2003).
Therefore, an up-to-date BVOC emission inventory is needed
to evaluate biogenic effects on local air quality.

The Model of Emission of Gases and Aerosols from Na-
ture (MEGAN) (Guenther et al., 2006, 2012) is the most
commonly used BVOC emission model and has been widely
used in air quality simulations in China (Gao et al., 2016;
Geng et al., 2011; Fu and Liao, 2012; Wang et al., 2018).
In this study, we adopted the MEGAN model to estimate
BVOC emissions across the Beijing region. The leaf area in-
dex (LAI) and land cover (LC) are two important factors for
the BVOC emission estimates. The LAI and LC determine
the biomass and BVOC emission potential, respectively, in
the MEGAN model. Therefore, multiple satellite-based LAI
and LC products were examined in this study to investigate
the uncertainties associated with the LAI and LC inputs. Sec-
tion 2 introduces the models and datasets used in this study.

In Sect. 3, we elaborate our BVOC emission inventory as
well as the sensitivities of the model to different satellite in-
puts. We present our conclusions in Sect. 4.

2 Methodology

2.1 Model description

The BVOC emission rate in MEGAN is calculated as follows
(Guenther et al., 2006):

emission= [ε] ·
[
γ
]
· [ρ],

where ε is a factor that accounts for the emission rates of
different compounds under standard canopy conditions, γ is
an activity factor that accounts for the environmental vari-
ance, and ρ is a factor that accounts for chemical and physi-
cal losses in the plant canopy layer.

2.1.1 Emission factors

The standard emission rates in MEGAN adopt the canopy-
scale emission factors (µgm−2 h−1), which are converted
from the measured leaf-scale emission factors (µgm−2 h−1).
The leaf-scale emission factor, leaf mass per area (LMA,
g m−2) and the standard environmental factor were used to
convert the leaf-scale emission factors to canopy-scale emis-
sion factors (Leung et al., 2010; Guenther et al., 2006). In
MEGAN, the ε can be described by either the specific tree
species map or the plant functional type (PFT) map (Guen-
ther et al., 2006). In this study, we adopted six PFTs to ex-
plain the standard emission factors: broadleaf trees, needle-
leaf trees, shrubs, grass, corn and other crops. Moreover, we
modified the standard emission factor of isoprene for ev-
ery PFT according to local field measurements from previ-
ous publications (Wang et al., 2003; Klinger et al., 2002).
Based on the area data of diverse tree species from the eighth
NFRS (Table S1 in Supplement), which came from Ren et
al. (2017), the emission factors of isoprene for the PFTs men-
tioned above are calculated as

εj =
∑

ϕiLMAi
si

sj
,

where εj is the canopy-scale emission factor of the PFT
species j , φi is the leaf-scale emission factor for the vege-
tation species i, and the Si /Sj represents the area proportion
of vegetation species i in PFT j .

Due to the lack of measurements of emission factors in
the local area, the default emission factors of MEGAN v2.1
were used for all other VOCs. Table 1 shows the original and
adjusted standard emission factors of isoprene.

2.1.2 Environmental activity factor

The environmental activity factor accounts for the effects of
leaf age, canopy meteorological environment and soil mois-
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Table 1. Adjusted (original) isoprene emission factors (EF, µgm−2 h−1) for each plant functional type (PFT).

PFT Broadleaf Needleleaf Shrub Grass Other Corn
trees trees crops

EF 6510 (10 000) 64 (600) 544 (4000) 14 (800) 2 (50) 1 (1)

ture in MEGAN, and it can be expressed as

γ = γCE · γage · γSM,

where γCE accounts for variations in the canopy meteorolog-
ical conditions, γage describes the effect of leaf age, and γSM
accounts for the impact of soil moisture.

Temperature and photosynthetically active radiation
(PAR) are the main canopy meteorological variables that
affect BVOC emissions. The emission of isoprene was
modeled as fully light and temperature dependent accord-
ing to the algorithms of isoprene emission conditions de-
scribed by Guenther et al. (2012). Approximately 10 %
of monoterpenes and 50 % of sesquiterpenes were treated
as light- and temperature-dependent, and the others were
treated as temperature-dependent species (Sakulyanontvit-
taya et al., 2008). The moisture factor γSM was only con-
sidered for the isoprene emission. The corresponding canopy
models were adopted to calculate the sunlit and shaded
leaves’ temperature and light scattering of each PFT (Guen-
ther et al., 1999, 2006). The details of the algorithms used
for isoprene and monoterpenes can be found in Guenther et
al. (2012) and Sakulyanontvittaya et al. (2008).

2.2 Data and simulation description

In this study, we used a mesoscale weather model to pro-
vide the meteorological conditions. Due to the lack of direct
observations of canopy emissions, we varied the input con-
ditions to investigate the sensitivity of the simulation to the
emission inventory. Three PFT and three LAI datasets were
adopted to investigate the impact of these inputs.

2.2.1 WRF meteorological simulation

The Weather Research and Forecasting (WRF) v3.3.1 (Ska-
marock et al., 2008) model was used to provide the mete-
orological conditions. The initialization field and boundary
conditions for WRF are provided by the National Centers for
Environmental Prediction (NCEP) FNL (Final) Operational
Global Analysis data (National Centers for Environmen-
tal Prediction, 2000) (https://rda.ucar.edu/datasets/ds083.2/).
The boundary conditions are updated every 6 h. The model
domain contained three horizontally nested grids with the
spatial resolution of 27, 9 and 3 km and 31 vertical layers, in-
cluding four layers of soil from the Noah land surface model
(Tewari et al., 2004). The 3 km horizontal grid covered Bei-
jing and was used for the BVOC emission inventory. The

Figure 1. Time series plots of (a) station-averaged simulated and
in situ 2 m temperature (T2) as well as (b) simulated and in situ
downward shortwave radiation (DSW) at the Beijing station.

WRF model was initialized at 12:00 UTC, and the first 12 h
was spin-up time. The data of the period from 00:00 UTC to
23:00 UTC UTC in the second day was cut and merged to es-
timate the BVOC emissions. The merged file was processed
by the Meteorology-Chemistry Interface Processor (MCIP)
(Otte and Pleim, 2010) tool to provide meteorological con-
ditions for MEGAN. The physical options used for the WRF
model are presented in Table S2.

The temperature at 2 m height (T2) simulated by WRF was
primarily verified by in situ data from 19 monitoring sites in
the Beijing region, and the daily downward shortwave radi-
ation (DSW) was also validated using the in situ data from
the Beijing station. Table 2 presents the verification statis-
tics of average hourly T2 among all sites and DSW of the
Beijing station, and Fig. 1 shows the time series of station-
averaged daily T2 and DSW. As shown in Table 2, the mean
error (ME), mean bias (MB), correlation coefficient (r) and
root-mean-square error (RMSE) of station-averaged hourly
T2 series are 2.11, −1.38, 0.98 and 2.57 ◦C, respectively.
The r values in summer (0.87) and winter (0.86) are rela-
tively lower than those in spring (0.97) and fall (0.97), and
the simulation shows cooling biases of −2.04, −0.45, −1.19
and −2.1 ◦C in spring, summer, fall and winter, respectively.
The ME, MB, r and RMSE of the whole-year DSW series
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Table 2. Verification statistics of hourly temperature at 2 m height (T2) and daily downward shortwave radiation (DSW). ME, MB and RMSE
are abbreviations for mean error, mean bias and root-mean-square error, respectively.

Variable Season Mean ME MB r RMSE

Obs. Sim.

Spring 12.59 10.55 2.43 −2.04 0.97 2.84
Summer 25.08 24.63 1.72 −0.45 0.87 2.21

T2 (◦C) Fall 12.23 11.04 1.82 −1.19 0.97 2.15
Winter −4.04 −6.14 2.67 −2.10 0.86 3.18
Year 13.06 11.68 2.11 −1.38 0.98 2.57

Spring 205.54 262.71 59.66 57.17 0.75 75.94
Summer 184.36 269.59 88.14 85.23 0.77 106.61

DSW (W m−2) Fall 124.40 155.34 34.71 30.94 0.79 48.54
Winter 93.91 132.96 41.86 39.05 0.69 53.14
Year 157.60 212.35 57.77 54.76 0.81 76.80

are 57.77, 54.76, 0.81 and 76.80 W m−2, and the simulation
of DSW exhibits overestimation of 57.17, 85.23, 30.94 and
39.05 W m−2 in spring, summer, fall and winter, respectively.
The detailed statistics of hourly T2 of specific stations are
given in Table S3. Across all sites, Tongzhou, Daxing, and
Fangshan have the most obvious underestimates of surface
temperature, with high negative biases of −5.28, −5.36 and
−4.68 ◦C, respectively. Figure 2 shows the location of all
sites, with the MB of T2 indicated by the color scale, and
these sites are located in the suburban regions of Beijing,
which are experiencing fast urbanization and lower BVOC
emissions. WRF did not simulate the urban heat island phe-
nomenon in these regions. The main source of BVOCs is the
rural forest around Beijing, and Table S3 as well as Fig. 2 in-
dicate relatively good simulation among the sites in the rural
region; therefore, the simulation bias of the suburban regions
can be expected to have little impact on the estimate of whole
BVOC emissions.

2.2.2 Satellite datasets

The PFT and LC datasets include the Finer Resolu-
tion Observation and Monitoring of Global Land Cover
(FROM-GLC) (Gong et al., 2013; Yu et al., 2014), the
Moderate-Resolution Imaging Spectroradiometer (MODIS)
MCD12Q1 PFT products (Friedl et al., 2010), and the Cli-
mate Change Initiative Land Cover (CCI LC) products (ESA,
2017). Three LAI data products are adopted as LAI input, in-
cluding the Global LAnd Surface Satellite (GLASS) (Xiao et
al., 2014, 2016), MODIS MCD15A2 version 5 (Knyazikhin
et al., 1999), and GEOland (GEO) v2 (Baret et al., 2013;
Verger et al., 2014b) LAI products. The LC datasets were re-
gridded to the WRF grid by calculating the area fraction of
each PFT, and the LAI datasets were converted from original
grids to WRF grids by calculating the area mean LAI in the
WRF grids.

Figure 2. Spatial distribution of the mean bias (MB) of temperature
(T2) from all available sites.

FROM-GLC is the first global LC product with 30 m spa-
tial resolution (Gong et al., 2013). It is based on Thematic
Mapper (TM)/Enhanced Thematic Mapper (ETM) images
and uses images from MODIS and Google Earth as refer-
ences. Because the higher spatial resolution captures a more
detailed distribution of PFTs, we used the latest version
FROM-GLC-AGG (Yu et al., 2014) as the baseline PFT in-
put. The spatial resolutions of the other two global LC prod-
ucts used to study the impact of the PFT inputs, MODIS
MCD12Q1 and CCI LC, are 500 and 300 m, respectively.
The benchmark years of FROM, MODIS and CCI LC are
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Table 3. The area fractions of different plant functional types (PFTs) in Beijing from the three land cover datasets.

Broadleaf Needleleaf Shrub Grass Other Corn
trees trees crops

FROM-GLC 27.3 % 7.3 % 11.3 % 11.9 % 3.6 % 23.7 %
MODIS LC 30.3 % 6.6 % 2.3 % 15.8 % 21.5 % 11.8 %
CCI LC 20.0 % 6.3 % 8.4 % 16.6 % 7.6 % 5.6 %

t t

Figure 3. Spatial distribution of the proportions of plant functional types (PFTs) in model grids in the three land cover inputs.

2010, 2013 and 2013, respectively. Since the forests would
not obviously change in 3 years, the FROM PFT used to cal-
culate the BVOC emissions with other inputs was for year
2013. The PFT map layer of the MODIS MCD12Q1 prod-
uct was directly used. CCI LC uses the default cross-walking
table given by Poulter et al. (2015) to convert the LC class
maps to PFT maps. The FROM-GLC conversion process
used the class legend description, with each LC type being
classified into the corresponding PFT. The PFT proportions
of the three LC products are presented in Table 3. All three
products have similar percentages of needleleaf trees, but dif-
ferent percentages of broadleaf trees. The CCI LC has lower
broadleaf tree coverage compared to the other two prod-
ucts due to the impact of the cross-walking table. Figure 3
shows the spatial distribution of the four main PFTs in the
model grids of the LC products. As shown in Fig. 3, the three

datasets have similar distributions, but differ in forest density.
Because of the high emission factors of broadleaf trees, the
highest broadleaf tree density of the MODIS LC data implies
the highest emission density. Considering the high biomass
and emission factors, the local broadleaf trees could lead to a
considerable emission potential. In contrast, the distributions
of the shrub and grass PFTs show higher variability than the
tree PFTs, but the low emission factors limit their impacts on
the estimate of terpenoid emissions.

Three different LAI datasets were adopted in this study:
the GLASS v1.1, MODIS MCD15A2 and GEO v2 LAI prod-
ucts. All three datasets have a spatial resolution of 1 km.
The temporal resolutions of GLASS and MODIS are both
8 days, and that of GEO v2 is 10 days. The GLASS v1.1 LAI
products are retrieved from reprocessed Advanced Very High
Resolution Radiometer (AVHRR) and MODIS reflectance

www.atmos-chem-phys.net/18/9583/2018/ Atmos. Chem. Phys., 18, 9583–9596, 2018
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Figure 4. The average spatial distribution of (a) GLASS,
(b) MODIS and (c) GEO v2 LAI in summer (June, July and Au-
gust; JJA).

data using the general regression neural network (GRNN)
(Xiao et al., 2014, 2016), which was trained by the fused
LAI from the MODIS and CYCLOPES LAI products. The
GEO v1 adopts the Neural Network trained by the MODIS
and CYCLOPES fused LAI to derive the LAI from the re-
flectance data from the SPOT/VEGETATION sensor (Baret
et al., 2013). Based on GEO v1, the later GEO v2 em-
ploys a filtering approach to eliminate the outliers as well
as Savitzky–Golay and climatological temporal smoothing
and gap filling methods to ensure consistency and continu-
ity (Verger et al., 2014a). Due to the diversity of satellite data
sources and algorithms, these three datasets are treated as de-
pendent datasets and were used to study the impact of differ-
ent satellite LAI inputs. Figure 4a–c show the spatial distri-
bution of the three LAI products in the model grid in sum-
mer. Since MODIS MCD15A2 uses the vegetation canopy
radiation model to produce LAI products (Knyazikhin et
al., 1999), the region assigned as non-pure vegetation types
leads to missing values in the MODIS MCD12 Q1 LC prod-
ucts. Thus, the MODIS MCD15A2 LAI product has a big-
ger mask area in suburban areas and near water, which could
lead directly to the loss of BVOC emissions in these ar-
eas. Figure 5 shows the monthly average LAI values of
trees and grasses of the three products based on the MODIS
MCD12Q1 LC. Only the grid cells in the region over which
the MODIS MCD15A2 LAI is valid were taken into account.
According to Fig. 5, the three LAI products have nearly the
same trend in LAI values for trees, and the GEO v2 product
has the highest LAI from May to September. The MODIS
MCD15A2 product has the lowest LAI of the three products
for the tree and herb vegetation. The peak LAI of trees occurs
in July for all three products, and the mean LAIs of the three
products during the winter seasons are all below 1 because
of the low biomass of local deciduous tree species. The di-
rect validations by Xiao et al. (2016) showed that of the three
products, the GLASS LAI is most consistent with observa-
tions. Therefore, we treated the GLASS LAI as the most ac-
curate LAI and it was used in the baseline experiments.

Table 4 presents the configurations of the simulation ex-
periments. The baseline experiment (E1) used the FROM

Figure 5. The monthly average leaf area index (LAI) values of
(a) trees and (b) herbs in the three LAI products.

Table 4. The simulation experiment configurations. E1 is the base-
line experiment, and E1–E3 were used to investigate the impact of
leaf area index inputs. The impact of different plant functional type
(PFT) inputs was investigated by E1, E4 and E5.

Land cover Leaf area index

E1 (baseline) FROM GLASS v1.1
E2 FROM GEO v2
E3 FROM MODIS MCD15
E4 MODIS MCD12Q1 GLASS v1.1
E5 CCI LC GLASS v1.1

PFT and GLASS LAI as inputs. Experiments E1–E3 used
the same PFT input and varied the LAI inputs to investigate
the impacts of the different LAI inputs. The effect of different
PFT inputs was investigated in experiments E1, E4 and E5,
which all used the same GLASS LAI input but used different
LC datasets.

3 Results and description

MEGAN v2.1 can output 20 basic compounds, which can
be divided into 150 VOC species (Guenther et al., 2012).
In this study, the VOC species are divided into four
groups: isoprene, monoterpenes, sesquiterpenes, and other
VOCs. Monoterpenes include myrcene, sabinene, limonene,
3-carene, α-β-ocimene, β-pinene, α-pinene, and other
monoterpenes, and the sesquiterpenes include α-farnesene,
β-caryophyllene and other sesquiterpenes. The following
sections are largely focused on the terpenoids because of
their high reactivity and because they are better understood
than the other VOCs, which are associated with larger uncer-
tainties.
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Table 5. The total annual BVOC emissions (Gg) from all experiments.

Isoprene Monoterpenes Sesquiterpenes Other VOCs SUM

E1 28.5 11.1 1.4 34.9 75.9
E2 27.7 11.0 1.4 35.6 75.7
E3 23.1 9.8 1.2 27.7 61.8
E4 30.2 9.3 1.2 35.8 76.5
E5 20.6 8.4 1.0 26.0 56.0

Figure 6. The temporal variability in biogenic volatile organic compounds (BVOCs) in all simulation experiments.

3.1 Quantity of BVOC emissions

According to the baseline experiment (E1), the quantity of
BVOCs emitted annually in Beijing is 75.9 Gg; isoprene,
monoterpenes, sesquiterpenes and other VOCs make up 37.6,
14.6, 1.8 and 46.0 % of the total, respectively. Table 5
presents the annual emission results of all experiments. E2
and E4 have similar total emissions at 75.7 and 76.5 Gg, re-
spectively, while E3 and E5 have lower emissions at 61.8 and
56.0 Gg, respectively. The GEO LAI total emissions are more
similar to the E1 results than those of the MODIS LAI. How-
ever, if only grid cells over which the MODIS LAI has no
missing values are taken into account, the total BVOC emis-
sions of E1–E3 are 63.5, 62.6 and 61.8 Gg; i.e., the MODIS
MCD15A2 LAI and the GEO LAI lead to 1.4 and 2.6 % dif-
ferences with E1, respectively. The problem is that the E1
BVOC emissions in the region where the MODIS LAI has
missing values account for 16.3 % of the total E1 emissions.
Considering the importance of BVOC emissions in suburban
areas on air quality, the GEO and GLASS LAI may be better
choices for use in BVOC estimation for regional air quality
simulation and forecasting. In particular, the estimates ob-
tained using the GEO LAI for specific BVOC species all dif-
fer from E1 by less than 4 %.

The different PFT inputs used in experiments E4 and E5
lead to a 0.6 % increase and a 26.3 % decrease in total BVOC

emissions, respectively. The extensive broadleaf tree cover
in the MODIS MCD12Q1 LC dataset leads to higher BVOC
emissions by way of a higher emission rate.

In this study, the cross-walking table used in the CCI LC
to convert LC classes to PFTs contains a scale factor that
increases the proportion of grasses and decreases the propor-
tions of other PFTs. This process leads to the total BVOC
emissions in E4 being approximately 75 % of the total E1
emissions. For E1, E4 and E5, the high spatial resolution
(30 m) of FROM can compensate to some extent for the
mixed pixel problem of the MODIS (500 m) and CCI LC
(300 m) medium-resolution sensor products in this study.

3.2 Temporal variations

Figure 6 shows the temporal variations in BVOC emission of
the four groups for all experiments (E1 to E5). The temporal
distribution is similar in all experiments. Summer and winter
emissions account for 74.9–76.9 and 0.26–0.40 %, respec-
tively, of annual BVOC emissions. The differences among
the inputs do not have a significant effect on the temporal
variability in the BVOC emissions estimated by the MEGAN
model. Moreover, the ratio of BVOC emissions between the
summer and winter seasons is 185–295, compared with a ra-
tio of 9.77 in the Pearl River Delta region (Wang et al., 2011)
and 4.9 in Hong Kong (Leung et al., 2010). In temperate re-
gions like Beijing, BVOC emissions display a very strong
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Figure 7. The spatial distribution of average emissions of the three main VOC species in summer.

annual cycle, as there are almost no BVOC emissions in win-
ter owing to the low winter biomass of temperate deciduous
trees as well as low temperatures in winter. Additionally, the
emissions differ more among experiments in summer than in
winter because of the high emission amount in summer. The
black lines represent the previously estimated emissions of
isoprene and monoterpenes for 1998 from Wang et al. (2003).
As shown in Fig. 6, our results have similar temporal vari-
ability to the Wang et al. (2003) results, but all the results in
this study are higher than their estimate. The ratios between
our summer estimates and the results in Wang et al. (2003)
for summer are 2.24–3.2 and 1.97–2.66 for isoprene and
monoterpenes, respectively. There are multiple reasons for
this large discrepancy between the two studies. Apart from
differences in the inputs of the two studies, the significant de-
velopment of forest and vegetation in the entire region during
the last 2 decades may have played a significant role in the
increase in BVOC emissions, leading to the higher estimates
in this study. Ghirardo et al. (2016) used field surveys of tree
numbers to estimate that BVOC emissions in the megacity
region of Beijing doubled from 2005 to 2010. Furthermore,
the increasing trend in BVOC emissions in Beijing is consis-
tent with model estimates by Ren et al. (2017).

3.3 Spatial distribution

Since the contribution of summer BVOC emissions to the
total annual emissions can reach about 75 % and photochem-
istry is very active in summer, our analysis of spatial distri-
butions is mainly focused on summer BVOC emissions.

Figure 7 displays the spatial distribution of the average
emission rates of isoprene, monoterpenes and sesquiterpenes
during summer in E1 as well as the difference between E1
and the other experiments. According to Fig. 7a, f and k, the
BVOC emission hotspots are concentrated in the rural forest
region around the city of Beijing. Despite the updating fre-
quency of the GLASS datasets being 8 days and that of GEO
v2 being 10 days, isoprene, monoterpenes and sesquiterpenes
in E1 and E2 have nearly identical spatial distributions. As
mentioned in Sect. 2.2.2, the mask area of the MODIS LAI
directly leads to missing BVOC emissions in the suburban
area; consequently, the relatively low LAI values also lead to
the slight decreases in isoprene, monoterpenes and sesquiter-
penes (Fig. 7c, h and m).

The spatial distribution of BVOC emissions in E4 and E5
is conspicuously different than in E1, in keeping with dif-
ferences in the PFT distributions in the inputs (Fig. 3). E4
shows lower isoprene emissions than E1 in the northeast, the
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Huairou District, and Miyun County in Beijing, and higher
isoprene emissions in the west, the Mentougou District, and
the Haidian District, which is likely due to the differences
in the broadleaf tree distribution, the PFT with the highest
emission potential, between the inputs for E1 and E4. The E5
experiment, which used the CCI LC, shows similar results to
the E4 experiment with MODIS LC for isoprene, although
the higher isoprene emissions in the west are more obvious
for E5, reaching 1.2–1.8 mg m−2 h−1. E4 and E5 both esti-
mate higher monoterpene and sesquiterpene emissions than
E1 at the western edge of the boundary of Beijing and lower
emissions in the northeast in Miyun County.

Overall, the main BVOC emission pools are the regions
to the west and northeast of the megacity, such that the city
is surrounded by the BVOC pools. In terms of O3, although
the forest area lacks NOx emissions, the isoprene oxidation
products, e.g., formaldehyde, could be transported to the city
region and affect urban air quality (Geng et al., 2011); sim-
ilarly, NOx from the urban area could be transported to the
rural area and form O3.

3.4 Discussion

3.4.1 Sensitivity of BVOC emissions to LAI and PFT

To study the effect of the LAI input on BVOC emissions,
we adopted three independent satellite-derived LAI datasets.
According to the direct validation by Xiao et al. (2016), the
GLASS and the GEO LAIs are generally of better qual-
ity than the MODIS MCD15A2 LAI. Although the average
MODIS MCD15A LAI is lower than the GLASS and GEOv2
LAIs, the comparison of BVOC emissions with E1 in the re-
gion over which MODIS is valid (i.e., no missing values)
showed that use of the GEOv2 and MODIS LAI input led to
decreases of only 1.4 and 2.6 %, respectively. The discrepan-
cies between different LAI inputs do not obviously affect the
estimate of BVOC emissions in Beijing. However, consider-
ing the missing values in the MODIS MCD15A2 LAI, using
the GLASS LAI and the GEO LAI is a better solution than
using interpolation to fill in the missing values in the MODIS
LAI.

The discrepancies of PFT datasets are relative larger than
those among the LAI datasets; therefore, the corresponding
BVOC emission results showed more notable differences in-
duced by PFT input. Which LC dataset is used in the model
significantly affects the BVOC emission estimates (Zhao et
al., 2016; Wang et al., 2011). There are two major sources
of uncertainty in the PFTs: the accuracy of the LC map and
the cross-walking table used to convert the LC classes to
PFTs (Hartley et al., 2017). We used 61 sample points in
Beijing and the surrounding area from the Land Cover Val-
idation Dataset by Zhao et al. (2014) as primary validation
for the LC datasets. The validation samples were collected
from TM/ETM images for 2009–2011. The accuracies of the
FROM, MODIS and CCI LC datasets are 59.67, 54.1 and

50.81 %, respectively. Since FROM LC has the same bench-
mark period as the validation dataset and similar spatial res-
olution, the FROM LC displayed better accuracy than the
other two products. The validation results can only coarsely
assess the accuracy of the LC datasets. The advantage of the
high-resolution data is that they diminish the uncertainties
associated with mixed pixels in the medium-resolution LC
map, which relies on the cross-walking table to convert the
LC classes to PFTs.

The uncertainties associated with the cross-walking ta-
ble are more evident in CCI LC. The cross-walking table
used in E5 is the default table designed for the global scale.
Therefore, two more sensitivity experiments were designed
using the “minimum biomass” (minCW) and “maximum
biomass” (maxCW) cross-walking tables provided by Hart-
ley et al. (2017) for CCI LC to examine the uncertainties as-
sociated with the cross-walking table. As shown in Table 6,
the area fractions of broadleaf and needleleaf trees were 29.9
and 8.8 % in the maxCW simulation, respectively, which are
similar to those of FROM and MODIS (Fig. S1 in Supple-
ment), while the minCW simulation led to relatively low area
fractions of 10.9 and 3.7 % for broadleaf trees and needleleaf
trees, respectively. The BVOC emission estimates with di-
verse cross-walking tables for CCI LC are shown in Table 7.
Compared with the results of E5, the maxCW and minCW
simulations led to a 48.1 % increase and a 44.7 % decrease
in isoprene and a 20.2 % increase and a 33.3 % decrease in
monoterpene, respectively, indicating the strong effect of the
cross-walking table on the BVOC estimates, which is more
significant for the medium-resolution map. But for a high-
resolution LC map based on TM/ETM images like FROM,
high spatial resolution could diminish the uncertainty from
cross-walking processes. Furthermore, the BVOC emissions
in the maxCW experiment are similar to the results of E1
with FROM LC and E4 with MODIS LC: a 7.0 % increase
in isoprene and 9.0 % decrease in monoterpenes compared to
E1, and a 1.0 % increase in isoprene and 8.6 % increase in
monoterpenes compared to E4.

3.4.2 Comparison with previous studies

Table 8 presents the BVOC emissions in Beijing estimated in
this study and in previous studies. To facilitate comparison,
the total emissions (Gg) are converted into the area average
emission intensity (g m−2). As showed in Table 8, the iso-
prene results in this study are higher than the results in Wang
et al. (2003), Klinger et al. (2002) and Ren et al. (2017) but
lower than the results for 2010 in Ghirardo et al. (2016) and
the calculation by Li and Xie (2014). All the monoterpene re-
sults, except for the results of Wang et al. (2003) and those of
Ghirardo et al. (2016) for 2005, are in the range of 0.51–0.68.

The results of Klinger et al. (2002) as well as Li and Xie
(2014) are subsets of the inventory for the whole China re-
gion, while the others are more thorough and concentrate
specifically on the Beijing region. Ren et al. (2017) used
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Table 6. The area fractions of different plant functional types (PFTs) in Beijing from the CCI LC with maximum biomass, minimum biomass
and default cross-walking tables.

Broadleaf Needleleaf Shrub Grass Other Corn
trees trees crops

Max biomass 29.9 % 8.8 % 3.4 % 15.1 % 7.6 % 3.8 %
Default (E5) 20.0 % 6.3 % 8.4 % 16.6 % 7.6 % 5.6 %
Min biomass 10.9 % 3.7 % 8.2 % 27.5 % 7.6 % 6.8 %

Table 7. The estimations of BVOC emissions (Gg) by adopting CCI LC with maximum biomass, minimum biomass and default cross-
walking tables.

Isoprene Monoterpenes Sesquiterpenes Other VOCs SUM

Max biomass 30.5 10.1 1.3 28.3 70.2
Default (E5) 20.6 8.4 1.0 26.0 56.0
Min biomass 11.4 5.6 0.7 24.4 42.1

Table 8. Comparison of the average emission intensities of isoprene and monoterpenes from this study and previous publications.

Year Area Isoprene Monoterpenes
(km2) (g m−2) (g m−2)

Wang et al. (2003) 1998 16 400 0.54 0.24
Klinger et al. (2002) 2002 16 400 0.96 0.54
Li and Xie (2014) 2003 16 400 1.91 0.50
Ghirardo et al. (2016) 2005 (city level) 1434 2.05 0.28
Ghirardo et al. (2016) 2010 (city level) 1434 4.14 0.63
Ren et al. (2017) 2015 16 400 1.08 0.66
This study 2013 16 400 1.25–1.84 0.51–0.68

the Global Biosphere Emissions and Interactions System
(GloBEIS) model framework (Guenther et al., 1999) to cal-
culate the BVOC emissions, while Li and Xie (2014) and this
study used the MEGAN model framework. The two mod-
els adopt the same algorithms to account for the environ-
mental conditions (mainly based on Guenther et al., 1995),
but they treat the biomass and seasonal variance in differ-
ent ways. The results of MEGAN are generally higher than
the results of GloBEIS. Because of the local nature of this
study and the effect of different resolutions, isoprene emis-
sions in this study are slightly lower and monoterpene emis-
sions are slightly higher than the results extracted from the
national scale inventory by Li and Xie (2014). The sensitiv-
ity experiment using the default standard emission rates of
MEGAN resulted in 80 % higher isoprene emissions com-
pared with E1, which shows that the regional results of Li and
Xie (2014) may lead to some overestimation of the BVOC
emissions.

The estimates made by Ren et al. (2017) used a species-
level vegetation inventory based on field surveys, while this
study used PFT-scale estimates based on satellite datasets,
with statistically derived PFT emission factors. The former
method may be more accurate than the latter since emis-

sion factors differ among tree species, but it is limited by
the rough process of data collection, and satellite-based in-
ventories are more easily gridded, facilitating coupling with
chemistry transport models and thus allowing further inves-
tigation of the effect of BVOCs on atmospheric chemistry.
Moreover, in Ren et al. (2017) the coverage of broadleaf trees
and needleleaf trees is 18.7 and 7.4 %, respectively, and in
this study, it is 20.0–30.0 and 6.3–7.3 %, respectively; i.e.,
the coverage of needleleaf trees, the main contributors to the
emission of monoterpenes, is similar between the two stud-
ies, and thus the monoterpene emissions are relatively con-
sistent. However, the isoprene estimates in this study are gen-
erally higher than those of Ren et al. (2017): the ratios of iso-
prene emissions between the two studies is 1.15–1.7, which
are similar to the ratios (1.06–1.6) of broadleaf tree area be-
tween the two studies.

Furthermore, the diversity of meteorological inputs also
contributes to the discrepancies among these studies. This
study as well as Li and Xie (2014), both based on MEGAN,
adopted the mesoscale model as meteorological inputs, and
others used the in situ data from stations. Considering the
spatial diversities, e.g., terrain and landscape forcing, the me-
teorological model could be a reasonable approach to ac-
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count for meteorological conditions of the whole region. But
the simulation bias would correspondingly lead to bias of
BVOC emission estimation. Wang et al. (2011) investigated
the impact of meteorological simulation bias on estimat-
ing BVOC emissions by perturbing the simulated tempera-
ture and radiation with their RMSE (T2/Radiation±RMSE)
for the Pearl River Delta, China. And their sensitivity tests
showed that the decreasing (increasing) temperature led
to −19.2 % (+26.7 %) and −18.5 % (+16.2 %) differences
in isoprene emissions and monoterpene emissions, respec-
tively; and decreasing (increasing) radiation led to −39.6 %
(+50.7 %) and −14.3 (+16.8 %) differences in isoprene
emissions and monoterpene emissions, respectively. These
results indicate the simulation bias could affect the BVOC
emissions. But not all grids contain strong simulation bias,
and impact of meteorological conditions would also be lim-
ited by other conditions, e.g., standard emission factor. The
simulation bias among urban or suburban regions, where the
BVOC emissions are low, would not have an obvious effect
on whole region emission estimation. But the evaluation re-
sults showed the overestimation of DSW in this study, which
would correspondingly lead to the overestimation of light-
dependent BVOC emissions.

In addition, Ghirardo et al. (2016) and Ren et al. (2017)
reported an increase in BVOC emissions because of local
green land development. Ghirardo et al. (2016) showed that
BVOC emissions doubled in the city region of Beijing from
2005 to 2010. Furthermore, Ren et al. (2017) found an even
stronger increase in the urban region due to local green pol-
icy and favorable conditions. Ghirardo et al. (2016) and Ren
et al. (2017) both investigated BVOC emissions from urban
green space in the Beijing region. Considering the strong
anthropogenic emissions and anthropogenic forcings such
as high temperatures and ozone pollution, BVOC emissions
from urban green space may have a more direct and stronger
impact on urban air quality than suburban and rural emis-
sions. However, this is difficult to evaluate using a mesoscale
model like MEGAN, which relies on satellite-based datasets.
Therefore, the field-survey-based research discussed above
may play an important role in future studies concerning the
impact of urban BVOC emissions on air quality.

4 Conclusions and future work

The first step in investigating the effect of natural emissions
on local air quality is to estimate a reliable BVOC emis-
sion inventory. In this work, we established an hourly, 3 km
gridded inventory of BVOC emissions over Beijing in 2013
based on the latest MEGAN 2.1 model. The MEGAN model
was driven by the WRF v3.3.1 model, and several different
satellite LAIs and PFTs were adopted to investigate and con-
strain the uncertainties of these input variables. Because the
FROM LC product has the highest spatial resolution, the re-

sults of the experiment using the FROM LC and GLASS LAI
datasets are treated as the baseline results.

1. According to the results of the baseline experiment, the
total quantity of BVOCs emitted in 2013 in Beijing
was 75.9 Gg, with isoprene, monoterpenes, sesquiter-
penes and other VOCs accounting for 37.6, 14.6, 1.8
and 46.0 % of the total, respectively. BVOC emissions
in Beijing display strong temporal variability: the sum-
mer season contributes 74.9–76.9 % of the total emis-
sions while the winter season only contributes 0.26–
0.4 % for all experiments. This is a result of the low
temperatures and near-zero biomass of deciduous trees
in winter.

2. Different satellite LAI inputs were adopted to investi-
gate the impact of LAI. MODIS MCD15A2 and GEO
v2 LAI led to slight decreases in total BVOC emissions
of 1.4 and 2.6 %, respectively, over the region for which
MODIS LAI is valid. The missing values in MODIS
LAI led to an emission loss of 16.3 % compared with
E1, and compared to filling in the missing values by
interpolation, the GEO and GLASS LAI products may
be the better choice for regional BVOC emissions esti-
mates. The differences between E1 and E2 for all BVOC
species are lower than 4.0 %, and spatial and temporal
distributions are similar between the two experiments.

3. The FROM-GLC, MODIS MCD12Q1 LC and CCI LC
products were adopted to investigate the sensitivity of
the model to LC data. Compared to E1, the results ob-
tained using MODIS MCD12Q1 LC have similar total
emissions and temporal variability but different spatial
features. For CCI LC, sensitivity tests using different
cross-walking tables illustrated that the cross-walking
table used to convert LC classes to PFTs has a clear
impact on the BVOC emissions estimates, with the to-
tal amount of BVOC emissions estimated ranging from
42.1 to 70.2 Gg.

4. The BVOC emissions estimates obtained in this study
are much higher than earlier estimates (Wang et
al., 2003; Klinger et al., 2002) and similar to those in a
recent study by Ren et al. (2017). Ghirardo et al. (2016)
and Ren et al. (2017) both reported the development of
local green areas and the active greening policy could be
an important driver stimulating increasing BVOC emis-
sions.

Due to the lack of the BVOC measurements in the Beijing
region, especially flux measurements, there is a major limi-
tation of this work in model validation. Some BVOC mea-
surements will be collected to enhance the credibility of the
model in the future. In addition, a regional chemistry trans-
port model will be used to investigate and evaluate the role
of BVOCs on local air pollution as the next step in research.
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Code and data availability. The source code of WRF model v3.3.1
(Skamarock et al., 2008) and MEGAN v2.1 (Guenther et al., 2012)
is available at http://www2.mmm.ucar.edu/wrf/users/ (last access:
June 2018) and https://bai.ess.uci.edu (last access: June 2018), re-
spectively. FROM-GLC (Gong et al., 2013; Yu et al., 2014) can
be downloaded5 from the website of the Department of Earth Sys-
tem Science, Tsinghua University, at http://data.ess.tsinghua.edu.
cn/index.html (last access: June 2018). CCI LC (ESA, 2017) can
be downloaded from the website of Climate Change Initiative Pro-
gram at https://www.esa-landcover-cci.org (last access: June 2018).
The GLASS LAI (Xiao et al., 2014, 2016) can be obtained through
the website of National Earth System Science Data Sharing Infras-
tructure at http://www.geodata.cn/thematicView/GLASS.html (last
access: June 2018) or the website of Global Land Cover Facil-
ity, University of Maryland, at http://glcf.umd.edu/data/lai/ (last ac-
cess: June 2018). The GEO v2 LAI (Baret et al., 2013; Verger et
al., 2014b) is available on the website of the Copernicus Global
Land Service at https://land.copernicus.eu/global/products/ (last ac-
cess: June 2018). The MODIS MCDQ12 LC (Friedl et al., 2010),
and MODIS MCD15A2 LAI, version 5, (Knyazikhin et al., 1999)
are available on the website of Land Process Distributed Active
Center at https://lpdaac.usgs.gov/dataset_discovery/modis/modis_
products_table (last access: June 2018).

Supplement. The supplement related to this article is available
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