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Abstract. Reanalyses are widely used because they add
value to routine observations by generating physically or dy-
namically consistent and spatiotemporally complete atmo-
spheric fields. Existing studies include extensive discussions
of the temporal suitability of reanalyses in studies of global
change. This study adds to this existing work by investigat-
ing the suitability of reanalyses in studies of regional climate
change, in which land–atmosphere interactions play a com-
paratively important role. In this study, surface air temper-
atures (Ta) from 12 current reanalysis products are investi-
gated; in particular, the spatial patterns of trends in Ta are
examined using homogenized measurements of Ta made at
∼ 2200 meteorological stations in China from 1979 to 2010.
The results show that ∼ 80 % of the mean differences in Ta
between the reanalyses and the in situ observations can be
attributed to the differences in elevation between the stations
and the model grids. Thus, the Ta climatologies display good
skill, and these findings rebut previous reports of biases in
Ta. However, the biases in theTa trends in the reanalyses di-
verge spatially (standard deviation= 0.15–0.30 ◦C decade−1

using 1◦× 1◦ grid cells). The simulated biases in the trends
in Ta correlate well with those of precipitation frequency, sur-
face incident solar radiation (Rs) and atmospheric downward
longwave radiation (Ld) among the reanalyses (r =−0.83,
0.80 and 0.77; p < 0.1) when the spatial patterns of these
variables are considered. The biases in the trends in Ta over
southern China (on the order of −0.07 ◦C decade−1) are
caused by biases in the trends in Rs, Ld and precipitation fre-
quency on the order of 0.10, −0.08 and −0.06 ◦C decade−1,
respectively. The biases in the trends in Ta over northern
China (on the order of −0.12 ◦C decade−1) result jointly
from those in Ld and precipitation frequency. Therefore, im-
proving the simulation of precipitation frequency and Rs

helps to maximize the signal component corresponding to
regional climate. In addition, the analysis of Ta observations
helps represent regional warming in ERA-Interim and JRA-
55. Incorporating vegetation dynamics in reanalyses and the
use of accurate aerosol information, as in the Modern-Era
Retrospective Analysis for Research and Applications, ver-
sion 2 (MERRA-2), would lead to improvements in the mod-
elling of regional warming. The use of the ensemble tech-
nique adopted in the twentieth-century atmospheric model
ensemble ERA-20CM significantly narrows the uncertainties
associated with regional warming in reanalyses (standard de-
viation= 0.15 ◦C decade−1).

1 Introduction

Observations and models are two fundamental approaches
used in the understanding of climate change. Observations
provide a direct link to the climate system via instruments,
whereas models provide an indirect link and include informa-
tion derived from measurements, prior knowledge and the-
ory.

A large number of meteorological observations have been
accumulated. These measurements, which are derived from a
variety of sources, such as surface stations, ships, buoys, ra-
diosondes, airplanes and satellites, record quantities that in-
clude near-surface and upper-air temperature, humidity, wind
and pressure. They constitute a major source of atmospheric
information through the depth of the troposphere but suf-
fer from incomplete spatiotemporal coverage and observa-
tion errors, including systematic, random and representation
errors. Recent satellite-based observations have much bet-
ter coverage; however, they suffer from other notable lim-
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itations, including temporal inhomogeneities (e.g. satellite
drift) and retrieval errors (Bengtsson et al., 2007). These spa-
tiotemporally varying gaps restrict the effective application
of observations alone in climate research.

To fill in the gaps in observations, models are needed. Such
models can be very simple; examples of simple models in-
clude linear interpolation or geostatistical approaches that
are based on the spatial and temporal autocorrelation of the
observations. However, these models lack the necessary dy-
namical or physical mechanisms. Given the steady progress
of numerical weather prediction (NWP) models in character-
izing the global atmospheric circulation in the early 1980s
(Bauer et al., 2015), the first generation of reanalyses was
produced by combining observations and dynamic models to
provide the first global atmospheric datasets for use in scien-
tific research (Bengtsson et al., 1982a, b).

After realizing the great value of this kind of reanalysis
in atmospheric research, a step forward was taken with the
suggestion made by Bengtsson and Shukla (1988) and Tren-
berth and Olson (1988) that most meteorological observa-
tions should be optimally assimilated under a fixed dynam-
ical system over a period of time long enough to be useful
for climate studies. In this way, available observations are
ingested by advanced data assimilation techniques to pro-
vide a continuous initial state for an NWP model to produce
the next short-term forecast. This procedure thus generates
physically consistent and spatiotemporally complete three-
dimensional atmospheric fields that are updated in light of
observations.

Taking this suggestion as a guide, and given the im-
provements that have been made since the mid-1990s in
the integrity of the observations, the models and the as-
similation methods used, successive generations of atmo-
spheric reanalyses established by several institutes have im-
proved in quality. These reanalyses include the first two
generations of global reanalyses produced by the National
Centers for Environmental Prediction, NCEP-R1 (Kalnay
et al., 1996) and NCEP-R2 (Kanamitsu et al., 2002); the
reanalyses produced by the European Centre for Medium-
Range Weather Forecasts (ECMWF), ERA-15 (Gibson et al.,
1997), ERA-40 (Uppala et al., 2005) and ERA-Interim (Dee
et al., 2011b); the Japanese Meteorological Agency, JRA-
25 (Onogi et al., 2007) and JRA-55 (Kobayashi et al., 2015);
and the National Aeronautics and Space Administration, the
Modern-Era Retrospective Analysis for Research and Appli-
cations (MERRA) (Rienecker et al., 2011) and its updated
version, MERRA-2 (Reichle et al., 2017).

These reanalyses produce global gridded datasets that
cover multiple timescales and include a large variety of at-
mospheric, oceanic and land surface parameters, many of
which are not easily or routinely observed but are dynam-
ically constrained by large numbers of observations from
multiple sources assimilated using fixed NWP models. Dur-
ing the data assimilation, prior information on uncertainties
in the observations and models are used to perform quality

checks, to derive bias adjustments and to assign proportional
weights. Therefore, such reanalyses add value to the instru-
mental record through their inclusion of bias adjustments,
their broadened spatiotemporal coverage and their increased
dynamical integrity or consistency.

Previous studies have revealed that such reanalyses have
contributed significantly to a more detailed and comprehen-
sive understanding of the dynamics of the Earth’s atmosphere
(Dee et al., 2011b; Kalnay et al., 1996; Nguyen et al., 2013;
Kidston et al., 2010; Simmonds and Keay, 2000; Simmons et
al., 2010; Mitas and Clement, 2006). Extensive assessment
studies have reported that most reanalyses display a certain
level of performance in terms of their absolute values (Betts
et al., 1996, 1998; Zhou and Wang, 2016b), interannual vari-
ability (Lin et al., 2014; Lindsay et al., 2014; Zhou and Wang,
2016a, 2017a; Wang and Zeng, 2012), distributions (Gervais
et al., 2014; Heng et al., 2014; Mao et al., 2010) and relation-
ships among variables (Niznik and Lintner, 2013; Cash III et
al., 2015; Zhou et al., 2017; Zhou and Wang, 2016b; Betts,
2004) over regions worldwide. However, these aspects of re-
analyses still contain certain errors that restrict the general
use of reanalyses, especially in climate applications.

The errors displayed by reanalysis products arise from
three sources: observation error, model error and assimila-
tion error (Thorne and Vose, 2010; Parker, 2016; Lahoz and
Schneider, 2014; Dee et al., 2014; Zhou et al., 2017). Specif-
ically, observation error incorporates systematic and random
errors in instruments and their replacements, errors in data
reprocessing and representation error, which arises due to
the spatiotemporal incompleteness of observations (Dee and
Uppala, 2009; Desroziers et al., 2005). Model error refers
mainly to the inadequate representation of physical processes
in NWP models (Peña and Toth, 2014; Bengtsson et al.,
2007), such as the lack of time-varying surface conditions
such as vegetation growth (Zhou and Wang, 2016b; Trigo et
al., 2015), and incomplete cloud–precipitation–radiation pa-
rameterizations (Fujiwara et al., 2017; Dolinar et al., 2016).
Assimilation error describes errors that arise in the mapping
of the model space to the observation space and errors in the
topologies of cost functions (Dee, 2005; Dee and Da Silva,
1998; Lahoz and Schneider, 2014; Parker, 2016).

These reanalyses mentioned above consist of the true cli-
mate signal and the nonlinear interactions among the obser-
vation error, the model error and the assimilation error that
arise during the assimilation process. These time-varying er-
rors can introduce spurious trends without being eliminated
by data assimilation systems. Many spurious variations in
climate signals were also identified in the early-generation
reanalyses (Bengtsson et al., 2004; Andersson et al., 2005;
Chen et al., 2008; Zhou and Wang, 2016a, 2017a; Zhou et
al., 2017; Schoeberl et al., 2012; Xu and Powell, 2011; Hines
et al., 2000; Cornes and Jones, 2013). Therefore, reanalyses
produced using the existing reanalysis strategy may not ac-
curately capture climate trends (Trenberth et al., 2008), even
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though they may contain relatively accurate estimates of syn-
optic or interannual variations in the Earth’s atmosphere.

An emerging requirement for climate applications of re-
analysis data is the accurate representation of decadal vari-
ability, further increasing the confidence in the estimation of
climate trends. This kind of climate reanalysis is required to
be free, to a great extent, from other spurious non-climatic
signals introduced by changing observations, model imper-
fections and assimilation error; that is, they must maintain
temporal consistency. Therefore, the extent to which climate
trends can be assessed using reanalyses attracts much atten-
tion and sparks heated debates (Thorne and Vose, 2010; Dee
et al., 2011a, 2014; Bengtsson et al., 2007).

Given the great progress that has been made in climate
forecasting models (which provide more accurate represen-
tations of climate change and variability) and coupled data
assimilation, many efforts have been made by several insti-
tutes to build consistent climate reanalyses using the strat-
egy of assimilating a relatively small number of high-quality
long-term observational datasets. The climate reanalyses of
this new generation extend back to the late nineteenth century
and include the Climate Forecast System Reanalysis (CFSR),
which is produced by the National Centers for Environmen-
tal Prediction (Saha et al., 2010); NOAA 20CRv2c, which
is produced by the University of Colorado’s Cooperative
Institute for Research in Environmental Sciences (CIRES)
in cooperation with the National Oceanic and Atmospheric
Agency (NOAA) (Compo et al., 2011); and ERA-20C (Poli
et al., 2016), ERA-20CM (Hersbach et al., 2015) and CERA-
20C (Laloyaux et al., 2016), which are produced by the
ECMWF. Compo et al. (2013) suggested that the NOAA
20CRv2c reanalysis can reproduce the trend in global mean
surface air temperatures. In addition, the uncertainties esti-
mated from multiple ensembles are provided to increase the
confidence of the climate trends (Thorne and Vose, 2010;
Dee et al., 2014).

From NWP-like reanalyses to climate reanalyses, existing
studies focus mainly on comparing the differences in tempo-
ral variability between the reanalyses and observations using
some statistical metrics, e.g. the mean values, standard devi-
ations, interannual correlations, probability density functions
and trends of surface air temperature over regions world-
wide. These evaluations provide insight into the temporal
evolution of the Earth’s atmosphere. However, they lack the
performance evaluations used in reanalyses in representing
the spatial patterns of these statistics associated with the role
of the coupled land–atmosphere and dynamical processes of
the climate system. Moreover, the assessment of these spa-
tial patterns provides a direct means of examining the most
prominent advantage of reanalyses over geostatistical inter-
polation; thus, the spatial patterns require comprehensive in-
vestigation.

This study employs high-density station-based datasets of
quantities including surface air temperatures (Ta), the surface
incident solar radiation (Rs), the surface downward longwave

radiation (Ld) and precipitation measured at ∼ 2200 meteo-
rological stations within China from 1979 to 2010. It pro-
vides a quantitative examination of the simulated patterns of
variations in Ta in both the NWP-like and climate reanaly-
ses and considers the climatology, the interannual variability,
the mutual relationships among relevant quantities, the long-
term trends and their controlling factors. The results indicate
the strengths and weaknesses of the current reanalyses when
applied in regional climate change studies and provide pos-
sible ways to improve these reanalyses in the near future.

2 Data and methods

2.1 Observational datasets

The latest comprehensive daily dataset (which contains av-
erages at 00:00, 06:00, 12:00 and 18:00 UTC) of quanti-
ties that include Ta, precipitation, sunshine duration, rela-
tive humidity, water vapour pressure, surface pressure and
the cloud fraction from approximately 2400 meteorologi-
cal stations in China from 1961 to 2014, of which only ap-
proximately 194 participate in global exchanges, is obtained
from the China Meteorological Administration (CMA; http:
//data.cma.cn/data). Approximately 2200 stations with com-
plete and homogeneous data are selected for use in this study
(Wang and Feng, 2013; Wang, 2008; Wang et al., 2007). The
high density of meteorological stations in China promotes
the representation of regional patterns in surface warming by
reanalyses and the assessment of the skill of simulations.
Rs values based on the revised Ångström–Prescott equa-

tion (Wang et al., 2015; Yang et al., 2006; Wang, 2014) are
used in this study. The derived Rs values consider the effects
of Rayleigh scattering, water vapour absorption, and ozone
absorption (Wang et al., 2015; Yang et al., 2006) and can ac-
curately reflect the effects of aerosols and clouds on Rs over
China (Wang et al., 2012; Tang et al., 2011). Several inten-
sive studies have reported that the derived Rs values can ac-
curately depict the interannual, decadal and long-term varia-
tions in Rs (Wang et al., 2012, 2015; Wang, 2014).
Ld is typically estimated by first determining the clear-sky

radiation and atmospheric emissivity (Brunt, 1932; Choi et
al., 2008; Bilbao and De Miguel, 2007) and then correct-
ing for the cloud fraction (Wang and Liang, 2009; Wang
and Dickinson, 2013). The derived Ld values can directly
reflect the greenhouse effect of atmospheric water vapour
and clouds. Additionally, precipitation frequency is defined
as days in a year with daily precipitation of at least 0.1 mm
in this study, which has been shown to provide a good indi-
cation of the effects of precipitation on the interannual vari-
ability and trends in Ta (Zhou et al., 2017). Taken together,
the derived Rs and Ld values are able to physically quan-
tify the effects of solar radiation and the greenhouse effect
on surface warming. Precipitation frequency can regulate the
partitioning of available energy into latent and sensible heat
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Table 1. Summary information on the 12 reanalysis products, including institution, model resolution, assimilation system, surface observa-
tions associated with surface air temperatures, sea ice and sea surface temperatures (SSTs), and greenhouse gas (GHG) boundary conditions.
The number in the parentheses in the model name column is the year of the version of the forecast model used. More details on each product
can be found in the associated reference.

Reanalysis Institution Model name Model resolution Period Assimilation
system

ERA-Interim ECMWF IFS version Cy31r2 (2007) T255 ∼ 80 km, 60 levels 1979 onwards 4D-Var

JRA-55 JMA JMA operational numeri-
cal weather prediction sys-
tem (2009)

T319 ∼ 55 km, 60 levels 1958–onwards 4D-Var

NCEP-R1 NCEP/NCAR NCEP operational numeri-
cal weather prediction sys-
tem (1995)

T62 ∼ 210 km, 28 levels 1948 onwards 3D-Var

NCEP-R2 NCEP/DOE Modified NCEP-R1
model (1998)

T62 ∼ 210 km, 28 levels 1979 onwards 3D-Var

MERRA NASA/GMAO GEOS-5.0.2 atmospheric
general circulation model
(2008)

0.5◦× 0.667◦ ∼ 55 km,
72 levels

1979 onwards 3D-Var with incremental
updating (GEOS IAU)

MERRA-2 NASA/GMAO Updated version of GEOS-
5.12.4 used in MERRA; its
land model is similar to that
of MERRA (2015)

0.5◦× 0.625◦∼ 55 km,
72 levels

1980 onwards 3D-Var with incremental
updating (GEOS IAU)

ERA-20C ECMWF IFS version Cy38r1 (2012),
coupled atmosphere–land–
ocean–waves system

T159 ∼ 125 km, 91 levels 1900–2010 4D-Var

ERA-20CM ECMWF Similar to that used in
ERA-20C (2012)

T159 ∼ 125 km, 91 levels 1900–2010 –

CERA-20C ECMWF IFS version Cy41r2 (2016),
coupled atmosphere–
ocean–land–waves–sea ice
system

T159 ∼ 125 km, 91 levels 1901–2010 CERA ensemble assimi-
lation technique

NOAA 20CRv2c NOAA/ESRL PSD NCEP GFS (2008), an
updated version of the
NCEP Climate Forecast
System (CFS) coupled
atmosphere–land model

T62 ∼ 210 km, 28 levels 1851–2014 Ensemble Kalman filter

NOAA 20CRv2 NOAA/ESRL PSD Same model as NOAA
20CRv2c (2008)

T62 ∼ 210 km, 28 levels 1871–2012 Ensemble Kalman filter

CFSR NCEP NCEP CFS (2011) coupled
atmosphere–ocean–land–
sea ice model

T382 ∼ 38 km, 64 levels 1979–2010 3D-Var

fluxes and thus modulates the variations in Ta (Zhou et al.,
2017; Zhou and Wang, 2017a).

2.2 Reanalysis products

All of the major global atmospheric reanalysis products are
included in this study (Table 1). The reanalyses are sum-
marized below in terms of three aspects, i.e. the observa-
tions assimilated and the forecast model and assimilation
method used. The NWP-like reanalyses assimilate many con-
ventional and satellite datasets from multiple sources (Ta-

ble 1) to characterize the basic upper-air atmospheric fields;
the spatiotemporal errors of these datasets vary with time.
In particular, the ERA-Interim and JRA-55 reanalyses incor-
porate many observations of Ta, and the MERRA2 reanal-
ysis includes aerosol optical depth estimates from satellite
retrievals and model simulations based on emission inven-
tories, whereas most of the other reanalyses use climatolog-
ical aerosols (Table 1). To derive consistent long-term cli-
mate signals, the new strategy adopted by climate reanaly-
ses involves the assimilation of a small number of relatively
effective observed variables, e.g. surface pressure (Table 1).
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Table 1. Continued from right column.

Related assimilated and analysed observations Sea ice and SSTs GHG forcing Reference

(1) Includes in situ observations of near-surface air
temperature, pressure and relative humidity
(2) Assimilates upper-air temperatures, wind and specific humidity
(3) Assimilates rain-affected SSM/I radiances

A changing suite of SST
and sea ice data from obser-
vations and NCEP

Interpolation by 1.6 ppmv yr−1

from the global mean CO2 in
1990 of 353 ppmv

Dee et al. (2011b)

(1) Analyses available near-surface observations
(2) Assimilates all available traditional and satellite observations

In situ observation-based
estimates of the COBE
SST
data and sea ice

Same as CMIP5 Kobayashi et al. (2015)

(1) Initiated with weather observations from ships, planes, station
data, satellite observations and many more sources
(2) No inclusion of near-surface air temperatures
(3) Uses observed precipitation to nudge soil moisture
(4) No information on aerosols

Reynolds SSTs for 1982 on
and the UKMO GISST
data
for earlier periods; sea ice
from SMMR/SSMI

Constant global mean CO2 of
330 ppmv; no other trace gases

Kalnay et al. (1996)

(1) No inclusion of near-surface air temperatures
(2) No information on aerosols

AMIP-II prescribed Constant global mean CO2,
350 ppmv; no other trace gases

Kanamitsu et al. (2002)

(1) Neither MERRA nor MERRA-2 analyse near-surface air tem-
perature, relative humidity or other variables
(2) Radiosondes do provide some low-level observations

Reynolds SSTs prescribed Same as CMIP5 Rienecker et al. (2011)

(1) Includes newer observations (not included in MERRA) after
the 2010s
(2) Includes aerosols from MODIS and AERONET measurements
over land after the 2000s and from the GOCART model before
the 2000s
(3) Assimilates observation-corrected precipitation to correct the
model-generated precipitation before reaching the land surface

AMIP-II and Reynolds
SSTs

Same as CMIP5 Reichle et al. (2017)

(1) Assimilates surface pressures from ISPDv3.2.6 and
ICOADSv2.5.1 and surface marine winds from ICOADSv2.5.1
(2) Uses monthly climatology of aerosols from CMIP5

SSTs and sea ice from
HadISST2.1.0.0

Same as CMIP5 Poli et al. (2016)

Assimilates no data and includes radiative forcings from CMIP5 SSTs and sea ice realiza-
tions from HadISST2.1.0.0
used in 10 members

Same as CMIP5 Hersbach et al. (2015)

(1) Assimilates surface pressures from ISPDv3.2.6 and
ICOADSv2.5.1 and surface marine winds from ICOADSv2.5.1
(2) Assimilates no data in the land, wave and sea ice components
but uses the coupled model at each time step

SSTs from HadISST2.1.0.0 Same as CMIP5 Laloyaux et al. (2016)

Assimilates only surface pressure and sea level pressure SSTs from HadISST1.1 and
sea ice from COBE SST

Monthly 15◦ gridded estimates
of CO2 from WMO
observations

Compo et al. (2011)

Same as NOAA 20CRv2c SSTs and sea ice from
HadISST1.1

Monthly 15◦ gridded estimates
of CO2 from WMO
observations

Compo et al. (2011)

(1) Assimilates all available conventional and satellite observations
but not near-surface air temperatures
(2) Atmospheric model contains observed changes in aerosols
(3) Uses observation-corrected precipitation to force the land
surface analysis

Generated by coupled
ocean–sea ice models;
evolves freely during
the 6 h coupled model
integration

Monthly 15◦ gridded estimates
of CO2 from WMO observa-
tions

Saha et al. (2010)

Except for its lack of the assimilation of surface pressure,
ERA-20CM employs the same forecast model and exter-
nal forcings as ERA-20C (Table 1); thus, the inclusion of
ERA-20CM in this study provides a useful benchmark se-
ries against which to ascertain the skill that is added by as-
similating various observations and to cognize the advantage
of ensemble simulations. The reanalyses adopt different sea
surface temperatures (SSTs) and sea ice concentrations for

different time periods, which may lead to temporal discon-
tinuities in the climate signals derived from the reanalyses
(Table 1). To address this issue, the boundary conditions in
CFSR are derived from its coupled ocean–sea ice models
instead of observations (Table 1). CFSR, NOAA 20CRv2c
and NOAA 20CRv2 use monthly greenhouse gases (GHGs)
with annual means near those used in CMIP5. Conversely,
in ERA-Interim, the GHGs increase more slowly than in
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CMIP5 after 2000. Finally, NCEP-R1 and NCEP-R2 adopt
constant global mean concentrations of the GHGs (Table 1).

The forecast model is a fundamental component of a re-
analysis that provides the background fields to the assimila-
tion system. Different reanalyses produced by a single insti-
tute generally use similar physical parameterizations; how-
ever, updated versions of these parameterizations and higher
spatial resolutions are used in the newer generations of these
realizations (Table 1). Note that the CFSR is classified into
climate reanalysis in this study, mainly because it adopts a
climate forecast system (Table 1). The assimilation meth-
ods adopted by the current reanalyses incorporate variational
methods (3D-Var and 4D-Var) and the ensemble Kalman fil-
ter (EnKF) approach (Table 1).

The 2 m Ta in NCEP-1, NCEP-2, MERRA, MERRA-
2, ERA-20C, ERA-20CM, CERA-20C, NOAA 20CRv2c,
NOAA 20CRv2 and CFSR are model-derived fields that are
functions of the surface skin temperature, the temperature at
the lowest model level, the vertical stability and the surface
roughness, which are constrained primarily by observations
of upper-air variables and the surface pressure (Kanamitsu et
al., 2002; Rienecker et al., 2011; Reichle et al., 2017; Poli
et al., 2016; Hersbach et al., 2015; Laloyaux et al., 2016;
Compo et al., 2011; Saha et al., 2010). However, the Ta in
ERA-Interim and JRA-55 are post-processing products by a
relatively simple analysis scheme between the lowest model
level and the surface and are analysed using ground-based
observations of Ta, with the help of Monin–Obukhov simi-
larity profiles consistent with the model’s parameterization of
the surface layer (Dee et al., 2011b; Kobayashi et al., 2015).
Additionally, radiation calculations are diagnostically deter-
mined from the prognostic cloud condensate microphysics
parameterization, and the cloud macrophysics parameteriza-
tion assumes a maximum-random cloud overlapping scheme
(Saha et al., 2010; Dolinar et al., 2016).

2.3 Method used to homogenize the observed time
series

Problems related to the observational infrastructure (e.g. in-
strument ageing and changes in observing practices) and sta-
tion relocations can also lead to false temporal heterogeneity
in time series. Therefore, it is necessary to diminish the im-
pact of data inhomogeneities on the trends in the observed
variables during the study period of 1979–2010.

We use the RHtestsV4 software package (Wang and Feng,
2013) to detect and homogenize the breakpoints in the
monthly time series. The package includes two algorithms.
Specifically, the PMFred algorithm is based on the penal-
ized maximal F test (PMF) without a reference series (Wang,
2008), and the PMTred algorithm is based on the penalized
maximal t test (PMT) with a reference series (Wang et al.,
2007).

In this study, we first use the PMFred algorithm to identify
potential reference series at the 95 % significance level. We

then reconstruct homogenous series for each inhomogeneous
series using the following steps.

1. Horizontal and vertical distances from the inhomoge-
neous station of less than 110 km and 500 m, respec-
tively, are specified.

2. Correlation coefficients between the first-order differ-
ence in the homogeneous series and that in the inhomo-
geneous one exceeding 0.9 are required.

3. The first 10 homogeneous series are averaged using
inverse distance weighting to produce a reference se-
ries for the inhomogeneous station. Finally, we apply
the PMTred algorithm to test all of the inhomogeneous
series using the nearby reference series. Several in-
tensive studies have been conducted that indicate the
PMTred algorithm displays good performance in detect-
ing change points in inhomogeneous series (Venema et
al., 2012; Wang et al., 2007).

If a breakpoint is found to be statistically significant, the
quantile-matching (QM) adjustment in RHtestsV4 is recom-
mended for making adjustments to the time series (Wang et
al., 2010; Wang and Feng, 2013); in such cases, the longest
available segment from 1979 to 2010 is used as the base
segment. The QM adjustment aims to match the empirical
distributions from all of the detrended segments with that
of the specific base segment (Wang et al., 2010). In addi-
tion, we replicate the procedures above for the sparsely dis-
tributed stations over western China and the Tibetan Plateau.
The PMTred algorithm and the QM adjustment have recently
been used successfully to homogenize climatic time series
(Aarnes et al., 2015; Tsidu, 2012; Dai et al., 2011; Siswanto
et al., 2015; Wang and Wang, 2016; Zhou et al., 2017).

As such, the significant breakpoints are detected and ad-
justed at a confidence level of 95 % at 1092 of the 2193
(49.8 %) stations for the Ta time series, 1079 of the 2193
(49.2 %) stations for the Rs time series, 64 of the 2193
(2.9 %) stations for precipitation frequency time series, 971
of the 2193 (44.2 %) stations for the Ld time series, 944 of
the 2193 (43.0 %) stations for the water vapour pressure time
series and 956 of the 2193 (43.6 %) stations for the cloud
fraction time series.

2.4 Trend calculations, partial linear regression and
total least squares

The bias, root-mean-squared error (RMSE) and standard de-
viation are used to assess the absolute value of Ta. The trends
in Ta and the relevant variables are calculated using the or-
dinary least-squares method (OLS) and the two-tailed Stu-
dent’s t test. To determine whether the reanalyses contain
biases in these trends, the two-tailed Student’s t test is also
applied to the differences in the time series between the re-
analyses and the homogeneous observations.
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The partial least-squares approach is used to investigate
the net relationship between the detrended Ta values and the
relevant variables (Rs, Ld and precipitation frequency) after
statistically excluding the confounding effects among the rel-
evant variables (Zhou et al., 2017). To evaluate the potential
collinearity of independent variables in the regression model,
the variance inflation factor (VIF) is calculated. The VIFs for
Rs, precipitation frequency and Ld are less than 4. Specifi-
cally, the VIF for China of 2.19 is much less than the thresh-
old of 10, above which the collinearity of regression mod-
els is bound to adversely affect the regression results (Ryan,
2008).

The Pearson correlation coefficient (r) is used to reveal the
spatial relationship between Ta and the relevant variables. To
further investigate the relationship between the spatial dis-
tributions of the biases in the trends in Ta and the relevant
parameters among the 12 reanalysis products, the weighted
total least squares (WTLS) is adopted, in which the spa-
tial standard deviations and correlations of pairs of variables
on 1◦× 1◦ grid cells are included (Reed, 1989; York et al.,
2004; Golub and Van Loan, 1980; Hyk and Stojek, 2013;
Tellinghuisen, 2010).

ω(xi)= 1
/
σ̂ 2
xi

(1)

ω(yi)= 1
/
σ̂ 2
yi

(2)

Wi =
ω(xi) ·ω(yi)

ω(xi)+ b2ω(yi)− 2b · ri
√
ω(xi) ·ω(yi)

(3)

Ui = xi −

n∑
i

(Wi · xi)/

n∑
i

(Wi) (4)

Vi = yi −

n∑
i

(Wi · yi)/

n∑
i

(Wi) (5)

βi =Wi

[
Ui

ω(yi)
+
b ·Vi

ω(xi)

− (b ·Ui +Vi)
ri

√
ω(xi) ·ω(yi)

]
(6)

b =

n∑
i=1
Wi ·βi ·Vi

n∑
i=1
Wi ·βi ·Ui

(7)

The variables xi and yi are the median trends in x and y
(e.g. Ta and Rs) for the ith reanalysis product; σ̂xi , σ̂yi and
ri are the spatial standard deviations and correlations of the
trends in x and y for the ith reanalysis product; βi is the
least-squares-adjusted value; Wi is the weight of the residual
error; and b is the slope estimated using iterative methods
with a relative tolerance of 10−16.

The Monte Carlo method with 10 000 experiments is ap-
plied to estimate the 90 % confidence intervals of the slope
b. In the Monte Carlo method, the grid index for the 1◦× 1◦

grid cells over China, which ranges from 1 to 691, is gener-

ated as a random number. On this basis, we can sample the
spatial pattern in the biases in the trends in Ta, Rs, Ld and
precipitation frequency. We then calculate the median trends
and their spatial standard deviations and correlations for each
experiment used in the WTLS.

3 Results

3.1 Dependency of surface air temperature differences
on elevation differences

Figure 1 illustrates the differences in Ta from the NWP-like
reanalyses and climate reanalyses relative to the homoge-
nized station-based observations over China during the pe-
riod of 1979–2010. When the Ta values measured at the sta-
tions are compared directly with those in the corresponding
model grid cells, the results indicate that the reanalysis prod-
ucts underestimate Ta over most of the regions in China (by
−0.28 to −2.56 ◦C). These discrepancies are especially pro-
nounced over the Tibetan Plateau and middle China, where
the underestimation ranges from −2.75 to −7.00 ◦C and
from−1.19 to−2.91 ◦C, respectively (Fig. 1 and Table 2). A
homogenizing adjustment of 0.03 ◦C from the raw Ta obser-
vations is insufficient to account for the underestimation of
Ta by the reanalyses (Fig. 1 and Table 2). Similar biases in Ta
within various regions worldwide have been widely reported
by previous studies (Mao et al., 2010; Pitman and Perkins,
2009; Reuten et al., 2011; Wang and Zeng, 2012; Zhou et al.,
2017; Zhou and Wang, 2016b).

However, we found that the spatial patterns in the differ-
ences in Ta are well correlated with the elevation differences
between models and stations, as reflected by correlation co-
efficients (r) of 0.85 to 0.94 (Figs. 2 and S1 in the Sup-
plement). These results are in accordance with the reports
from NCEP-R1, NCEP-R2 and ERA-40 (You et al., 2010;
Ma et al., 2008; Zhao et al., 2008). The elevation differences
(1Height; Figs. 2 and S1) between the stations and the model
grids consist of the filtering error in the elevations used in the
spectral models (1f) and differences in the site-to-grid ele-
vations (1s) due to the complexity of the orographic topog-
raphy. We further quantify the relative contributions of these
factors to the Ta differences. The elevation differences can
explain approximately 80 % of the Ta differences; approx-
imately 74 % is produced by the site-to-grid elevation dif-
ferences, and approximately 6 % is produced by the filtering
error in the elevations used in the spectral models (Fig. 2).

The regression coefficient of the differences in Ta is
approximately 6 ◦C 1 km−1, which is similar to the lapse
rate at the surface (Fig. 2). Lapse rate values that exceed
6 ◦C 1 km−1 can be seen over the Tibetan Plateau (shown as
red dots in Fig. 2). This result is very consistent with the re-
ported lapse rates over China (Li et al., 2015; Fang and Yoda,
1988). In addition, the rate of decrease in the model filtering
error is approximately 4 ◦C 1 km−1 among the 12 reanalyses
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Figure 1. The multiyear-averaged differences in surface air temperatures (Ta, unit: ◦C) during the period of 1979–2010 from the 12 reanalysis
products relative to the homogenized observations over China. The reanalysis products are (a) ERA-Interim, (b) NCEP-R1, (c) MERRA,
(d) JRA-55, (e) NCEP-R2, (f) MERRA2, (g) ERA-20C, (h) ERA-20CM, (i) CERA-20C, (j) NOAA 20CRv2c, (k) NOAA 20CRv2 and
(l) CFSR. The mainland of China is divided into seven regions (shown in c), specifically (1) the Tibetan Plateau, (2) northwestern China,
(3) the Loess Plateau, (4) middle China, (5) northeastern China, (6) the North China Plain and (7) southern China.

Table 2. Differences (unit: ◦C) relative to the homogenized observations and trends (unit: ◦C decade−1) in surface air temperatures (Ta) from
1979 to 2010 over China and its seven subregions. The bold font indicates results that are significant according to two-tailed Student’s t tests
with a significance level of 0.05.

China Tibetan Plateau Northwestern China Loess Plateau Middle China Northeastern China North China Plain Southeastern China

Region Diff. Trend Diff. Trend Diff. Trend Diff. Trend Diff. Trend Diff. Trend Diff. Trend Diff. Trend

ERA-Interim −0.87 0.38 −3.49 0.33 −1.82 0.37 −0.32 0.50 −1.19 0.28 −0.03 0.42 −0.02 0.45 −0.03 0.37
NCEP-R1 −2.56 0.23 −6.80 0.11 −4.45 0.39 −1.77 0.21 −2.91 0.23 −1.28 0.27 −1.21 0.23 −1.33 0.22
MERRA −0.48 0.25 −3.48 0.33 0.95 0.14 1.14 0.09 −1.35 0.12 −0.22 0.52 0.67 0.26 −0.27 0.24
JRA-55 −1.10 0.38 −3.49 0.42 −1.70 0.39 −0.58 0.52 −1.61 0.30 −0.25 0.37 −0.26 0.41 −0.50 0.34
NCEP-R2 −2.10 0.25 −5.76 −0.07 −4.29 0.58 −1.33 0.10 −2.80 0.20 −0.51 0.36 −0.38 0.23 −1.14 0.36
MERRA2 −0.91 0.28 −3.41 0.35 0.34 0.32 0.12 0.19 −1.35 0.23 −0.73 0.41 −0.24 0.18 −0.64 0.25
ERA-20C −1.42 0.29 −6.56 0.33 −1.95 0.31 0.03 0.21 −2.01 0.35 −0.19 0.32 1.05 0.19 −0.47 0.28
ERA−20CM −1.48 0.32 −5.93 0.28 −1.39 0.38 −0.36 0.33 −2.13 0.27 −0.23 0.41 −0.31 0.34 −0.51 0.29
CERA-20C −2.06 0.34 −7.00 0.41 −2.15 0.38 −0.78 0.36 −2.59 0.34 −0.76 0.43 −0.40 0.19 −1.20 0.29
NOAA 20CRv2c −0.28 0.22 −2.75 0.39 −0.01 0.28 1.62 0.16 −1.68 0.18 −0.16 0.11 1.06 0.15 0.18 0.22
NOAA 20CRv2 −0.32 0.24 −2.78 0.33 −0.01 0.29 1.48 0.20 −1.77 0.19 −0.07 0.25 0.97 0.21 0.12 0.19
CFSR −1.74 0.48 −5.09 0.46 −1.03 0.44 −0.25 0.40 −2.91 0.37 −0.49 0.67 −0.37 0.47 −1.58 0.51
Obs-raw 0.03 0.40 0.03 0.46 0.09 0.44 0.01 0.52 0.05 0.30 0.00 0.40 0.05 0.42 0.03 0.36
Obs-homogenized 0.37 0.44 0.36 0.50 0.24 0.41 0.38 0.33
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Figure 2. The impact of inconsistencies between station and model elevations on the simulated multiyear-averaged differences in surface air
temperatures (Ta, unit: ◦C) during the study period of 1979–2010 over China. The elevation difference (1Height) between the stations and
the models consists of the filtering error in the elevations used in the spectral models (1f ) and the difference in site-to-grid elevations (1s)
due to the complexity of orographic topography. 1f is derived from the model elevations minus the “true” elevations in the corresponding
model grid cells from GTOPO30. The GTOPO30 orography is widely used in reanalyses, e.g. by ECMWF. The colour bar denotes the station
elevations (unit: m). The relationship of the Ta differences is regressed on 1Height (shown at the bottom of each subfigure) or 1f and 1s
(shown at the top of each subfigure); the corresponding explained variances are shown.

(Fig. 2). These results have important implications for the
skill of the simulated Ta climatologies of the 12 reanalyses
over China.

3.2 Comparison of regional-scale surface air
temperature series

Figure 3 shows Taylor diagrams of annual Ta anomalies from
the observations and reanalyses over China and its seven sub-
regions. We find that the correlations between the annual
Ta anomalies in the 12 reanalysis products and the observa-
tions are reasonably strong, as reflected by a median r of
0.95 (Fig. 3), despite the relatively weak correlations over
the Tibetan Plateau associated with NCEP-R2 (r = 0.24) and

CFSR (r = 0.53). The simulated time series of Ta anomalies
over eastern China are depicted most accurately by the re-
analyses (Fig. 3c–g).

Overall, the NWP-like reanalyses (denoted by numbers 3–
7) display better skill than the climate reanalyses (denoted by
numbers 8–14) in this regard (Fig. 3). ERA-Interim and JRA-
55 display the best performance in the simulated time series
of Ta anomalies over China (r = 1.00, RMSE= 0.05 ◦C) and
the seven regions (r = 0.98, RMSE= 0.1 ◦C) (Fig. 3), per-
haps due to their analysis of surface air temperature observa-
tions (Table 1).

Comparing the Ta values from MERRA2 and MERRA
shows that MERRA2 displays improved performance over

www.atmos-chem-phys.net/18/8113/2018/ Atmos. Chem. Phys., 18, 8113–8136, 2018
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Figure 3. Taylor diagrams for annual time series of the observed and reanalysed surface air temperature anomalies (Ta, unit: ◦C) from 1979
to 2010 in (a) China and (b–h) the seven subregions. The correlation coefficient, standard deviation and root-mean-squared error (RMSE)
are calculated against the observed homogenized Ta anomalies.

northern China, as reflected by an increase in the correla-
tion coefficient of 0.1 and a reduction in the RMSE of 0.1 ◦C
(Fig. 3). This result may occur because MERRA2 includes
time-varying aerosol loadings (Balsamo et al., 2015; Reichle
et al., 2011). However, the incorporation of this informa-
tion does not improve the results over southeastern China
(Fig. 3h).

CERA-20C displays better performance than ERA-20C
and ERA-20CM, perhaps related to the inclusion of cou-
pled climate forecast models and data assimilation, as well
as the assimilation of surface pressure data in CERA-
20C (Fig. 3 and Table 1). NOAA 20CRv2c and NOAA
20CRv2 display moderate performance in this regard (r =
0.8, RMSE= 0.3 ◦C) (Fig. 3), and the former reanalysis dis-
plays no improvement in performance, despite its use of new
boundary conditions (Compo et al., 2011).

3.3 Key factors regulating regional temperature
change

This section discusses key factors that control regional tem-
perature change from the perspective of energy balance and
its partitioning. The Rs heats the surface, and the portion of
this radiation that becomes the sensible heat flux heats the air
near the surface (Zhou and Wang, 2016b, c; Wang and Dick-
inson, 2013). Part of the energy absorbed by the surface is
released back to space as outgoing longwave radiation; some
of this radiation is reflected by clouds and is influenced by
atmospheric water vapour, further warming the near-surface
air (Wang and Dickinson, 2013). This process is known as
the greenhouse effect on Ta and is quantified by Ld. Exist-
ing studies have suggested that precipitation frequency bet-
ter represents the interannual variability in soil moisture in
China than the precipitation amount (Wu et al., 2012; Piao et
al., 2009; Zhou et al., 2017; Zhou and Wang, 2017a); in turn,
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Table 3. Spatial pattern correlation (unit: 1) of three groups: partial relationships, trends and simulated biases in the trends in surface air
temperature (Ta) against surface incident solar radiation (Rs), precipitation frequency (PF) and surface downward longwave radiation (Ld).
The bold and italic bold fonts indicate results that are significant according to two-tailed Student’s t tests with significance levels of 0.05 and
0.1, respectively.

Partial relationship Trend Trend bias

Pattern correlation (Ta, Rs) (Ta, PF) (Ta, Ld) (Ta, Ta) (Ta, Rs) (Ta, PF) (Ta, Ld) (Ta, Rs) (Ta, PF) (Ta, Ld)

Corr. Slope Corr. Slope Corr. Slope

ERA-Interim 0.29 0.01 0.03 0.31 0.21 0.25 0.47 −0.11 −0.04 0.33 0.26 −0.12 0.10
NCEP-R1 0.30 0.06 0.18 0.30 0.36 0.00 0.02 −0.36 −0.02 0.62 −0.03 −0.04 0.43
MERRA 0.29 0.06 0.13 0.39 0.05 0.20 0.21 0.66 −0.81 −0.53 0.42 −0.62 −0.05
JRA-55 0.35 0.21 0.22 0.16 0.29 0.27 0.54 −0.33 0.31 0.57 0.00 0.14 0.29
NCEP-R2 0.22 0.03 0.20 0.36 0.27 0.04 −0.08 0.18 −0.29 0.28 0.15 −0.14 0.35
MERRA2 0.13 0.05 0.26 0.43 0.09 0.30 0.22 0.30 −0.11 0.11 −0.02 −0.12 0.28
ERA-20C 0.28 −0.07 −0.07 0.43 0.19 0.02 −0.07 0.18 −0.33 0.03 0.11 −0.25 0.31
ERA-20CM 0.24 −0.04 −0.03 0.32 0.26 0.18 0.28 −0.32 0.31 0.83 −0.02 0.12 0.34
CERA-20C 0.41 0.17 0.10 0.37 0.08 0.07 0.29 0.50 −0.58 −0.07 −0.01 −0.22 0.23
NOAA 20CRv2c 0.39 0.15 −0.22 0.25 0.14 0.15 0.08 −0.07 −0.11 0.55 −0.25 −0.05 0.50
NOAA 20CRv2 0.38 0.15 −0.21 0.18 0.14 0.23 0.19 −0.02 −0.20 0.56 −0.18 0.11 0.47
CFSR 0.33 0.12 0.10 0.19 0.37 0.21 0.19 0.11 −0.26 0.07 0.31 −0.08 0.15
Obs-raw −0.07 0.27 0.50
Obs-homogenized −0.09 0.35 0.32

soil moisture affects vegetation growth and drives changes in
surface characteristics (e.g. surface albedo and roughness).
These changes alter the partitioning of available energy and
thus regulate changes in Ta.

Figure 4 illustrates the partial relationships among the an-
nual anomalies in Ta and Rs, the precipitation frequency and
Ld. The results show that Ta is consistently positively corre-
lated with Rs (except over the Tibetan Plateau) and Ld; how-
ever, it is consistently negatively correlated with precipitation
frequency in the observations and the 12 reanalysis products
(Fig. 4). Based on the observations, the interannual varia-
tions in Ta are determined in part by precipitation frequency
and Ld in northeastern China and the northern part of north-
western China (Fig. 4). All of the reanalyses roughly capture
these factors over these regions, although they display differ-
ences in the relative magnitudes (Fig. 4). Specifically, ERA-
20CM, NOAA 20CRv2c, NOAA 20CRv2 and CFSR exhibit
comparable relationships of Ta with precipitation frequency
and Ld; however, MERRA, MERRA2, NCEP-R2, ERA-20C
and CERA-20C overestimate the relationship between Ta
and precipitation frequency, and ERA-Interim, JRA-55 and
NCEP-R1 overestimate the relationship of Ta with Ld over
these regions (Fig. 4).

Over the North China Plain and middle China, the interan-
nual variations in Ta are partly determined by Rs, precipita-
tion frequency and Ld (Fig. 4). The reanalyses roughly cap-
ture the effects of these three factors on Ta, although they dis-
play diverse combinations (Fig. 4). Among these combina-
tions, JRA-55, MERRA2, ERA-20CM and ERA-Interim are
comparable to the observations over these regions (Fig. 4).
Over southeastern China, the interannual variations in Ta are
primarily regulated by Ld, precipitation frequency and Rs
(Fig. 4). The reanalyses exhibit slightly overestimated rela-

tionships of Ta withRs and underestimated relationships with
precipitation frequency (Fig. 4).

Over the Tibetan Plateau, the interannual variations in Ta
are regulated by Rs and precipitation frequency (Fig. 4).
Most of the reanalyses roughly capture the combinations
of these factors but exhibit certain differences in the rela-
tive effects of Rs and precipitation frequency on Ta (Fig. 4).
MERRA, MERRA2, NOAA 20CRv2c and NOAA 20CRv2
overestimate the relationships of Ta with Rs over the Tibetan
Plateau (Fig. 4).

Overall, the spatial patterns of the simulated partial cor-
relation of Ta with Rs in the reanalysis products are sig-
nificantly correlated with those seen in the observations;
r = 0.13–0.35 (p < 0.05) for the NWP-like reanalyses, and
larger values of r = 0.24–0.41 (p < 0.05) are obtained for the
climate reanalyses. Moreover, the spatial patterns in the sen-
sitivity of Ta to Rs exhibit significant correlations (r = 0.12–
0.17, p < 0.05) for most of the climate reanalyses (Table 1).
Precipitation frequency displays the largest spatial correla-
tions (r = 0.16–0.43, p < 0.05) of the sensitivity of Ta with
these three relevant parameters in the reanalyses (Table 3).
Significant spatial correlations reflecting the relationship (in-
cluding the partial correlation and sensitivity) of Ta with Ld
are also found (Table 1).

3.4 Regional warming trend biases and their causes

3.4.1 All of China

From 1979 to 2010 over China, Ta exhibits strong warm-
ing trends of 0.37 ◦C decade−1 (p < 0.05) in the observations
and 0.22–0.48 ◦C decade−1 (p < 0.05) in the 12 reanalyses
(Figs. 5 and S2–S3 in the Supplement, Table 2). ERA-Interim
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(c) ERA−Interim (d) NCEP−R1 (e) MERRA

(f) JRA−55 (g) NCEP−R2 (h) MERRA2

(j) ERA−20CM (k) CERA−20C
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(i) ERA−20C

NWP−like reanalysis

Climate reanalysis

Figure 4. Composite map of partial correlation coefficients of the detrended surface air temperature (Ta, unit: ◦C) against surface incident
solar radiation (Rs), precipitation frequency (PF) and surface downward longwave radiation (Ld) during the period of 1979–2010 from
observations and the 12 reanalysis products. The marker “+” denotes the negative partial correlations of Ta with Rs over the Tibetan Plateau
in NCEP-R2, ERA-20C and ERA-20CM.

and JRA-55 display spatial correlations with the observations
(r = 0.47 and 0.54, p < 0.05) that are due at least partly to the
inclusion of some Ta observations, whereas NCEP-R2 and
ERA-20C display the worst performance (Fig. S3 in the Sup-
plement, Tables 1 and 3). Furthermore, approximately 87 %
of the observed trends in Ta over China can be explained by
the greenhouse effect (i.e. 65 % can be explained by the trend
in Ld), precipitation frequency (29 %) and Rs (−7 %, due
to the trend in radiative forcing of −1.1 W m−2 decade−1)
(Figs. S3–4 in the Supplement). The influence of the green-
house effect on the observed trends in Ta consists mainly of
the trends in the atmospheric water vapour (42 %) and the
cloud fraction (3 %) (Fig. S5 in the Supplement). Among the

reanalyses, over 90 % of the trend in Ta can be explained
by the greenhouse effect, precipitation frequency and Rs
(Figs. S4–6 in the Supplement). Specifically, ERA-Interim,
JRA-55, MERRA and MERRA2 display the best ability to
capture the contributions of the greenhouse effect (48 to
76 %), precipitation frequency (22 to 34 %) and Rs (−4 to
13 %) to the trend in Ta over China (Figs. S4 and S6). The
remaining NWP-like reanalyses (i.e. NCEP-R1 and NCEP-
R2) substantially overestimate the contribution of Rs to the
trend in Ta, whereas the climate reanalyses overestimate the
contribution from Ld (Figs. S4 and S6 in the Supplement).

We further quantify the contributions to the biases in
the trend in Ta made by those in Rs, Ld and precipitation
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Figure 5. (a, b) The observed trends in surface air temperature (Ta, unit: ◦C decade−1) and the simulated biases in the trends in Ta (unit:
◦C decade−1) during the period of 1979–2010 from (c) raw observations and (d–o) the 12 reanalysis products over China with respect to
the homogenized observations. The squares denote the original homogeneous time series, and the dots denote the adjusted homogeneous
time series. The probability distribution functions of all of the biases in the trends are shown as coloured histograms, and the black stairs
are integrated from the trend biases with a significance level of 0.05 (based on two-tailed Student’s t tests). The cyan and green stars in
(k–n) represent estimates of the biases in the trends outside the ensemble ranges whose locations are denoted by the black dots shown in
(k–n).

frequency among the 12 reanalyses over China (Figs. 6–
7). Over China, the overestimated Rs trends (by 0.00–
3.93 W m−2 decade−1; Figs. S8 and S13 in the Supplement)
increase the trends in Ta (by 0.02–0.16 ◦C decade−1; Fig. 7)
in the 12 reanalyses; the underestimated Ld trends (by
−0.25 to −1.61 W m−2 decade−1 for the NWP-like reanal-
yses; Figs. S10 and S15) decrease the trends in Ta (by −0.05
to −0.25 ◦C decade−1 for the NWP-like reanalyses; Fig. 7)
and the biases in the trends in precipitation frequency (by
approximately −1.5 days decade−1 for the NWP-like reanal-
yses and approximately 2.6 days decade−1 for the climate re-
analyses; Figs. S9 and S14 in the Supplement) decrease the
trends in Ta (by 0.01 to 0.05 ◦C decade−1 for the NWP-like

reanalyses and −0.01 to −0.06 ◦C decade−1 for the climate
reanalyses; Fig. 7). Together, these effects produce an under-
estimate in the trends in Ta on the order of 0.10 ◦C decade−1

in the reanalyses (Fig. 7 and Table 2).

3.4.2 Seven subregions

Averaged trends over large areas may mask regional differ-
ences that reflect diverse regional warming biases and their
causes (Figs. 5–7). The mean-adjusted spatial patterns of the
biases in the trends in Ta appear to be consistent among
the 12 reanalyses (Fig. S7 in the Supplement) and mimic
the spatial patterns in the overestimated Rs trends over the
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Figure 6. Composite map of the contributions (unit: ◦C decade−1) of the biases in the trends in three relevant parameters, surface incident
solar radiation (Rs, in red), surface downward longwave radiation (Ld, in green) and precipitation frequency (in blue) to the biases in the
trends in surface air temperature (Ta) during the study period of 1979–2010, as estimated using the 12 reanalysis products over China.

North China Plain, southern China and northeastern China
(Fig. S8 in the Supplement), given the spatial correlations
among these variables in most of the reanalyses (r = 0.11–
0.42, p < 0.05) (Figs. 6 and S7–S8 in the Supplement, Ta-
ble 3). However, the reanalyses still underestimate the trends
in Ta over most of the regions. The key reason for this un-
derestimation is the increase in precipitation frequency over
northwestern China, the Loess Plateau and middle China
seen in the NWP-like reanalyses and that seen over broader
regions in the climate reanalyses (Figs. 5–6 and S9 in the
Supplement). This relationship is reflected by their negative
spatial correlation, which has a maximum value of −0.62
(p < 0.05) for MERRA (Table 3). Moreover, the decrease in

Ld, which occurs due to the decreases in the atmospheric
water vapour and cloud fraction that occur in the NWP-like
reanalyses (Figs. S10–S12 in the Supplement), substantially
cancels the warming effect of the overestimation of Rs on
Ta over eastern China (Figs. 5 and S7 in the Supplement).
The opposite changes occur over southeastern China in the
climate reanalyses (Figs. 5 and S10 in the Supplement). The
effect of the changes in Ld is reflected by its spatial correla-
tions of up to 0.50 (p < 0.05) (Table 3).

The corresponding contributions to the biases in the Ta
trend are calculated from those in Rs, Ld and precipita-
tion frequency over the seven subregions of China (Figs. 6–
7). Over northern China, biases in the trend in Ta re-
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Figure 7. Contributions (unit: ◦C decade−1) of the biases in the trends in surface air temperatures (Ta) from three relevant parameters, surface
incident solar radiation (Rs, in brown), surface downward longwave radiation (Ld, in light blue) and precipitation frequency (PF, in deep
blue), during the study period of 1979–2010 from the 12 reanalysis products over China and its seven subregions.

sult primarily from those in precipitation frequency and Ld
(Figs. 6–7). Over northeastern China, the observations ex-
hibit an amplified warming of 0.41 ◦C decade−1 (p < 0.05;
Fig. 4 and Table 2). This warming is significantly un-
derestimated by NCEP-R1, JRA-55, NOAA 20CRv2 and
NOAA 20CRv2c (on the order of −0.15 ◦C decade−1) and
is overestimated by MERRA and CFSR (on the order of
0.2 ◦C decade−1) (Figs. 6–7). These biases in the trends in
Ta in the reanalysis are jointly explained by the warm-
ing (0.04–0.48 ◦C decade−1) induced by the underestimated
trends in precipitation frequency and the cooling (−0.04 to
−0.42 ◦C decade−1) induced by the underestimated trends in
Ld (Fig. 7).

Over northwestern China, the biases in the trend in pre-
cipitation frequency and Ld mainly explain the overesti-
mated warming in NCEP-R2 (by 0.22 ◦C decade−1) (Fig. 7).
The substantially underestimated trend in Ld induced by
the decrease in the atmospheric water vapour and cloud
fraction (Figs. S9–S12 and S16–17 in the Supplement)
lead to an underestimate of the warming in MERRA (by
−0.22 ◦C decade−1) (Fig. 7).

Most of the reanalyses display weakened warming over
the Tibetan Plateau and the Loess Plateau (Fig. 5 and S3,
Table 2). In particular, NCEP-R1 and NCEP-R2 fail to re-
produce the warming over the Tibetan Plateau, and MERRA
fails to reproduce the warming over the Loess Plateau (Fig. 5
and S3 in the Supplement, Table 2). The significant cooling
biases in the trends in Ta (by −0.02 to −0.31 ◦C decade−1)
over the Tibetan Plateau and the Loess Plateau result from
the underestimated trends in Ld and the overestimated trends
in precipitation frequency seen in most of the reanalyses
(Figs. 5–7 and S9–12 in the Supplement). These cooling bi-
ases are further induced by the underestimated trends in Rs
(Figs. 5–7 and S8 in the Supplement).

Over southern China, the biases in the trend in Ta are
regulated by the biases in the trends in Rs, Ld and precip-
itation frequency (Figs. 6–7). Over southeastern China, the
significantly overestimated trends in Ta (by 0.04, 0.02 and
0.17 ◦C decade−1, respectively) are induced by the overesti-
mated trends in Rs (by 4.25, 3.34 and 6.27 W m−2 decade−1,
respectively) seen in ERA-Interim, JRA-55 and CFSR
(Figs. 6–7 and S8 in the Supplement). The underestimated
trends in Ta are induced by the overestimated trends in pre-
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cipitation frequency and Ld in NCEP-R1, MERRA, ERA-
20CM, CERA-20C, NOAA 20CRv2 and NOAA 20CRv2c
(Figs. 6–7 and S9 in the Supplement).

Over middle China, the significantly overestimated trends
in Ta (by 0.04, 0.06, 0.11, 0.03, 0.11 and 0.14 ◦C decade−1,
respectively) are induced by the overestimated trends in Rs
(by 2.09, 1.50, 2.59, 1.20 and 4.81 W m−2 decade−1, re-
spectively) seen in ERA-Interim, JRA-55, ERA-20C, ERA-
20CM, CERA-20C and CFSR (Figs. 6–7 and S8 in the
Supplement). The overestimated trends in precipitation fre-
quency may lead to cooling in the trends in Ta in the reanaly-
ses, especially for MERRA (which reflects an induced bias in
the trend of−0.15 ◦C decade−1) over middle China (Figs. 6–
7 and S9 in the Supplement).

Due to the underestimated trends in the atmospheric water
vapour and the cloud fraction (Figs. S11–S12 in the Supple-
ment), the underestimation of Ld produces a cooling effect
on the trend in Ta (by −0.05 to −0.32 ◦C decade−1) in the
reanalyses over the North China Plain (Figs. 6–7 and S10 in
the Supplement). However, due to the lack of inclusion of
plausible trends in aerosol loading, the substantial increases
in Rs over the North China Plain (Fig. S8 in the Supplement)
have strong warming effects on the trends in Ta (by 0.01 to
0.21 ◦C decade−1) in the reanalyses (Figs. 6–7 and S8 in the
Supplement). The biases in the trends in precipitation fre-
quency (of approximately −2.5 days decade−1 for the NWP-
like reanalyses and approximately 1.5 days decade−1 for
some of the climate reanalyses) contribute some part of the
biases in the trends in Ta (approximately 0.05 ◦C decade−1

for the NWP-like reanalyses and −0.03 ◦C decade−1 for the
climate reanalyses).

Overall, the biases in the trends in Ta in the reanaly-
ses can be substantially explained by those in Ld, precip-
itation frequency and Rs, but this effect varies regionally
(Figs. 6–7). Over northern China, the biases in the trend
in Ta (which are on the order of −0.12 ◦C decade−1) re-
sult primarily from a combination of those in Ld (which
are on the order of −0.10 ◦C decade−1) and precipitation
frequency (which are on the order of 0.05 ◦C decade−1),
with relatively small contributions from Rs (which are on
the order of −0.03 ◦C decade−1). Over southern China,
the biases in the trend in Ta (which are on the order of
−0.07 ◦C decade−1) are caused by those in Rs (which are on
the order of 0.10 ◦C decade−1), Ld (which are on the order of
−0.08 ◦C decade−1) and precipitation frequency (which are
on the order of −0.06 ◦C decade−1) (Fig. S18 in the Supple-
ment).

3.5 Spatial linkages of biases in the warming trends in
the 12 reanalyses

We next integrate the relationships of the spatial patterns in
the biases in the trends in Ta with those in Rs, Ld and precip-
itation frequency over China in the 12 reanalyses (Fig. 8).
The results show that the biases in the trends in Ta show

significant correlations with Rs (r = 0.80, slope=0.06, p =
0.09), precipitation frequency (r =−0.83, slope=−0.04,
p = 0.02) and Ld (r = 0.77, slope= 0.10, p = 0.10) in the
12 reanalyses if information on these patterns is included.
When the spatial patterns of the biases in the trends in
these variables are not considered, the biases in the trends
in Ta show relatively small correlations with Rs (r = 0.32,
slope= 0.02, p > 0.1), precipitation frequency (r =−0.51,
slope=−0.02, p = 0.09) and Ld (r = 0.14, slope= 0.02,
p > 0.1) in the reanalyses (Fig. 8). Similar results are ob-
tained for the atmospheric water vapour (r = 0.71, p = 0.1)
and the cloud fraction (r =−0.74, p = 0.09) if their spatial
patterns are considered (Figs. S19 in the Supplement), and
this relationship involving the cloud fraction is very similar
to that associated withRs (Figs. 8 and S19). Within the subre-
gions of China, the biases in the trends in Ta show significant
correlations with Rs (r = 068 to 0.90, p < 0.1), precipitation
frequency (r =−0.55 to−0.94, p < 0.1) and Ld (r = 0.53 to
0.93, p < 0.1) when the spatial patterns in the reanalyses are
included (Fig. S20 in the Supplement). These results provide
a novel perspective that can be used to investigate the spatial
relationships between biases in the trends in Ta and relevant
quantities in reanalyses.

4 Discussion

In this section, we first examine the possible impacts of data
homogenization on the trends in Ta. The trends in Ta de-
rived from the original dataset are almost as high as those
from the homogenized dataset, especially over the North
China Plain and northwestern China (Fig. 5 and Table 2).
Homogenization primarily adjusts breakpoints in time series
(Wang, 2008), which occur mainly due to station relocation
and changes in instruments (Cao et al., 2016; Li et al., 2017;
Wang, 2014), and it helps to objectively depict trends in Ta,
thus permitting the assessment of the modelled trends in Ta
and its spatial patterns that are present in the reanalyses.

We found that the elevation differences between the mod-
els and the stations influence the biases in the trends in
Ta but cannot explain the spatial patterns in the biases in
the trends in Ta (average r = 0.11) (Fig. S21 in the Sup-
plement). Comparison of the models that use the same
grid (NOAA 20CRv2c vs. NOAA 20CRv2, MERRA vs.
MERRA2, NCEP-R1 vs. NCEP-R2 and ERA-20C vs. ERA-
20CM) shows that the one is correlated with elevation differ-
ences, but the other is not, which implies that this statistical
correlation does not have physical significance. Nevertheless,
the spatial patterns in the normalized trends in Ta (exclud-
ing the impacts of the absolute value of temperature on the
trends) are very close to those of the trends (Fig. S22 in the
Supplement), implying that the differences in the absolute
value of temperature have a neglected effect on trend biases
in Ta in reanalysis products.
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Figure 8. Spatial associations of the simulated biases in the trend in surface air temperature (Ta) versus three relevant parameters among
the 12 reanalysis products (solid lines indicate the NWP-like reanalyses, and dashed lines indicate the climate reanalyses). The probability
density functions (unit: %) of these biases in the trends are estimated from approximately 700 1◦× 1◦ grid cells that cover China. The
median values (coloured dots with error bars of spatial standard deviations) of the biases in the trends in Ta (unit: ◦C decade−1) in the 12
reanalyses are regressed onto those of (a) the surface incident solar radiation (Rs, unit: W m−2 decade−1), (b) precipitation frequency (unit:
days decade−1) and (c) the surface downward longwave radiation (Ld, unit: W m−2 decade−1) using the ordinary least-squares method
(OLS, denoted by the dashed grey lines) and the weighted total least-squares method (WTLS, denoted by the solid black lines). The 5–95 %
confidence intervals of the regressed slopes obtained using WTLS are shown as shading. The regressed correlations and slopes are shown as
grey and black text, respectively.

In the reanalyses, vegetation is only included as clima-
tological information, but the vegetation displays a growth
trend during the study period of 1979–2010 within China
(Fig. S23 in the Supplement). This discrepancy positively en-
larges the biases in the trends in Ta due to the vegetation cool-
ing effect (Zeng et al., 2017; Trigo et al., 2015). This effect
is reflected by the negative spatial correlation (r =−0.26,
p = 0.00) between the inverted trend in the normalized dif-
ference vegetation index and the biases in the trend in Ta
(Fig. S23 in the Supplement). The growth of vegetation re-
duces Ta by regulating surface roughness, surface conduc-
tivity, soil moisture and albedo to partition greater amounts
of available energy into latent heat fluxes, which leads to the
formation of more precipitation (Shen et al., 2015; Spracklen
et al., 2013). Thus, the inclusion of vegetation growth will
improve the simulation of trends and especially the spatial
pattern of Ta in the reanalyses through the incorporation of
more complete physical parameterizations (Li et al., 2005;
Dee and Todling, 2000; Trigo et al., 2015).

Due to their inclusion of surface air temperature obser-
vations, ERA-Interim and JRA-55 display high skill in re-
producing the observed patterns; they have near-zero means
(0.01 and 0.01 ◦C decade−1) and the smallest standard devia-
tions (0.16 and 0.15 ◦C decade−1) of the trend biases among
the 12 reanalysis products. However, pattern differences
of 37.8 % (standard deviation of trend bias/China-averaged
trend) are still evident (Figs. 5 and 8). Although it does

not incorporate surface air temperature observations, ERA-
20CM presents a pattern (with a mean of−0.04 ◦C decade−1

and a standard deviation of 0.15 ◦C decade−1; Figs. 5 and 8)
that is comparable to those of ERA-Interim and JRA-55 and
better than that of ERA-20C (mean of −0.08 ◦C decade−1

and standard deviation of 0.20 ◦C decade−1; Figs. 5 and
8), which uses the same forecast model as ERA-20CM.
These results imply that ensemble forecasting could be used
to meet important goals. The ensemble simulation tech-
nique used in ERA-20CM also displays advantages in that
it yields an improved simulated pattern of biases in the
trends in Rs (SD= 1.84 W m−2 decade−1, 171 %), precipi-
tation frequency (SD=2.78 days decade−1, 122 %) and Ld
(SD= 1.25 W m−2 decade−1, 82 %) (Fig. 8).

We consider the degree to which the ensemble assimila-
tion technique can improve the spatial patterns of the biases
in the trends in Ta in the reanalyses. We find that this tech-
nique can detect the biases in the trends in Ta over approx-
imately 12 % (8 %) of the grid cells in CERA-20C, which
incorporates 10 ensemble members (NOAA 20CR2vc and
NOAA 20CR2v employ 56 ensemble members) (Fig. 5l–n).
However, the biases in the trends in Ta over these grid cells
are not significant at a significance level of 0.05, according
to Student’s t test, implying that the ensemble assimilation
technique cannot explain the spatial pattern of the biases in
the trends in Ta identified in this study (in Fig. 5l–n).
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To provide a preliminary discussion of the improve-
ments in climate forecast models in reflecting patterns
in climate trends, we compare the spatial patterns of
the biases in the trends in Rs, precipitation frequency
and Ld because observations of these variables are
not included in the reanalyses. We find that the cli-
mate forecast models, i.e. ERA-20C, ERA-20CM, CERA-
20C, NOAA 20CRv2c and NOAA 20CRv2, display bet-
ter performance in reproducing the pattern of trends
in Rs (mean biases of 1.36 vs. 2.18 W m−2 decade−1;
SD of 2.04 vs. 2.71 W m−2 decade−1), precipitation fre-
quency (mean biases of 1.32 vs. −1.44 % decade−1;
SD of 3.57 vs. 6.14 % decade−1) and Ld (mean bi-
ases of 0.12 vs. −0.85 W m−2 decade−1; SD of 1.33
vs. 1.50 W m−2 decade−1) than the NWP-like models, i.e.
ERA-Interim, NCEP-R1, MERRA, JRA-55, NCEP-R2 and
MERRA2 (Fig. 8). In addition, because the SST boundary
condition evolves freely in CFSR, the patterns of biases in the
trends in Rs, precipitation frequency and Ld in CFSR differ
substantially from those in the other reanalyses.

We also consider whether the spatial pattern of biases
in the trend in Ta is altered by the atmospheric circulation
patterns simulated by the ERA-20CM ensemble. In ERA-
20CM, the atmospheric circulation patterns are influenced
by SSTs and sea ice and then partly mediate the influence
of global forcings on the trends in Ta. In ERA-20CM, the
probability distribution function of the biases in the trends in
Ta from outside the ensemble ranges incorporates that from
Student’s t test at a significance level of 0.05 (Fig. 5k). This
result has important implications in that (1) the climate vari-
ability in the ensembles under the different model realiza-
tions of SSTs and sea ice cover does not change the pattern
of the biases in the trends in Ta (Fig. 5k); moreover, (2) Stu-
dent’s t test exhibits a suitable ability to detect the signifi-
cance of the biases in the trends in Ta (Fig. 5k) when consid-
ering the effects of interannual variability on the trend.

Overall, producing global or regional reanalyses that ade-
quately reflect regional climate is challenging using the cur-
rent strategy, and further improvements are required. The re-
sults and discussion above indicate some potential but chal-
lenging approaches that can be used to maximize the signal
component corresponding to the regional climate in final re-
analyses and robustly narrow the uncertainties in trends.

1. MERRA2’s pioneering incorporation of time-varying
aerosol loadings provides a way of improving the rep-
resentation of regional temperature changes over re-
gions such as the North China Plain where the im-
pacts of aerosols on surface temperatures are significant.
Thus, we encourage research groups to include accurate
aerosol information and improve the skill of simulation
of the energy budget and partitioning, especially of re-
gional surface incident solar radiation, in other reanaly-
ses.

2. To improve regional climate modelling, forecast out-
put should be produced using a physical ensemble like
that employed in ERA-20CM to quantify the uncertain-
ties associated with the relevant parameterizations in
the reanalyses, due to the impossibility of optimizing
all of the biases. Meanwhile, careful ensemble design
would likely yield useful information for use in improv-
ing models, assimilation methods and the bias correc-
tion of observations by exploring the interdependency
among sources of errors. Such designs would undoubt-
edly have additional benefits for further development,
leading to the next generation of reanalyses.

3. To improve coupled land–atmospheric interactions, the
true dynamics of land cover and use should be incorpo-
rated. Moreover, the physical parameterizations should
be improved, including the responses of surface rough-
ness, surface conductivity and albedo to regional cli-
mate. These changes would represent an improvement
over the use of constant types and fractions of vegeta-
tion, as in ERA-Interim (Zhou and Wang, 2016b).

4. Given the implications of the spurious performance of
the freely evolving boundary conditions in CFSR, ho-
mogeneous and accurate records of SST and sea ice
should be produced.

Next-generation reanalyses, including both global and re-
gional reanalyses, will assimilate and analyse in situ observa-
tions, satellite radiance and other remote observations. In ad-
dition to short-term accuracy and long-term trends, they will
also focus on spatial patterns by incorporating or improving
accurate representations of land surface conditions and pro-
cesses within the coupled weather and climate Earth systems.
Thus, these reanalyses will advance the simulation of land–
atmosphere interactions to yield high skill in studies of re-
gional warming and the detection and attribution of regional
climate change using various datasets, which frequently in-
clude global and regional reanalyses (Zhou et al., 2018; Zhou
and Wang, 2016d; Herring et al., 2018; Trenberth et al., 2015;
Stott, 2016; Dai et al., 2017; Zhou and Wang, 2017b). Addi-
tionally, the uncertainties associated with regional warming
could be ascertained using physics ensembles with various
equiprobable realizations of boundary conditions.

5 Conclusions

The reanalyses display differences in Ta when compared to
the observations with a range of −10 to 10 ◦C over China.
Approximately 74 and 6 % of these differences can be ex-
plained by site-to-grid elevation differences and the filtering
error in the elevations used in the spectral models. These re-
sults imply fairly good skill in the simulation of the clima-
tology of Ta in the 12 reanalyses over China. Moreover, the
12 reanalyses roughly capture the interannual variability in
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Ta (median r =0.95). In the reanalyses, Ta displays a consis-
tently positive correlation with Rs and Ld and is negatively
correlated with precipitation frequency, as seen in observa-
tions, despite the evident spatial patterns in their magnitudes
over China.
Ta exhibits a strong warming trend of 0.37 ◦C decade−1

(p < 0.05) in the observations and 0.22–0.48 ◦C decade−1

(p < 0.05) in the 12 reanalyses over China. In the observa-
tions, approximately 87 % of the observed trend in Ta over
China can be explained by the greenhouse effect (i.e. 65 %
can be explained by the trend in Ld), precipitation frequency
(29 %) and Rs (−7 %, due to the trend in radiative forcing of
−1.1 W m−2 decade−1).

However, the biases in the trends in Ta seen in the re-
analyses relative to the observations display an evident spa-
tial pattern (mean=−0.16∼ 0.11 ◦C decade−1, SD= 0.15–
0.30 ◦C decade−1). The spatial patterns of the biases in the
trends in the values of Ta in the reanalyses are significantly
correlated with those in Rs (maximum r = 0.42, p < 0.05),
precipitation frequency (maximum r =−0.62, p < 0.05) and
Ld (maximum r = 0.50, p < 0.05). Over northern China,
the biases in the trends in Ta (which are on the order of
−0.12 ◦C decade−1) result primarily from a combination of
those in Ld (which are on the order of −0.10 ◦C decade−1)
and precipitation frequency (which are on the order of
0.05 ◦C decade−1), with relatively small contributions from
Rs (which are on the order of −0.03 ◦C decade−1). Over
southern China, the biases in the trends in Ta (which
are on the order of −0.07 ◦C decade−1) are regulated by
the biases in the trends in Rs (which are on the or-
der of 0.10 ◦C decade−1), Ld (which are on the order of
−0.08 ◦C decade−1) and precipitation frequency (which are
on the order of −0.06 ◦C decade−1).

If information on spatial patterns is included, the simu-
lated biases in the trends in Ta correlate well with those of
precipitation frequency, Rs and Ld in the reanalyses (r =
−0.83, 0.80 and 0.77; p < 0.1); similar results are obtained
for the atmospheric water vapour and the cloud fraction
(r = 0.71 and −0.74, p < 0.1). These results provide a novel
perspective that can be used to investigate the spatial rela-
tionships between the biases in the trends in Ta and the rel-
evant parameters among the 12 reanalyses. Therefore, im-
proving simulations of precipitation frequency and Rs helps
to maximize the signal component corresponding to the re-
gional climate. In addition, the analysis of Ta observations
helps to improve the performance of regional warming in
ERA-Interim and JRA-55. Incorporating vegetation dynam-
ics in reanalyses and the use of accurate aerosol information,
as in MERRA-2, would advance the modelling of regional
warming. The ensemble technique adopted in ERA-20CM, a
twentieth-century atmospheric model ensemble that does not
assimilate observations, significantly narrows the uncertain-
ties of regional warming in the reanalyses (standard devia-
tion= 0.15 ◦C decade−1).
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