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Abstract. The aerosol asymmetry factor (g) is one of the
most important factors for assessing direct aerosol radiative
forcing. However, little attention has been paid to the mea-
surement and parameterization of g. In this study, the char-
acteristics of g are studied based on field measurements over
the North China Plain (NCP) using the Mie scattering the-
ory. The results show that calculated g values for dry aerosol
can vary over a wide range (between 0.54 and 0.67). Further-
more, when ambient relative humidity (RH) reaches 90 %,
g is significantly enhanced by a factor of 1.2 due to aerosol
hygroscopic growth. For the first time, a novel method of
calculating g based on measurements from the humidified
nephelometer system is proposed. This method can constrain
the uncertainty of g to within 2.56 % for dry aerosol popula-
tions and 4.02 % for ambient aerosols, providing that aerosol
hygroscopic growth is taken into account. Sensitivity stud-
ies show that aerosol hygroscopicity plays a vital role in the
accuracy of predicting g.

1 Introduction

In addition to aerosol optical depth and aerosol single-
scattering albedo, the aerosol phase function is the most im-
portant factor for assessing direct aerosol radiative forcing
(DARF) (Andrews et al., 2006; Russell et al., 1997). The
Henyey–Greenstein phase function (PFHG) is a widely used
method to parameterize the phase function (Toublanc, 1996;
Boucher, 1998; Pandey and Chakrabarty, 2016) because it
uses the aerosol asymmetry factor (g) as the only free pa-

rameter. The PFHG is expressed as

PFHG (θ)=
1− g2(

1+ g2− 2g cosθ
)3/2 , (1)

where θ is the angle between the incident light direction and
the scattered light direction. In this respect, the free parame-
ter g can reflect the angular aerosol scattering energy distri-
bution. g is defined as follows:

g =
1
2

∫ π

0
cosθP (θ)sin(θ)dθ, (2)

where P(θ) is the normalized scattering phase function. As
a result, g can be a computationally efficient parameter to
replace the phase function in the study of aerosol radiative
transfer properties (Toublanc, 1996; Hansen, 1969; Boucher,
1998). This replacement proves to be useful and has been
widely accepted in previous studies (Hansen, 1969; Wis-
combe and Grams, 1976; Sagan and Pollack, 1967; Andrews
et al., 2006); however significant bias may arise in g-related
PFHG when estimating photo-dissociation rates (Toublanc,
1996) and aerosol radiative forcing effects (Boucher, 1998).
In the past, few studies have assessed the deviation when re-
placing the ambient phase function with the g-related PFHG
(Pandey and Chakrabarty, 2016; Boucher, 1998; Wiscombe
and Grams, 1976), and there are no known studies that use
field measurements of aerosol optical properties to estimate
the bias. Moreover, variations in g can influence the evolution
of the atmospheric vertical structure by effecting the atmo-
spheric radiative distribution. Kudo et al. (2016) also found
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that the vertical profile of the asymmetry factor plays an im-
portant role in altering vertical variations in the solar heating
rate. Marshall et al. (1995) reported that a 10 % overestima-
tion of g can systematically reduce aerosol climatic forcing
by 12 % or more. Furthermore, Andrews et al. (2006) found
that a 10 % reduction in g would result in a 19 % overestima-
tion of atmosphere radiative forcing at the top of atmosphere
(TOA). Therefore, an accurate estimation of g has the poten-
tial to greatly improve the assessment of the aerosol radiative
effect.

There are several methods available to derive the g of
aerosol particles under dry and ambient conditions, respec-
tively. Horvath et al. (2016) measured the phase function of
aerosols, calculated the g of aerosols, and found that the
g-related PFHG can be used as a good approximation of
the measured phase function. Many studies have used the
Mie model (Bohren and Huffman, 2007) to calculate the
phase function and have proven its reliability (Andrews et
al., 2006; Marshall et al., 1995; Bian et al., 2017). Compre-
hensive attempts have been made to relate g to the hemi-
spheric backscatter fraction (b). The value of b is the ratio
of light scattered into the backward hemisphere compared to
total light scattered in all directions (Wiscombe and Grams,
1976; Andrews et al., 2006; Horvath et al., 2016), and is de-
fined as follows:

b =

∫ π
π
2
P (θ) · sinθ · dθ∫ π

0 P (θ) · sinθ · dθ
. (3)

The main advantage of the backscatter ratio is that it can be
measured with an integrating nephelometer equipped with a
backscatter shutter (Charlson et al., 1974).

The free parameter g varies significantly for different
aerosol types and different seasons. In previous studies, the g
values have mainly been examined using the Mie scattering
theory and the measured aerosol particle numbers size dis-
tribution (PNSD). D’Almeida et al. (1991) suggested that g
ranges from 0.64 to 0.83 at a wavelength of 500 nm depend-
ing on the aerosol type and the season; their study also found
a mean g value of 0.67 at an ambient relative humidity (RH).
Furthermore, Hartley and Hobbs (2001) reported a median g
value of 0.7 for aerosols along the east coast of the United
States. Formenti et al. (2000) measured Saharan dust aerosol
and found that the aerosol g values ranged from 0.72 to 0.73.
Biomass burning aerosols in Brazil were found to have a low
g value of 0.54 (Ross et al., 1998).

Some studies have examined the impacts of aerosol hy-
groscopic growth on the parameter g (Hartley and Hobbs,
2001; Kuang et al., 2015; Andrews et al., 2006) and found
that variations in g with RH can have significant influences
on aerosol radiative effects (Kuang et al., 2015, 2016; An-
drews et al., 2006). Therefore, a parameterization scheme of
g, which takes RH and aerosol hygroscopic growth into ac-
count, is necessary.

When exposed to the ambient atmosphere, aerosols can
grow by taking up water, which causes their corresponding
optical properties to change considerably. The κ-Köhler the-
ory (Petters and Kreidenweis, 2007) is widely used to de-
scribe the hygroscopic growth of aerosol particles using a
single aerosol hygroscopic growth parameter (κ) and the κ-
Köhler equation, which is described as follows:

κ
RH
100
=

gf 3
− 1

gf 3− (1− κ)
· exp

(
4σs/aMwater

R · T ·Dd · gf · ρw

)
, (4)

where Dd is the dry particle diameter; gf (RH) is the aerosol
growth factor, defined as the ratio of the aerosol diameter
at a given RH to the dry aerosol diameter (DRH/Dd); T is
the temperature; σs/a is the surface tension of the solution;
Mwater is the molecular weight of water; R is the universal
gas constant; and ρw is the density of water. The aerosol hy-
groscopic growth parameter κ can be further used to investi-
gate the influence of aerosol hygroscopic growth on aerosol
optical properties (Tao et al., 2014; Kuang et al., 2015;
Zhao et al., 2017) and aerosol liquid water contents (Bian
et al., 2014).

According to the Mie theory, g is associated with aerosol
particle number size distribution, the particle complex refrac-
tive index, the aerosol mixing state and ambient RH. At the
same time, the aerosol morphology has a significant influ-
ence on g. Datasets from the humidified nephelometer sys-
tem can partially account for all of these factors. The hu-
midified nephelometer system consists of two parallel neph-
elometers, one of which measures dry aerosol scattering
properties whilst the other measures aerosol scattering prop-
erties under well-controlled RH conditions. This system can
give the light scattering enhancement factor (fRH), which
is defined as fRH(λ)= σsca(λ)/σsca(λ), or the ratio of the
aerosol scattering coefficient under given RH conditions to
that under dry conditions. Each nephelometer can provide a
scattering coefficient (σsca) and a back-scattering coefficient
(βsca) at three wavelengths (450, 525, and 635 nm). σsca can
be used to calculate the aerosol scattering Ångstrom index,
which reflects the aerosol PNSD to some extent. In general, a
larger value for the Ångstrom index always corresponds to a
smaller predominant aerosol size. Variations in βsca and σsca
can be used to deduce the aerosol black carbon (BC) mix-
ing state (Ma et al., 2012). At the same time, datasets from
the humidified nephelometer system can also be used alone
to measure the aerosol hygroscopicity and provide an over-
all hygroscopic parameter κ (Kuang et al., 2017). In conclu-
sion, measurements from the humidified nephelometer sys-
tem might be used for estimating g under given RH con-
ditions. However, there is no clear relationship between the
measured datasets from the humidified nephelometer and g.
Furthermore, the nonlinear influence of the above listed fac-
tors on g also makes it difficult to parameterize the g.

The random forest machine learning model is a power-
ful technique that can be used for classification and nonlin-
ear regression (Huttunen et al., 2016; Breiman, 2001; Hu et
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al., 2017). This model is a widely used nonparametric ma-
chine learning algorithm that has several strengths. First, it
involves fewer assumptions regarding the dependence be-
tween observations and outcomes when compared with tradi-
tional parametric regression models. Second, strict relation-
ships among variables are not needed before implementing
the model. Third, this learning model requires far less com-
puting resources than deep learning. Finally, this model has
very low risk of over fitting by averaging over an ensemble
of decision trees. Thus, the random forest machine learning
model is used in this work to study the calculation of g based
on the datasets of the humidified nephelometer system.

In this study, the Mie scattering theory and field measure-
ments over the North China Plain (NCP) are used to study the
characteristics of g. Section 2 describes the related datasets
used in this study. Details of the study on the characteris-
tics of g and the impacts of aerosol hygroscopic growth on g
are shown in Sect. 3.1. A new method, which is based on a
random forest machine learning model, is introduced to cal-
culate g in Sect. 3.2. We also discuss the impacts of g varia-
tions on the uncertainties of DARF in Sect. 3.3, and the corre-
sponding results are presented in Sect. 4.3. Section 4.1 gives
the calculated characteristics of g and Sect. 4.2 proves the
feasibility of using the machine learning model to calculate
g. At the same time, this method is validated by the ambi-
ent aerosol phase function measured with a charge-coupled
device–laser aerosol detective system (CCD–LADS). Con-
clusions are given in Sect. 5.

2 Instruments and datasets

Datasets used in this study come from three field cam-
paigns, which were conducted at three different sites in the
NCP. These three field measurements were conducted at
Gucheng in Hebei Province (Gucheng, 39◦09′ N, 115◦44′ E)
from 15 October to 25 November in 2016, at the AERONET
Beijing PKU station in Beijing (PKU, 39◦59′ N, 116◦18′ E)
from 21 March to 10 April in 2017, and at the Yanqi Campus
of the University of Chinese Academy of Sciences (UCAS,
40◦24′ N, 116◦40′ E) in the Huairou district in Beijing from
3 January to 27 January in 2016. Details of these locations
are shown in Fig. S1 in the Supplement. The PKU station
is located in the northwest of Beijing, between the 4th and
5th ring road. It is 11 km from the center of the megacity of
Beijing, which is adjacent to Hebei Province and the megac-
ity of Tianjin. In the abovementioned three areas, industrial
manufacturing has led to heavy air pollution. Datasets for the
PKU station are representative of urban aerosols in the NCP.
Gucheng is located between two megacities (120 km from
Beijing and 190 km from Shijiazhuang) in the NCP; there-
fore, the pollution conditions of Gucheng are a good repre-
sentation of the continental background in the NCP. Details
regarding the Gucheng station can be found in a study by
Kuang et al. (2017). The UCAS station is 60 km away from

the center of Beijing and is at the edge of the NCP, which
makes it suitable for measuring the regional pollution prop-
erties of the NCP (Ma et al., 2016). More details about the
measurement sites are available in Sect. S1 of the Supple-
ment.

Table 1 lists the information for the field campaigns and
the datasets used in this study. During the campaigns, sam-
pled aerosols that had an aerodynamic diameter of less
than 10µm are selected by an impactor (Mesa Labs, Model
SSI2.5) at the inlet. These aerosols are then dried to below
30 % RH with a Nafion drying tube and lead to each instru-
ment. Aerosol PNSDs ranging from 3 nm to 10 µm are mea-
sured using a scanning mobility particle sizer spectrometer
(SMPS, TSI Inc., model 3936) and an aerodynamic particle
sizer spectrometer (APS, TSI Inc., model 3321) with a tem-
poral resolution of 5 min. Black carbon (BC) mass concentra-
tions are measured by a multi-angle absorption photometer
(MAAP model 5012, Thermo, Inc., Waltham, MA USA) at
UCAS and by an Aethalometer (AE33)(Hansen et al., 1984;
Drinovec et al., 2015) at PKU and Gucheng. The aerosol σsca
is measured at wavelengths of 450, 525, and 635 nm by an
Aurora 3000 nephelometer and the corresponding values are
recorded every minute (Müller et al., 2011).

The fRH is measured by a self-constructed humidified
nephelometer system. In this system, a humidifier is used to
control the RH of the sample aerosol and σsca is measured
for each of the controlled RH levels. The sample aerosol is
humidified through a Gore-Tex tube, which is surrounded by
a circulating water layer in a stainless steel tube. The RH is
changed by changing the temperature of the circulating wa-
ter, which is controlled by a water bath and software. For
each cycle, the RH points are set to range from about 50 to
about 90 % over 45 min. For most of the cases, the aerosol
PNSDs are consistent over the cycle. These cycles of fRH
values are abandoned when either the measured maximum
or the minimum σsca values are beyond the range of 1.4 and
0.6 times the mean measured scattering coefficient of each
cycle. The humidified nephelometer is described in detail by
Kuang et al. (2017).

An ambient aerosol phase function with a time resolution
of 5 min is measured at UCAS using a CCD–LADS. This
system consists of a continuous laser, two charge-coupled de-
vice cameras, and corresponding fish eye lenses. The wave-
length of the laser is 532 nm and a quarter-wave plate was
mounted in front of the laser emitter to change the polar-
ization state of the laser from linear to circular. The CCD–
LADS can measure the ambient aerosol phase function at
a wide angular range of 10–170◦ with a high resolution of
0.1◦. More details of the measurement system can be found
in Bian et al. (2017).
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Table 1. Field information, dataset information, and instruments used in this study.

Field information Datasets and instruments

Location Time period PSND BC σsc fRH Phase function

Gucheng, Hebei
15 Oct to 25 Nov 2016 SMP, APS AE33 Aurora 3000 Humidified nephelometer None

(39◦09′ N, 115◦44′ E)
PKU, Beijing

21 Mar to 10 Apr 2017 SMPS, APS AE33 Aurora 3000 Humidified nephelometer None
(39◦59′ N, 116◦18′ E)
UCAS, Beijing

3 Jan to 27 Jan 2016 SMPS, APS MAAP Aurora 3000 Humidified nephelometer CCD–LADS
(40◦24′ N, 116◦40′ E)

3 Methodology

3.1 Calculating characteristics of g based on the Mie
scattering theory (gMie)

The Mie model (Bohren and Huffman, 2007) is applied to
calculate the characteristics of gMie. When running the Mie
model, aerosol PNSD, aerosol complex refractive index, BC
mixing state, and BC mass concentration are essential. Its
results include the aerosol phase function, and gMie can be
calculated using Equation 2.

Mixing states of the BC come from field measurements. In
the work by Ma et al. (2012), the mixing states of BC in the
NCP are presented as both core-shell mixed and externally
mixed. Ma et al. (2012) also provides the ratio of BC mass
concentrations under an externally mixed state, Mext_BC, to
total BC mass concentration, MBC as follows:

rext_BC =
Mext_BC

MBC
. (5)

The mean value of rext_BC = 0.51 (Ma et al., 2012) is used in
this study. The size-resolved distribution of the BC mass con-
centration is the same as that used by Ma et al. (2012). The
κ-Köhler theory and the Mie scattering model are employed
to calculate gMie under different RH conditions. When the
aerosol grows by taking up water, the BC is treated as a
non-hygroscopic and insoluble core. The real time value κ ,
which is derived from the measurement of fRH, is used to
account for aerosol hygroscopic growth. For each RH value,
the growth factor can be calculated based on Equation 4. The
corresponding ambient aerosol PNSD at a given RH can also
be determined by applying the κ and Equation 4. The refrac-
tive index (m̃), which accounts for water content in the par-
ticle, is derived as a volume mixture between the dry aerosol
and water (Wex et al., 2002):

m̃= fV, drym̃aero, dry+
(
1− fV, dry

)
m̃water, (6)

where fv, dry is the ratio of the dry aerosol volume to the total
aerosol volume under a given RH condition; m̃aero, dry is the
refractive index for dry ambient aerosols; and m̃water is the
refractive index of water.

The refractive indices of BC, non-light-absorbing
aerosols, and water, which are used in this study, are

1.8+ 0.54i (Kuang et al., 2015), 1.53+ 10−7i (Wex et
al., 2002), and 1.33+ 10−7i, respectively. Then, the corre-
sponding g values under the given RH and PNSD can also be
calculated. More details on using the Mie model to calculate
the aerosol phase function for different RH conditions can
be found in Zhao et al. (2017).

3.2 Calculating g using the random forest machine
learning model (gML)

In this study, the random forest machine learning model from
the scikit-learn machine learning library (Hu et al., 2017; Pe-
dregosa et al., 2011) was used to calculate g. The random for-
est model has two parameters: the number of input variables
(npre) and the number of trees grown (ntree). In this study,
the npre and ntree are determined by minimizing the relative
difference of the gML and gMie. Details of choosing the val-
ues of npre and ntree are shown in Sect. S2. The npre and ntree
are set as eight and thirty-two in this study, respectively. The
eight input parameters include the three dry scattering coeffi-
cients, the three dry backscattering coefficients, the RH, and
κ .

The measured datasets are divided into two parts: the train-
ing data for the random forest model and the testing data. All
training datasets come from field measurements at Gucheng
station, whereas the datasets from PKU are employed to test
the accuracy of the model. With split datasets from different
sites, the feasibility of the random forest model in the NCP
can be guaranteed. Before calculating gMie, we compare the
measured σsca from the dry nephelometer and calculate σsca
from the Mie scattering model. These data, where the rel-
ative difference between the measured and calculated σsca
is within 30 %, are used for the following analyses; there-
fore, instrument measurement inaccuracy can be avoided to
some extent. More details regarding the data used is shown
in Sect. S3.

To further avoid measurement uncertainties when training
the random forest machine learning model, both the required
input parameters and the predictors (g values) come from the
calculations of the Mie scattering model. The Mie scattering
model used aerosol PNSD and BC measurements from the
field campaign in Gucheng. For each measured PSND and
BC, the corresponding σsca and βsca under dry conditions at
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450, 525, and 635 nm are modeled based on the Mie theory.
With the concurrently measured κ values from the humid-
ified nephelometer, the gMie values under different RH can
also be determined. Then the modeled σsca, βsca under dry
condition, the κ values, and the RH are used as the input data
for the model and the corresponding gMie values are used as
the prediction data.

3.3 Aerosol DARF estimations

Earth–atmosphere systems can be significantly influenced by
aerosols through the scattering and absorption of energy. In
this study, the Santa Barbara DISORT (discrete ordinates ra-
diative transfer) Atmospheric Radiative Transfer (SBDART)
model (Ricchiazzi et al., 1998) is employed to estimate the
DARF. The characteristics of DARF relating to variations in
g are studied.

The instantaneous DARF is calculated at the TOA for
cloud-free conditions. DARF is defined as the difference be-
tween radiative flux at the TOA under present aerosol condi-
tions and aerosol-free conditions:

DARF= (fa ↓ −fa ↑)− (fm ↓ −fm ↑) , (7)

where (fa ↓ −fa ↑) is the downward radiative irradiance
flux with given aerosol distributions and (fm ↓ −fm ↑) is
the radiative irradiance flux under aerosol-free conditions.
The DARF at 50 km is calculated because almost all of the
aerosols are distributed within the height of 50 km in the pa-
rameterization scheme (Liu et al., 2009). Wavelengths in the
range of 0.25 to 4 µm are calculated for irradiance in this
study.

Input data for the SBDART are as follows: vertical pro-
files of the aerosol optical properties, which include the
aerosol extinction coefficient (σext), aerosol single scatter-
ing albedo (SSA), and g. All data have a vertical resolu-
tion of 50 m and come from the results of the Mie scatter-
ing model and the parameterized aerosol vertical distribu-
tions. Methods for parameterization and calculation of the
aerosol optical profiles can be found in Sect. S4 or in Kuang
et al. (2016) and Zhao et al. (2017). Atmospheric meteoro-
logical parameter profiles come from the results of the in-
tensive radiosonde observations at the Meteorological Bu-
reau of Beijing (39◦48′ N, 116◦28′ E) at 13:30 LT from July
to September in 2008. Kuang et al. (2016) studied these
measured profiles and found that the vertical distributions
of these parameters, which include profiles for water vapor,
pressure, and temperature, can be used as a good represen-
tation of the meteorological parameter profiles in the NCP
during summer. The corresponding measured mean results
during field measurement are used in this study and the de-
tails of these profiles are shown in Sect. S4. Surface albedo
values are obtained from the Moderate Resolution Imaging
Spectroradiometer (MODIS) V005 Climate Modeling Grid
(CMG) Albedo Product (MCD43C3). The mean results of
the surface albedo of Beijing from July to September in 2008

are used. The remaining input data for the SBDART are set
to their default values (Ricchiazzi et al., 1998).

4 Results and discussion

4.1 Characteristics of gMie

4.1.1 Characteristics of gMie at different sites

Figure 1 gives the statistical results for the calculated g

properties at Gucheng, PKU, and UCAS. The RH values
at the three sites show almost the same diurnal variation
pattern (Fig. 1a, b, and c). The RH reaches a peak in the
morning at approximately 06:00 LT , and then reaches its
lowest value at approximately 16:00 LT in the afternoon.
However, the mean values of RH are 77.7 %± 20.9 % at
Gucheng, 47.8 %± 20.8 % at PKU, and 33.49 %± 15.22 %
at UCAS. The gMie values under dry conditions that are cal-
culated by the measured PNSD have almost no diurnal pat-
terns. The gMie values at PKU (0.614 ± 0.025) are slightly
lower than those at Gucheng (0.601 ± 0.021) and UCAS
(0.595 ± 0.023) (Fig. 1d, e, and f). The difference in the
gMie values results from different aerosol properties at these
sites. From Fig. S6, it can be noted that the peak diameter
of the mean and median PNSD at Gucheng is located around
150 nm. However, the peak diameter of the mean and median
PNSD at PKU is located at around 100 nm. The peak val-
ues of the mean and median diameter of the aerosol PNSD at
UCAS is located at around 60 nm. At the same time, there are
large partitions of small particles that are lower than 60 nm at
PKU and UCAS. However, these particles, which are lower
than 100 nm, do not really contribute to the total aerosol scat-
tering. The aerosol PNSD at PKU is more dispersed than
that at the Gucheng and UCAS sites, which corresponds to
a larger variation in the g values. From Fig. S6g, h, and i, the
size distribution of the aerosol scatter coefficient at around
500 nm contributes less to the scatter coefficient at PKU than
to the scatter coefficients at Gucheng and UCAS. Thus these
particles with a diameter larger than 500 nm contribute more
to the aerosol scattering coefficient. As gMie increases with
the aerosol diameter, the aerosol gMie under dry conditions
at PKU tends to be larger than that at Gucheng and UCAS.

However, ambient gMie values have different patterns at
different sites, as shown in Fig. 1g, h and i. The gMie values
have an RH-related diurnal pattern at Gucheng, with a mean
value of 0.668±0.073; although gMie values show no diurnal
variation at PKU and UCAS, where the mean values of gMie
are 0.639±0.049 and 0.618±0.033, respectively. The varia-
tions in ambient gMie values mainly result from the variation
in the aerosol hygroscopic growth under ambient conditions,
which is highly related to the ambient RH. The gMie value is
significantly influenced by RH when the RH is higher than
80 %, which is be detailed in Sect. 4.1.2. Ambient gMie val-
ues at Gucheng, PKU, and UCAS can vary from 0.57 to 0.8,
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Figure 1. Average diurnal pattern of RH (a, b, c), g values calculated from dry aerosols (d, e, f), and g values from ambient aerosols (g, h, i).
Panels (a, d, g) are the results from Gucheng. Panels (b, e, h) are the results from PKU. Panels (c, f, i) are the results from UCAS. The box
and whisker plots represent the 5th, 25th, 75th, and 95th percentiles.

0.55 to 0.76, and 0.56 to 0.72, respectively; this makes them
comparable to gMie values from Andrews et al. (2006), which
range from 0.59 to 0.72.

4.1.2 Influence of RH on g

To assess the influence of RH on g, the gMie values are calcu-
lated under different RH conditions for each aerosol PNSD.
The statistical results of gMie versus RH are shown in Fig. 2.
The gMie value has a wide variation, ranging between 0.54
and 0.67 with the mean value located at 0.61, under dry con-
ditions. However, the mean gMie value can change from 0.65
to 0.8 when the RH reaches 90 %. The gMie enhancement
factor, which is defined as the ratio of gMie at a given RH and
gMie under dry conditions, can reach a mean value of 1.2 at
an RH of 90 %, which means that the gMie value under wet
conditions is approximately 20 % higher than that under the
dry conditions. This finding is consistent with that of Hartley
and Hobbs (2001), who found that g is highly related to RH.

Contrary to RH, the aerosol complex refractive index has
little influence on g and the uncertainties for g are less than
0.004 based on the Monte Carlo simulation of the g at differ-
ent complex refractive index values. More details regarding
the influence of the aerosol complex refractive index on g
can be found in Sect. S6.

Figure 2. Probability distributions of g under different RH condi-
tions. The left y axis shows g values at different RH values and
the right y axis shows the g enhancement factor, which is defined
as the ratio of g at a given RH to the g value at dry conditions
(RH= 30 %). The solid line (cyan) shows the mean result of the g
values and the enhancement factor at different RH values.

Atmos. Chem. Phys., 18, 9049–9060, 2018 www.atmos-chem-phys.net/18/9049/2018/
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Figure 3. Comparison of calculated g values (gMie) from the Mie model and predicted g values (gML) from the random forest model under
(a) dry conditions and (b) ambient conditions at the PKU site. Colored dots represent the concurrently measured σsca corresponding to the
time of g.

4.2 Calculating gML using the machine learning model

4.2.1 Feasibility of using the random forest model

We establish two independent random forest machine learn-
ing models to predict gML values under dry conditions and
under ambient RH conditions, respectively.

When the random forest machine learning model is run
for g values under dry conditions, σsca and βsca are used as
the input for independent variables at three different wave-
lengths. The other two input parameters, RH and κ , are set to
zero. The predictor g values come from the results of the Mie
scattering model. Figure 3a shows the calculated and the pre-
dicted gML values from the random forest machine learning
model under dry conditions at the PKU site. The results show
that the gMie values and gML values have good consistency,
with an R2 value of 0.98. Therefore, in 95 % of the cases, the
relative difference between gMie and gML is within 2.56 %.

Figure 3b shows the comparison of the predicted gML val-
ues under different RH conditions and gMie values calculated
by the Mie scattering model. The correlation coefficient be-
tween gMie and gML reaches 0.93, and 95 % of the relative
differences are within 4.02 %. The random forest model has
the potential to be a good method to predict g values under
different RH conditions with high accuracy; the uncertain-
ties of predicting g values using the random forest machine
learning model is estimated to be 4.02 %.

The fill colors of the dots in Fig. 3 represent the concur-
rently measured σsca. It is shown that g values tend to be
larger with an increase in σsca, which is in accordance with
the particle scattering properties. When a particle has a larger
diameter the σsca of the particle is higher, and there tends to
be a larger partition of forward scattering light.

The reliability of the previous parameterization of the g
using b is tested here. Wiscombe and Grams (1976) studied
the relationship between b and g and gave the expression be-
tween them as follows:

g =−7.143889 · b3
+ 7.464439 · b2

− 3.96356 · b+ 09893.

(8)

This equation is widely used to calculate g from b (Andrews
et al., 2006; Horvath et al., 2016; Kassianov et al., 2007). We
use the field measurement results to test its reliability. The
comparison results between calculated g values from the Mie
scattering model and parameterized g values from Eq. (6) are
shown in Fig. S9. From Fig. S9, we can see that the param-
eterized g values are prevalently larger than the calculated g
values by approximately 10 %. When the σsca is smaller, the
deviations become larger. Some other empirical relationships
between b and g (Moosmüller and Ogren, 2017) are also
tested. This parameterization scheme almost has the same re-
sult as Wiscombe and Grams (1976), which means that the
previously established parameterization scheme is not appli-
cable in the NCP

4.2.2 Sensitivity of the random forest model

Sensitivity studies are carried out to assess the influence of
each input variable on gML. Based on the work of Müller
et al. (2011), the uncertainties in total scattering are 4 %
(450 nm), 2 % (525 nm), and 5 % (635 nm) for experiments
with ambient air and laboratory generated white particles.
For backscattering, the differences are higher and amount to
7 % (450 nm), 3 % (525 nm), and 11 % (635 nm). The uncer-
tainty of the RH measured by the RH sensors is 1.7 % for
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Table 2. The sensitivity of g to the input parameters.

Parameter σsca,450 σsca,525 σsca,635 βsca,450 βsca,525 βsca,635 RH κ total

Parameter (%)a 4 2 5 7 3 11 6 6
g (%)b 0.487 0.492 0.486 0.651 0.487 0.710 0.486 1.920 1.950

a The uncertainties of the measured parameters. b The uncertainties of g values due to the uncertainties of the measurement parameters.

RH ranges from 0 to 90 % (Kuang et al., 2017) and the un-
certainty of the derived κ values is 6 % (Kuang et al., 2017).
Monte Carlo simulations are conducted to study the sensitiv-
ity of the gML to the input parameters in three steps. First,
the mean results of the measured dry σsca, dry βsca, RH, and
κ values are used to predict the g value. Second, the dry σsca
at 450 nm is randomly changed with a mean value of 0 and
standard deviation of 4 % and the other inputs remain un-
changed. The corresponding standard deviation of the pre-
dicted g value is used as the sensitivity of the gML to the σsca
at 450 nm. Lastly, the sensitivity is determined for each input
parameter and the uncertainties of the gML values to the in-
put parameters are estimated. The total uncertainties of pre-
dicting g RH are derived when all of the input parameters
are randomly changed with their corresponding uncertain-
ties. For each test, the Monte Carlo simulations are carried
out 20 000 times.

Table 2 gives the error to two standard deviations of the
gML values corresponding to the uncertainties of the input pa-
rameters. From Table 2, it can be noted that the uncertainty
of the measured σsca has little influence on the gML with g
value uncertainties of 0.487, 0.492, and 0.486 % for 450, 525,
and 635 nm, respectively. However, the measurement of the
three βsca have larger uncertainties and lead to greater influ-
ence on predicting gML with uncertainties of 0.651, 0.486,
and 0.710 %. The uncertainty of the RH (0.487 %) has little
influence on predicting gML. However, the uncertainty of the
derived κ values (6 %) influence the g values the most with
a g value uncertainty of 1.92 %. The total uncertainty of pre-
dicting g due to uncertainties in the measurement parameters
is 1.95 %. All in all, the total uncertainty of predicting the
gML is estimated to be 4.47 %, considering the 4.02 % un-
certainty of the random forest machine learning model from
Sect. 4.2.1.

4.2.3 Validation of the random forest machine learning
model

Datasets of the UCAS campaign are also used to validate
the random forest machine learning model. On one hand,
the gML values are calculated by using the random forest
machine learning model with the measurements of the hu-
midified nephelometer. On the other hand, ambient g values
are calculated by using the measured phase function from
the CCD–LADS gCCD according to the definition shown in

Figure 4. Comparison of the calculated g values (gCCD) from the
CCD–LADS measured phase function and the calculated g values
(gML) by using the random forest machine learning model.

Equation 2. The g values are then calculated, and the two
methods are compared.

The results of the comparison of these two kinds of g val-
ues are shown in Fig. 4. As seen in Fig. 4, the values of gML
and gCCD show good consistency. In 95 % of cases the rel-
ative differences between the gML and gCCD are within an
acceptable range of 6.5 %, which is a little higher than the
relative difference of the g values (4.02 %) between the ma-
chine learning method and the Mie scattering method. Dur-
ing the study period, the σsca ranged from 30 to 260 Mm−1,
which led to cleaner conditions in UCAS than in Gucheng
and PKU. Correspondingly, most of the gMie values are small
and located in the 0.54 to 0.62 range, which is obviously
lower than the range of values from other campaigns. At the
same time, the surrounding conditions at UCAS during win-
ter are relative dry, which results in small g values. These
conditions may partially explain the higher difference be-
tween the gML and gCCD. With this validation, we conclude
that the random forest machine learning model can give a
reasonable g value based on the measurements of the humid-
ified nephelometer system.
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Figure 5. (a) Estimated DARFs at different zenith angles using the
g-related PFHG (dotted line) and the phase function calculated us-
ing the Mie scattering theory (solid line). (b) The relative difference
between the DARFs in (a).

4.3 Estimating the impacts of g on DARF

4.3.1 Uncertainties of replacing the calculated phase
function with the PFHG

When the PFHG is used to parameterize the calculated phase
function using the Mie theory (PFMie), there are some devi-
ations and the influence of these deviations should be esti-
mated. The relative difference between the DARF from the
PFMie and from the PFHG is used to estimate uncertainties
when using the PFHG. First, the PFMie profiles are used as
inputs to estimate DARFs. The PFMie is then replaced with
the g-related PFHG, which is parameterized by gMie from the
PFMie, and the DARFs are calculated again. These relative
differences between the DARFs from the above two steps are
recorded and compared. The relative differences at different
zenith angle conditions are calculated to comprehensively es-
timate the influence of the PFHG.

Figure 5 shows the estimated DARFs at different zenith
angles. In Fig. 5a, DARF at the TOA can vary from −2.55
to −4.8 W m−2. When the PFMie is replaced by the PFHG,
the calculated DARF ranges from −2.6 to −5.1 W m−2. The
relative difference of the DARFs between the two methods
ranges from 1.3 to 7.1 %, as shown in Fig. 5b. It is concluded
that using the g-related PFHG to replace the PFMie to esti-
mate aerosol radiative effects is applicable in the NCP, with
a deviation of less than 7 %.

4.3.2 Impacts of g variations on DARF estimation

Variations in g can lead to significant changes in the esti-
mated DARF (Kuang et al., 2016; Andrews et al., 2006; Mc-
comiskey et al., 2008). In this study, the uncertainty of the g

Figure 6. The variation in DARF when g varies by a range of 1.95 %
(light red color), 4.47 % (light blue), and 10 % (light green). Differ-
ent line styles represent the corresponding mean relative differences
in DARF compared to the original value.

value due to the uncertainty of the input parameters is esti-
mated to be 1.95 % and the total variation in running the ran-
dom forest machine learning model is estimated to be 4.47 %.
At the same time, the g can vary about 10 % for different
aerosol PNSD and can be enhanced by 20 % by an increase
of the RH from 30 to 90 %. It is very important to know the
extent of the variation in DARF corresponding to the uncer-
tainties from g.

The variation in DARF from the uncertainties of g is cal-
culated by increasing or decreasing g by 1.95, 4.47, and 10 %
of the original g values, and then comparing the correspond-
ing DARFs with the original values. To study the influence
of RH on g and DARF, the DARF with the g values calcu-
lated from the dry parameterized aerosol population profile,
is estimated.

Figure 6 shows the estimated DARFs with different varia-
tions in g and the corresponding variations in the estimated
DARF. The results show that when g varies by 1.95 %, the
DARF can vary by 4 %. However, variations of 4.47 and 10 %
in g values can lead to variations of 9.4 and 21 % in the esti-
mated DARF, respectively.

The estimated DARF using the parameterized aerosol pro-
file, which considers the aerosol hygroscopic growth, is
smaller than the DARF using the g profiles from the dry
aerosol population. The g values under dry conditions are
smaller than those under wet ambient conditions. Thus, there
is larger partition of energy that is scattered forward which
leads to less outgoing backscattering energy and a larger
value of the estimated DARF.
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When the DARF are estimated ignoring the impacts of
aerosol hygroscopic growth on g, the relative difference can
be as high as 20 % for all of the zenith angles. Thus, it is
necessary to consider the aerosol hygroscopic growth when
calculating the g values.

5 Conclusions

The characteristics of g in the NCP are studied based on
the Mie scattering theory and field measurements from the
Gucheng and PKU study sites. The results show that gMie
values are 0.604 ± 0.025 at Gucheng and 0.615 ± 0.021 at
PKU. The ambient gMie values at Gucheng show obvious di-
urnal variations due to variations in RH. When the ambient
RH reaches 90 %, gMie can be enhanced by 20 % and the
g values from different aerosol population can vary by 10 %.
Comparison of the calculated gMie values from the Mie scat-
tering model and the parameterized g values from the Wis-
combe and Grams (1976) method shows that the parameter-
ized g is overestimated by approximately 10 % and that the
deviations become larger when the measured σsca is below
200 Mm−1.

The random forest machine learning model and datasets
from the humidified nephelometer are employed to calculate
gML values. The input data of the random forest model con-
tain measured σsca and βsca at three wavelengths, RH, and the
hygroscopic parameter κ . Except for RH, all input data came
from measurements from the humidified nephelometer sys-
tem (Kuang et al., 2017). The random forest model can sig-
nificantly improve the accuracy of gML prediction. The un-
certainties of the predicted gML values are constrained within
2.56 % under dry conditions and 4.02 % under ambient con-
ditions and the uncertainties from the measurement of the
humidified nephelometer can lead to a variation of 1.95 % in
g, which mainly results from the inaccuracy of the derived κ .
The total uncertainty of the g calculation using the random
forest machine learning model is 4.47 %. This is the first time
that a machine learning model and datasets from the humid-
ified nephelometer system have been combined to study g.
Additionally, this method can account for the influence of
aerosol hygroscopic growth on g.

This new method for calculating g is validated by compar-
ing the gML values from the random forest machine learning
model and the gCCD values from the measured phase func-
tion by using the CCD–LADS. The g values from these two
methods show good consistency, with 95 % of the data within
a relative difference of 6.5 %.

The SBDART model is used to study the impacts of g on
DARF. We first studied the relative differences between the
estimated DARFs using the PFHG and the calculated phase
function using the Mie theory, the measured mean aerosol
PNSD, and BC mass concentration at the Gucheng and PKU
study sites. The results show that the relative differences in
DARF can be contained within 7.1 % of the mean when re-

placing the PFMie with the g-related PFHG. The PFHG has the
potential to be a feasible parameterization scheme to study
DARF in the NCP.

The sensitivity study shows that the maximum uncertain-
ties of DARF are 4, 9.4, and 21 %, which correspond to the
uncertainties of the g from instrument measurements, the
machine learning model, and the variation of aerosol PNSD.
However, when the DARF are estimated ignoring the effects
of aerosol hygroscopic growth on g, the relative differences
of the DARF are as large as 20 % for all zenith angles. It is
necessary to parameterize the g accounting for the effect of
aerosol hygroscopic growth.

This work furthers our understanding of the role of g in
influencing aerosol radiative effects and can help reduce un-
certainties in estimating DARF.
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