



## Supplement of

## Comparison of primary aerosol emission and secondary aerosol formation from gasoline direct injection and port fuel injection vehicles

Zhuofei Du et al.

Correspondence to: Min Hu (minhu@pku.edu.cn) and Jianfei Peng (pengjianfeipku@gmail.com)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

## 18 Data correction

19 Wall-loss correction as well as particle and gas dilution corrections were considered in 20 this study. The details of wall-loss correction are introduced by Du et al. (2017). The real-time instruments sampled from the chamber during the whole photo-oxidation experiment, and zero 21 22 air was added to maintain a constant pressure inside the chamber. This led to particle dilution 23 that the sampled particles would not be included in the subsequent measurement, and gas 24 dilution that the sampled gas would not participate in the subsequent photo-oxidation reaction 25 and SOA formation. The particle dilution corrected mass concentration  $C_{corr,n+1}$  could be 26 calculated as:

27 
$$C_{corr,n+1} = C_{n+1} + \sum_{i=1}^{n} (k_{wall} \times C_i) + \sum_{i=1}^{n} (k_{dilu,i} \times C_i)$$
 (1)

where  $C_{n+1}$  was the measured particle mass concentration at time n+1,  $k_{wall}$  was the wall loss decay constant and  $k_{dilu,i}$  was dilution ratio at time i.

30 Then the gas dilution was taken into consideration. The final particle mass concentration 31  $C_{final,n+1}$  could be calculated as:

32 
$$C_{final,n+1} = C_{corr,n+1} - C_1 + \sum_{i=1}^{n} (\sum_{i=1}^{n+1} k_{dilu,i}) \times (C_{corr,n+1} - C_{corr,n})$$
 (2)

33

34

35

## 36 **References**

37 Du, Z., Hu, M., Peng, J., Guo, S., Zheng, R., Zheng, J., Shang, D., Qin, Y., Niu, H., Li, M.,

38 Yang, Y., Lu, S., Wu, Y., Shao, M., and Shuai, S.: Potential of secondary aerosol formation from

39 Chinese gasoline engine exhaust, Journal of environmental sciences, in press.





43 Figure S1. Chemical composition of secondary aerosol formed in the chamber experiment

- 44 (Experiment GDI-1).
- 45



48 Figure S2. Speed profiles of NEDC and BJC driving cycle.

| Specifications                | Fuel  |
|-------------------------------|-------|
| Density (g mL <sup>-1</sup> ) | 0.7   |
| Rvp (kPa)                     | 55.4  |
| Aromatics (% v/v)             | 36.7  |
| Olefin (% v/v)                | 15.4  |
| Ethanol (% v/v)               | 0.01  |
| Oxygen (% m/m)                | 0.02  |
| Mn (mg kg <sup>-1</sup> )     | < 0.1 |
| Sulfur (mg kg <sup>-1</sup> ) | 6     |
| T10 (°C)                      | 55.4  |
| T50(°C)                       | 109.9 |
| T90 (°C)                      | 164.3 |
| Fbp (°C)                      | 194.4 |

50 Table S1 Details of the fuel used in the experiments.

| Compound                | Emission facto | Emission factor (ng kg-fuel <sup>-1</sup> ) |  |
|-------------------------|----------------|---------------------------------------------|--|
|                         | GDI            | PFI                                         |  |
| Napthalene              | 0.025          | <0.0001                                     |  |
| 1-Methylnaphthalene     | < 0.0001       | < 0.0001                                    |  |
| 2-Methylnaphthalene     | 0.012          | 0.004                                       |  |
| 2,6-Dimethylnaphthalene | 0.006          | 0.003                                       |  |
| Acenaphthylene          | 0.012          | 0.009                                       |  |
| Acenapthene             | < 0.0001       | 0.015                                       |  |
| Fluorene                | 0.003          | 0.105                                       |  |
| Methyl-fluorene         | 0.083          | 0.105                                       |  |
| Dibenzofuran            | 0.006          | 0.039                                       |  |
| Retene                  | 0.009          | 0.011                                       |  |
| 9-Methylanthracene      | < 0.0001       | 0.013                                       |  |
| Phenanthrene            | 0.244          | 0.069                                       |  |
| Anthracene              | 0.048          | 0.018                                       |  |
| Fluoranthene            | 0.201          | 0.034                                       |  |
| Pyrene                  | 0.246          | 0.029                                       |  |
| Methyl-fluoranthene     | 0.004          | 0.007                                       |  |
| Benzo[a]anthracene      | 0.006          | 0.036                                       |  |
| Chrysene                | 0.020          | 0.065                                       |  |
| Methyl-chrysene         | < 0.0001       | 0.007                                       |  |
| Benzo[b]fluoranthene    | 0.034          | 0.147                                       |  |
| Benzo[k]fluoranthene    | 0.041          | 0.129                                       |  |
| Benzo[e]pyrene          | 0.028          | 0.051                                       |  |
| Benzo[a]pyrene          | 0.012          | 0.041                                       |  |
| Benzo[ghi]flouranthene  | 0.095          | 0.027                                       |  |
| Cyclopenta[cd]pyrene    | < 0.0001       | 0.032                                       |  |
| Dibenzo[a,h]anthracene  | < 0.0001       | < 0.0001                                    |  |

53 Table S2 The EFs of Particulate-phase PAHs from GDI and PFI vehicles.

| Picene                 | < 0.0001 | < 0.0001 |
|------------------------|----------|----------|
| Perylene               | 0.009    | < 0.0001 |
| Benzo[ghi]perylene     | < 0.0001 | < 0.0001 |
| Indeno[1,2,3-cd]pyrene | < 0.0001 | < 0.0001 |
| Coronene               | < 0.0001 | < 0.0001 |
| Sum PAHs               | 1.144    | 0.994    |