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Abstract. Clouds play a key role in radiation and hence
O3 photochemistry by modulating photolysis rates and light-
dependent emissions of biogenic volatile organic compounds
(BVOCs). It is not well known, however, how much error in
O3 predictions can be directly attributed to error in cloud pre-
dictions. This study applies the Weather Research and Fore-
casting with Chemistry (WRF-Chem) model at 12 km hori-
zontal resolution with the Morrison microphysics and Grell
3-D cumulus parameterization to quantify uncertainties in
summertime surface O3 predictions associated with cloudi-
ness over the contiguous United States (CONUS). All model
simulations are driven by reanalysis of atmospheric data and
reinitialized every 2 days. In sensitivity simulations, cloud
fields used for photochemistry are corrected based on satel-
lite cloud retrievals. The results show that WRF-Chem pre-
dicts about 55 % of clouds in the right locations and generally
underpredicts cloud optical depths. These errors in cloud pre-
dictions can lead to up to 60 ppb of overestimation in hourly
surface O3 concentrations on some days. The average dif-
ference in summertime surface O3 concentrations derived
from the modeled clouds and satellite clouds ranges from
1 to 5 ppb for maximum daily 8 h average O3 (MDA8 O3)

over the CONUS. This represents up to ∼ 40 % of the total
MDA8 O3 bias under cloudy conditions in the tested model
version. Surface O3 concentrations are sensitive to cloud er-
rors mainly through the calculation of photolysis rates (for
∼ 80 %), and to a lesser extent to light-dependent BVOC
emissions. The sensitivity of surface O3 concentrations to
satellite-based cloud corrections is about 2 times larger in

VOC-limited than NOx-limited regimes. Our results suggest
that the benefits of accurate predictions of cloudiness would
be significant in VOC-limited regions, which are typical of
urban areas.

1 Introduction

Ozone (O3) is a secondary pollutant that is formed by chem-
ical reactions involving nitrogen oxides (NOx =NO+NO2)

and volatile organic compounds (VOCs) in the presence of
ultraviolet radiation. Because O3 is a harmful pollutant and
a greenhouse gas, there have been numerous efforts aimed at
improving O3 predictions in air quality models, i.e., through
a better characterization of the emissions of O3 precursors
(Brioude et al., 2013), more detailed chemical mechanisms
(Carter, 2010; Sarwar et al., 2013), more realistic lateral
boundary conditions (e.g., Tang et al., 2009), and improved
representation of meteorological fields with ensemble mod-
eling techniques (Bei et al., 2010; Zhang et al., 2007). A
comprehensive review of the current status and challenges
of air quality forecasting is given by Zhang et al. (2012). A
large O3 bias that still persists in most regional and global
models is one of the challenges (Brown-Steiner et al., 2015;
Fiore et al., 2009; Im et al., 2015; Lin et al., 2017; Travis
et al., 2016). The recent multi-model intercomparison study
by Im et al. (2015) indicates that over North America mod-
els tend to overestimate hourly surface O3 below 30 ppb by
15–25 % and to underestimate O3 levels above 60 ppb by up
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to ∼ 80 %. It is not quantitatively understood how much the
individual processes contribute to O3 biases. Among mete-
orological parameters, clouds can be one of the key factors
because they greatly modulate the ultraviolet radiation that
is critical for O3 formation. However, they remain one of
the largest sources of uncertainties in air quality modeling
as Dabberdt et al. (2004) pointed out a decade ago. Accurate
cloud predictions in numerical weather models are still chal-
lenging, and it has not yet been quantified how much errors
in cloud prediction impact surface O3 predictions.

As satellite cloud products have emerged, providing rea-
sonably accurate data with wide coverage and high temporal
resolutions in near-real time (e.g., Minnis et al., 2008), they
have been employed in various studies to quantify the effects
of clouds on actinic fluxes and/or photolysis rates (Mayer et
al., 1998; Ryu et al., 2017; Thiel et al., 2008). Clouds can
greatly reduce or enhance actinic flux below, above, and in-
side clouds, and these effects depend mainly on the cloud
optical properties. Ryu et al. (2017) used satellite cloud re-
trievals of cloud bottom and top heights and cloud optical
depth (COD) in a radiative transfer model and showed that
one can obtain fairly good (within ±10 %) vertical distribu-
tions of cloudy-sky actinic flux using satellite cloud proper-
ties. There are, however, only a limited number of studies that
have examined the impact of satellite-constrained clouds and
photolysis rates on O3 formation. Pour-Biazar et al. (2007)
and Tang et al. (2015) used satellite-observed clouds to cor-
rect photolysis rates in a three-dimensional chemistry trans-
port model and reported considerable improvement in sur-
face O3 simulations. Pour-Biazar et al. (2007) showed that
the difference in O3 due to the errors in cloud predictions
can be up to 60 ppb for a given pollution episode over the
southern US. Tang et al. (2015) showed that 1-month aver-
ages of 8 h surface O3 can differ by 2–3 ppb between the sim-
ulations using satellite-derived clouds and model-predicted
clouds over the southern US. These studies were performed
for rather short time periods (a week or a month) over limited
areas and provide motivation for a more systematic and com-
prehensive quantification of the importance of cloud errors
in O3 predictions in summertime and for various chemical
regimes.

In the present study, we use satellite-derived COD and
cloud boundaries to constrain radiation fields that impact
photochemistry, i.e., photolysis rates and light-dependent
BVOC emissions, in a three-dimensional chemistry trans-
port model (WRF-Chem). Our study targets the contigu-
ous United States (CONUS) and numerical simulations are
performed for June–September 2013. The WRF-simulated
clouds are first evaluated against the Geostationary Opera-
tional Environmental Satellite (GOES) data (Sect. 3). The
vertical profiles of NO2 photolysis rates are evaluated against
in situ airborne measurements during two field campaigns
(Sect. 4). The O3 biases arising from inaccurate cloud predic-
tions are quantified and discussed in light of the sensitivity of
O3 chemistry to COD (Sect. 5). Unlike the previously men-

tioned studies, here we separately quantify the contributions
of errors arising from changes in photolysis rates altered by
clouds vs. those arising from light-dependent biogenic VOC
(BVOC) emissions to the O3 biases. Conclusions and discus-
sion are given in Sect. 6.

2 Methodology

2.1 Satellite retrievals

The GOES retrievals were performed using the Satel-
lite ClOud and Radiation Property Retrieval System (Sat-
CORPS), which is an adaptation of the Minnis et al. (2011)
algorithms for application to imagers on all geostationary
weather satellites (Minnis et al., 2008) and on NOAA and
MetOp satellites (Minnis et al., 2016). For SatCORPS, the
algorithms of Minnis et al. (2011) were altered as described
by Minnis et al. (2010) using the low-cloud height estimation
method of Sun-Mack et al. (2014) and the severely rough-
ened hexagonal column optical model of Yang et al. (2008)
for ice cloud COD retrievals. This study uses a subset of
the hourly 8 km SatCORPS cloud retrievals from GOES
13 (GOES-East) and GOES 15 (GOES-West) for the North
American domain. The 8 km resolution is achieved by ana-
lyzing only every other 4 km pixel and line. Each pixel is con-
sidered to be either 100 % cloudy or 100 % clear. Of the va-
riety of cloud properties available, this study only uses cloud
bottom height, cloud top height, and COD. Uncertainties in
the cloud products are summarized by Ryu et al. (2017).

Images from coincident times were unavailable for the two
satellites: the GOES 13 and GOES 15 data are offset by
15 min. The GOES 13 data taken at UTC+ 45 min at every
hour were matched with the GOES 15 data at UTC+ 0 min.
The pixel-level retrievals were re-gridded to a 12 km reso-
lution to match the WRF-Chem domain (see Sect. 2.2) us-
ing the Earth System Modeling Framework (ESMF) software
and the nearest-neighbor interpolation. Because of the cover-
age difference between the two satellites, the data of the near-
est time from the two satellites (e.g., 18:45 UTC from GOES
13 and 19:00 UTC from GOES 15) are merged at 105◦W,
which is equidistant from the two sub-satellite longitudes.
Only daytime hours (09:00–23:00 and 00:00–04:00 UTC)
are used here.

2.2 WRF-Chem model simulations

The present study employs the WRF-Chem model version
3.6.1. with the updated photolysis scheme. A single domain
is used with a horizontal grid size of 12 km (Fig. 1). The
meteorological initial and boundary conditions are provided
by the NCEP FNL (Final) Operational Global Analysis data
with a horizontal resolution of 1◦, which are available every
6 h. The model is initialized at 00:00 UTC on 1 June 2013 and
spun up for the first 10 days in the control simulation (CNTR
simulation). The meteorological fields are re-initialized ev-
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Figure 1. Spatial distribution of each contingency category (see Table 2) between the WRF-generated clouds (CNTR simulation) and Sat-
CORPS GOES retrievals averaged over the whole study period.

ery 48 h at 06:00 UTC of a given day to avoid the growth
of model errors, and the model is run for 54 h. Here, the
first 6 h are allowed for spin-up and discarded in each run.
The model outputs for the period of 12:00 UTC on 11 June
2013 through 12:00 UTC on 1 October 2013 are used for the
analysis. As the goal of the study is to use and evaluate the
modeled clouds and their impact on O3 predictions, nudging
is not used. This is different from many previous air qual-
ity studies that nudged the meteorology and evaluated mod-
eled O3 with observations. The physics options used are the
Morrison two-moment scheme (Morrison et al., 2009) for the
microphysics, RRTMG scheme for longwave and shortwave
radiation (Iacono et al., 2008), MYNN 2.5 level turbulent ki-
netic energy (TKE) scheme for the boundary layer parame-
terization (Nakanishi and Niino, 2006), MYNN surface layer
scheme, Noah land surface model (Chen and Dudhia, 2001),
and Grell 3-D ensemble scheme (Grell and Devenyi, 2002)
for cumulus parameterization with radiation feedback. The
initial and boundary conditions for chemical species are ob-
tained from the Model for Ozone and Related Chemical Trac-
ers (MOZART) global simulation of trace gases and aerosols.
For each 2-day simulation, the chemical state of the atmo-
sphere at 06:00 UTC is obtained from that at 06:00 UTC of

the previous simulation. The MOZART-4 mechanism is used
for gas-phase chemistry as described in Knote et al. (2014),
and the Model for Simulating Aerosol Interaction and Chem-
istry (MOSAIC) aerosol module with four bins is used for
the aerosol chemistry. Anthropogenic gas and aerosol emis-
sions are adopted from the AQMEII project in which the
emissions were projected to 2010 from the NEI 2008 in-
ventory (Campbell et al., 2015). Since Travis et al. (2016)
reported that NEI NOx emissions are too high, we reduced
NOx emission from all anthropogenic sources by 40 % based
on their analysis. Note that the NOx and PAN from the lateral
boundaries are also reduced by 40 % in our study. Biomass
burning emissions are taken from the Fire Inventory from
NCAR (FINN) (Wiedinmyer et al., 2011). Model of Emis-
sions of Gases and Aerosols from Nature (MEGAN) (Guen-
ther et al., 2006) version 2.04 is used for BVOC emissions.
As performed in Travis et al. (2016) to better match isoprene
flux observations during the Studies of Emissions and At-
mospheric Composition, Clouds and Climate Coupling by
Regional Surveys (SEAC4RS) field campaign (Toon et al.,
2016), we reduced MEGAN isoprene emissions by 15 % over
the southeastern US. The photolysis rate calculations utilize
the newly implemented the tropospheric ultraviolet and visi-
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ble (TUV) option in the WRF-Chem model (Hodzic et al.,
2018). This new TUV option uses the updated cross sec-
tion and quantum yield data based on the latest stand-alone
TUV model version 5.3 and considers 156 wavelength bins
with the resolutions of 1–5 nm. The COD is calculated based
on the parameterization given in Chang et al. (1987), which
uses cloud liquid water and/or ice water contents and ef-
fective droplet radius (assumed to be 10 µm both for liq-
uid and ice droplets). To represent subgrid cloud overlaps,
a simple equation of Briegleb (1992) is used, i.e., the effec-
tive COD=COD0× (cloud fraction)1.5, where COD0 is the
COD that is calculated following Chang et al. (1987), and the
cloud fraction is determined based on the relative humidity in
a given grid box. According to Briegleb (1992), applying a
power of 1.5 to the cloud fraction is equivalent to the maxi-
mum random overlap.

In the present study, we performed two sets of simulations
that use WRF-generated clouds in the CNTR simulation and
the GOES clouds in the GOES simulation. The GOES sim-
ulations were conducted from 06:00 UTC on 11 June 2013
through 12:00 UTC on 1 October 2013. The initial chemistry
conditions in the GOES simulation are adopted from the out-
puts of the CNTR simulation at 06:00 UTC on 11 June 2013.
The satellite cloud retrievals are used only to correct photol-
ysis rate and photosynthetically active radiation (PAR) cal-
culations (i.e., only within the TUV model in WRF-Chem).
That is, the satellite cloud information is not linked to dy-
namics, microphysics, and atmospheric radiation. The value
of COD is linearly distributed through vertical grids from
the cloud bottom to the cloud top within the TUV model
as carried out in Ryu et al. (2017). This method is differ-
ent from the one used in Pour-Biazar et al. (2007) and Tang
et al. (2015) in which cloud bottom height used in their pho-
tolysis rate calculations is estimated from the meteorologi-
cal model rather than retrieved from the satellite. The use of
model estimates can lead to additional uncertainties in the
case of misplaced model clouds compared to observations.

In the present study, PAR calculated from the TUV model
is used for the BVOC emissions in MEGAN for all simu-
lations. This is different from the PAR conventionally used
in MEGAN, which is simply converted or scaled from the
downward shortwave radiation from the atmospheric radia-
tion scheme. In the CNTR (GOES) simulation, the WRF-
generated clouds (GOES clouds) are used for the PAR calcu-
lation within the TUV model.

To examine the impact of changes in BVOC emis-
sions on surface O3, another set of sensitivity simulations
(EMIS_BVOC simulation) is performed for 10 days (3–12
July 2013), which uses WRF-generated clouds for the PAR
calculation and BVOC emissions as in the CNTR simulation
but uses the GOES clouds for photolysis rate calculations as
in the GOES simulation. The description of the control and
sensitivity simulations is summarized in Table 1.

2.3 Observational data

2.3.1 Aircraft data from field campaigns

We evaluate the model performance using airborne measure-
ments made during two field campaigns in 2013, i.e., the NO-
MADSS (Nitrogen, Oxidants, Mercury and Aerosol Distri-
butions, Sources and Sinks) and the SEAC4RS campaigns.
The detailed description of the instrument and measurement
data is given in Ryu et al. (2017). The NOMADSS cam-
paign was conducted during 1 June–15 July 2013 mainly
over the southeastern US. We use 16 flight-day data at 1 min
time intervals for the analysis. Data with solar zenith angles
larger than 85◦ are not used. The fire plume data are filtered
out by excluding the data showing NO2 (>0.1 ppb) or CO
(>120 ppb) aloft at the 4–7 km level. Based on the GOES
cloud data, 68 % of flight data are characterized by clear
skies and the remaining data (32 %) had clouds in the ver-
tical column where the airplane was located. The SEAC4RS
campaign also targeted the southeastern US although the air-
plane sometimes flew over a larger region including Califor-
nia and the Midwestern US. The period used for the anal-
ysis is from 6 August through 23 September 2013, which
includes 21 flight days. The time intervals are also 1 min and
the data with large solar zenith angles (>85◦) and fire plumes
are filtered out. The fraction of data with clouds is 41 % for
SEAC4RS. It is noteworthy that SEAC4RS measurements
include large and thick clouds in some cases as a few of
the campaign goals are to identify the role of deep convec-
tion in redistributing pollutants and aerosol–cloud feedbacks,
whereas the clouds during NOMADSS were mostly broken
clouds.

2.3.2 Ground ozone data

The United States Environmental Protection Agency (EPA)
hourly O3 measurements are used for the analysis. To ex-
amine the sensitivity of O3 to COD in different chemical
regimes, the VOC- and NOx-limited regimes are identified
using the ratio of 1O3 / 1NOy , following Sillman and He
(2002). They reported that the NOx–VOC transition occurs
when 1O3 / 1NOy = 4–6. Thus, an EPA site is denoted
as a VOC-limited (NOx-limited) regime when the ratio is
less than 4 (greater than 6). Examples showing the ratio of
1O3 / 1NOy for several sites are given in the Supplement
(Fig. S1). Among 1299 EPA sites, 1062 are used for the anal-
ysis: 24 % of the sites are in the VOC-limited and 76 % in
NOx-limited regimes. The remaining 237 sites are not used
in the present study because those sites fall into the tran-
sitional zone, i.e., 1O3 / 1NOy = 4–6. Note that modeled
O3 and NOy in the CNTR simulation are used to determine
whether an EPA site is in the VOC-limited or NOx-limited
regime because NOy measurements are available for limited
sites.
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Table 1. Description of WRF-Chem simulations.

Photolysis rates PAR Analysis period

CNTR WRF clouds WRF clouds 06:00 UTC 11 June–12:00 UTC 1 October
GOES GOES clouds GOES clouds 06:00 UTC 11 June–12:00 UTC 1 October
EMIS_BVOC GOES clouds WRF clouds 06:00 UTC 3 July–12:00 UTC 13 July

Table 2. Contingency table for WRF simulation and GOES satellite
clouds. The number of data for each category is normalized by the
total number of data.

GOES satellite

Cloudy Clear

Cloudy A (hit) B (false alarm)
WRF 24.8 % 10.4 %

simulation Clear C (miss) D (correct negative)
19.8 % 44.9 %

3 Evaluation of WRF clouds with satellite
measurements

The model bias in the cloud spatial coverage is evaluated
using a 2× 2 contingency table (Table 2), where A and D
correspond to hit and correct negative events, respectively,
and B and C to false alarm and miss events, respectively.
Here, a threshold of 0.3 in hourly COD is used to distin-
guish between clear and cloudy sky as the lowest detec-
tion limit of satellite-retrieved COD over land is estimated
at 0.25 in Rossow and Schiffer (1999), and the use of 0.3
poses slightly stricter conditions for cloudiness. The agree-
ment index, which is defined as A+D (WRF correctly pre-
dicts cloudy or clear skies), is 69.7 % and the probability of
detection (POD) for clouds, A/(A+C), is 55.6 %. It is found
that the fraction of errors in missing clouds (C, 19.8 %) is
larger than that of predicting clouds that are not present in re-
ality (B, 10.4 %). The overall bias, (A+B)/(A+C), is 0.789
and this means that the WRF underestimates the frequency of
cloudy skies. Figure 1 shows the spatial distribution of each
contingency category over the CONUS averaged over the
whole study period. In general, the eastern US shows higher
cloud frequencies than the western US except for parts of
the Rocky Mountains and the Pacific Northwest. The largest
agreement index appears in central California where the sky
condition is mostly clear (Fig. 1d). In terms of errors, the
missing cloud rate has its highest frequency (20− 35 %) in
the Midwestern and northwestern US, while the highest fre-
quency of false alarm (20–30 %) occurs over the southeastern
US and southeastern Texas. The sum of categories B and C
can be found in Fig. S2. It should be noted that the contin-
gency categories are based on binary results of clear sky or
cloudy sky and so they do not provide quantitative compari-

Figure 2. Histogram of hourly cloud optical depth (COD) during
the daytime (16:00–23:00 UTC) over the CONUS (land only) from
the (a) WRF simulation (with the Morrison microphysics and the
Grell 3-D schemes) and (b) GOES satellite retrievals. CODs on the
x axis represent the mean values of the bins that are 0.3–1, 1–2, 2–
5, 5–10, 10–20, 20–30, 30–40, 40–50, 50–100, and 100–150. For a
fair comparison, the multilayered WRF clouds are not resolved into
cloud layers as this layering cannot be resolved by the satellite.

son of cloud optical properties, e.g., COD. For example, even
though the WRF model produces clouds in the right locations
(category A), the WRF CODs can differ from those retrieved
from satellite data.

Figure 2 quantitatively evaluates COD and vertical ex-
tent of clouds between the model and satellite retrievals.
The vertical extent of clouds is classified based on the
International Satellite Cloud Climatology Project (ISCCP)
definitions (Rossow and Schiffer, 1999), which are as fol-
lows: (i) low-level: cloud top height ≤ 3 km; (ii) mid-level:
3 km < cloud top height ≤ 6 km; (iii) high-level: cloud bot-
tom height > 6 km; and (iv) multilayered or deep convection:

www.atmos-chem-phys.net/18/7509/2018/ Atmos. Chem. Phys., 18, 7509–7525, 2018



7514 Y.-H. Ryu et al.: Quantifying errors in surface ozone predictions

cloud bottom height ≤ 6 km and cloud top height > 6 km.
Even though multiple cloud layers can be resolved in the
WRF model, these kinds of clouds are not resolved in the
satellite retrievals used in this study. Thus, for a fair compar-
ison, the multilayered clouds in the WRF model are not fur-
ther resolved into cloud layers. Note that the liquid and ice
water contents from cumulus clouds (parameterized clouds)
are included in the model COD calculations.

The frequency distribution of CODs does not have the
same shape in the model and observations. The WRF model
overpredicts very thin clouds with COD < 1 by a factor of
2, whereas the GOES retrievals show that the most abun-
dant clouds have CODs of 2–5. The majority of optically
very thin clouds from the WRF model correspond to high-
level cirrus clouds. This is consistent with the result of Cin-
tineo et al. (2013), showing that the Morrison microphysics
scheme produces too many upper-level clouds by comparing
GOES infrared brightness temperature with the WRF model.
Note that the optically-thin multilayered clouds very likely
contain cirrus clouds because their top height is greater than
6 km. The WRF model produces fewer clouds with COD > 1
than observed, and the discrepancy is most apparent for op-
tically very thick clouds (COD > 50). As a result, the model
COD mean and standard deviation are smaller than those for
the retrievals, which are 8.3 and 12.7, respectively, for the
WRF model, and 17.8 and 30.8, respectively, for the GOES
retrievals.

4 Impact of cloud errors on photolysis rates

Figure 3 compares the cloudy-sky-averaged vertical pro-
files of NO2 photolysis rates (JNO2) predicted by WRF-
Chem and measured during the NOMADSS (Fig. 3a) and
SEAC4RS (Fig. 3d) campaigns. The histograms of the ratio
of simulated JNO2 to that observed under cloudy conditions
are also shown for the CNTR and GOES simulations.

For both campaigns, the simulations with satellite clouds
(GOES simulations) generally show better agreement with
the observed JNO2 profiles than the CNTR simulations, es-
pecially above the boundary layer (above ∼ 2 km). The his-
tograms of the ratio of model JNO2 to observed JNO2 also
generally show a better performance in the GOES simulation
than in the CNTR simulation: the mean of the ratio is closer
to 1 in the GOES simulation than in the CNTR simulation for
SEAC4RS, the standard deviations are reduced in the GOES
simulation compared to those in the CNTR simulation for
both campaigns, the root-mean-square errors are lowered in
the GOES simulation compared to those in the CNTR sim-
ulation, and the correlation coefficients are closer to 1 in the
GOES simulation than in the CNTR simulation. For NO-
MADSS, the large bias in the highest ratio bin (> 2) is 24 %
less in the GOES simulation than in the CNTR simulation.
The reduction of the large bias (bin > 2) in the GOES sim-
ulation is more substantial for SEAC4RS and reaches 47 %.

These reductions are attributed to a better representation of
the below-cloud and inside-cloud conditions when satellite
clouds are used (not shown). This is because the number of
data influenced by thick clouds is larger in SEAC4RS than in
NOMADSS and the measurements in the presence of those
thick clouds were mostly made under below-cloud or inside-
cloud conditions.

5 Impact of cloud errors on ground level ozone

5.1 An example on 8 July 2013 in the Midwestern US

Figure 4 shows an example of how model errors in cloud
fields impact O3 predictions. This example includes thunder-
storm systems over the Midwestern US. The CNTR simula-
tion misses clouds or underpredicts CODs over metropolitan
Chicago and the region south of Lake Michigan. This results
in the overprediction of JNO2 by up to 0.54 min−1 (∼ 90 %)
compared to that computed using GOES clouds. The result-
ing changes in O3 concentration are regional and the O3 over-
prediction in the plume originating from the Chicago area is
up to 62 ppb (∼ 60 % of O3 in the CNTR simulation). As
a result of the cloud corrections, O3 in the GOES simula-
tion agrees better with observations in those regions (com-
pare Fig. 4d with e and g, h, i). The time series of O3 at the
three sites (marked in Fig. 4f) near Lake Michigan show par-
ticularly improved agreement with observations when satel-
lite clouds are used. The large O3 biases of 20.5 ppb at
11:00 CST at Chicago, IL; 19.2 ppb at 13:00 CST at La Porte,
IN; and 23.5 ppb at 16:00 CST at Holland, MI, in the CNTR
simulation are reduced to 1.7, 3.2 ppb, and −0.11 ppb in the
GOES simulation, respectively. It is also apparent that the
bias reduction in O3 shifts eastward (from Chicago, IL, to
Holland, MI) as the thunderstorm moves eastward during the
day. An important implication of this finding is that errors in
cloud predictions can lead to wrong O3 alerts in areas where
the model does not predict clouds well. For example, the
maximum daily 8 h average O3 (MDA8 O3) concentration
is 75.3 ppb at Holland, MI, in the CNTR simulation (Fig. 4i)
and this value exceeds the O3 standard (70 ppb for MDA8
O3). However, the MDA8 O3 concentration at the same lo-
cation is 63.0 ppb in the GOES simulation and 60.4 ppb in
the observation. Therefore, an O3 action alert would have
been issued if the CNTR simulation results were used, which
would result in a false alarm. The example shown here em-
phasizes the important roles of clouds in the Great Lakes re-
gion where large O3 biases have been reported previously
in air quality forecasts (e.g., Cleary et al., 2015). The cor-
rection of clouds both over the lakes and in the upstream re-
gions (mostly large cities located to the west-southwest of the
lakes) significantly reduces the O3 bias. It is also shown that
polluted air masses from the source regions can be advected
over the lakes (not shown). In this case in which precursor
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Figure 3. Model evaluation with 16 NOMADSS flights (top row) and with 21 SEAC4RS flights (bottom row). Note that only cloudy skies
are considered. The comparison is performed for the averaged vertical profiles of JNO2 for (a) NOMADSS and (d) SEAC4RS. The gray
horizontal lines indicate the standard deviations from the observations. Histogram of the ratio of JNO2 simulated by the model to JNO2
observed (b) in the CNTR simulation and (c) in the GOES simulation for NOMADSS. Panels (e) and (f) are the same as (b) and (c),
respectively, but for SEAC4RS.

levels can be high over the lakes, the presence of clouds over
the lakes can greatly affect O3 formation over the lakes.

In general, the regions exhibiting O3 differences between
the two simulations coincide with the regions where JNO2
values are different. More importantly, large O3 differences
are found near urban areas (e.g., Chicago, IL; downwind area
of Kansas City, MO; Omaha, NE, and its downwind area).
Even though the difference in COD or JNO2 is significant
in central Indiana, for example, the difference in O3 in the
region is relatively small compared to that near Lake Michi-
gan.

5.2 Maximum daily 8 h average O3

Figure 5 shows the maps of MDA8 O3 averaged over the
study period for the CNTR simulation and the difference in
MDA8 O3 between the CNTR and GOES simulations. The
spatial distribution of MDA8 O3 in the GOES simulation is
similar to that in the CNTR simulation (thus the GOES spa-
tial average is not shown here), but the O3 levels are con-
siderably different. In Fig. 5b, the Midwestern, eastern, and
northwestern US regions show the largest O3 differences, up
to 5.8 ppb, with lower O3 levels in the GOES simulation.

These regions generally belong to the contingency category
C (Midwestern and northwestern US) or category A (east-
ern US). However, the regions with negative differences, i.e.,
some places over the south-southeastern US, coincide with
the contingency category B. These differences are expected
and can be interpreted as follows: when the WRF model
misses clouds (clear sky in the CNTR simulation, category
C) or underestimates COD (as seen in Fig. 2), surface O3
is overestimated. When the WRF model generates clouds
that are not present in reality (clear sky in the satellite re-
trievals, category B), surface O3 is underestimated. It should
be noted that not all regions belonging to category B or C
have significant O3 differences. Interestingly, the regions ex-
hibiting significantly large O3 differences coincide with large
urban areas, e.g., Seattle, WA; Los Angeles, CA; Chicago,
IL; Cleveland, OH; Houston, TX; New Orleans, LA; Atlanta,
GA; and Miami, FL. The reasons for this result are explored
in Sect. 5.4 and 5.5.

The performance of the GOES simulation is found to be
better than that of the CNTR simulation compared to obser-
vations: for example, under cloudy conditions (COD > 20;
see Sect. 5.4 for the criterion), the root-mean-square error
of MDA8 O3 in the GOES (CNTR) simulation is 13.2 ppb
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Figure 4. Horizontal distributions of cloud optical depth at 13:00 CST (= 19:00 UTC) on 8 July 2013 (a) in the CNTR simulation and
(b) in the GOES simulation. Horizontal distributions of O3 at 13:00 CST on 8 July 2013 at the lowest model level (shaded) (d) in the
CNTR simulation and (e) in the GOES simulation. The circles indicate EPA ozone measurements. Panels (c) and (f) show the difference in
JNO2 and O3, respectively, between the simulations (i.e., CNTR simulation minus GOES simulation). (g–i) Time series of O3 at the square
(Chicago, IL), circle (La Porte, IN), and star (Holland, MI) that are marked in (f), respectively.

(16.9 ppb) and the correlation coefficient of MDA8 O3 in the
GOES (CNTR) simulation is 0.5 (0.4).

5.3 Relative contribution to O3 errors from photolysis
rates and BVOC emissions

It is expected that reduced BVOC emissions (especially iso-
prene) due to the presence of clouds can also decrease O3
formation. Figure 6 shows the spatial distributions of rel-
ative changes in PAR and isoprene emission between the
EMIS_BVOC and GOES simulations averaged over a 10-
day period. Because the WRF model tends to underestimate
COD or is not able to reproduce clouds in the Midwestern

and western US, PAR and biogenic isoprene emissions are
larger in the EMIS_BVOC simulation than in the GOES sim-
ulation. However, the model overestimates COD or produces
clouds that are not present in reality over the southeastern
US; thus PAR and biogenic isoprene emissions are lower
in the EMIS_BVOC simulation than in the GOES simula-
tion. The change in PAR (biogenic isoprene emissions) re-
sulting from the difference in cloud fields between the WRF
model and satellite retrievals is up to ±30− 40 % (±25 %).
Figure 6d shows the O3 difference between EMIS_BVOC
and GOES simulations relative to the O3 difference between
CNTR and GOES simulations (Fig. 6c). It is seen that the
contribution of changes in BVOC emissions is considerable
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Figure 5. (a) Spatial distribution of maximum daily 8 h average O3
(MDA8 O3) at the lowest model level averaged over the whole anal-
ysis period in the CNTR simulation. (b) Difference in MDA8 O3 at
the lowest model level between the control and GOES simulations
(i.e., CNTR minus GOES).

only for some regions and it ranges from ∼ 10 to 40%. The
average contribution of changes in BVOC emissions over
land is∼ 20 % compared to changes of BVOC emissions plus
photolysis rates using GOES satellite clouds. The contribu-
tion of BVOC emissions is larger (∼ 40%) in urban areas
over the southeast (specifically in Charlotte, NC). The dif-
ference in O3 in Charlotte, NC, resulting from changes in
BVOC emissions is about 1.5 ppb and that from changes in
both photolysis rates and BVOC emissions is about 3.5 ppb.
In some regions, such as the Midwest, western Pennsylva-
nia, and central New York, the effect of BVOC emissions is
negligible.

5.4 Cloud effects on ozone bias in VOC- and
NOx-limited regimes

In this section, we examine the effects of clouds on O3 in
VOC-limited and NOx-limited regimes in order to under-
stand the reasons for a stronger O3 response to cloud cor-
rections in urban areas than in the remote regions. Figure
7 shows how cloud corrections affect O3 errors in different
regimes. Here, MDA8 O3 is used to compute the model O3
bias (simulation minus observation). Figure 7a and b show
the probability density functions of the model O3 bias for
the CNTR and GOES simulations, respectively, at all ground
sites experiencing considerably thick (COD > 20) clouds. In
this example, an EPA site is considered under cloudy-sky
conditions when hourly COD greater than the chosen thresh-
old (here, 20) is present at the site for at least 4 h within
the 8 h time window on a given day. The decrease in the
O3 bias for the VOC-limited regime is significant, and the
difference in median values between the two simulations is
5.2 ppb. The decrease in O3 bias for NOx-limited regimes
(2.7 ppb) is about 2 times smaller than that for the VOC-
limited regime. An important result is that the frequency of
very large biases (e.g., greater than 20 ppb) is substantially
reduced when cloud fields are corrected, especially for the
VOC-limited regime. This implies that more accurate cloud
predictions ultimately improve the accuracy of O3 alert pre-
dictions, especially in polluted urban areas.

Figure 7c shows the change in median values of MDA8
O3 bias for a range of COD thresholds. We find that the
O3 bias increases with increasing cloudiness in the CNTR
simulation. As previously mentioned, the O3 bias is gener-
ally larger for VOC-limited regimes than for NOx-limited
regimes. When the radiation fields are corrected with satel-
lite clouds, the model O3 bias is considerably reduced (but
not zero). In addition, the O3 bias in the GOES simulation
does not increase as much as that in the CNTR simulation
when cloudiness increases. This implies that there are other
sources of O3 biases in the GOES simulation, which are not
likely associated with cloudiness. The other error sources can
be precursor emissions, mixing or transport, and deposition.
Figure 7d compares the median values of MDA8 O3 bias be-
tween the two simulations (CNTR minus GOES) and shows
that the difference in MDA8 O3 between the two simula-
tions clearly increases as the COD threshold increases and
that the effect of cloud correction is larger in VOC-limited
than in NOx-limited regimes. The reduced O3 bias as a result
of cloud corrections ranges from 1 to 5 ppb depending on
CODs and chemistry regimes. This represents up to ∼ 40 %
of the total O3 bias under cloudy conditions in the current
model version (e.g., 5.2 of 12.6 ppb for COD threshold of
20 in VOC-limited regimes). Note that the results for the
sites in the transitional zone (the slope of 1O3 / 1NOy is
4–6) showed that the effects of cloud in the transitional zone
are intermediate, that is, larger than those for NOx-limited
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Figure 6. Spatial distributions of (a) PAR change and (b) isoprene emission change from biogenic sources between EMIS_BVOC and
GOES simulations, (EMIS_BVOC–GOES)/GOES, averaged over the period of 3–12 July 2013. (c) Difference in O3 between the CNTR and
GOES simulations. (d) Ratio of O3 difference between EMIS_BVOC and GOES simulations to O3 difference between CNTR and GOES
simulations, i.e., 1O3 (EMIS_BVOC–GOES) / 1O3 (CNTR–GOES). Note that the grids that have considerable O3 difference between
CNTR and GOES simulations (> 1 ppb) are depicted in (d).

regimes but smaller than those for VOC-limited regimes (not
shown).

We performed additional analysis by dividing VOC- and
NOx-limited sites into groups that have similar ranges of
peak MDA8 O3 concentration during the period of June–
September 2013 (Fig. S3). All sites are grouped into bins
with a peak value of MDA8 O3 ranging from larger than
75, 70–75, 65–70, 60–65 ppb, to smaller than 60 ppb. The
maximum reduction in O3 bias due to cloud corrections is
obtained for the VOC-limited sites with a peak MDA8 O3
of 65–70 ppb and reaches ∼ 8 ppb. The maximum reduction
for NOx-limited sites, however, is ∼ 4 ppb and found for the
sites with a peak MDA8 O3 of 70–75 ppb. Although the de-
gree of the O3 bias reduction varies somewhat among the
bins for a given ozone regime, the effects of cloud correction
on O3 bias reduction remain larger in VOC-limited regimes
than NOx-limited regimes.

We examine the O3 bias over the southeastern US where
large overpredictions at the surface have been reported (e.g.,
Travis et al., 2016) in the Supplement. It is found that a con-
siderable portion of O3 bias is attributable to inaccurate cloud
predictions over the southeastern US, but the degree of the
effects of clouds is smaller than that over the CONUS as a
whole (Fig. S4). The maximum reduction in O3 bias due to
inaccurate cloud predictions is 4.5 ppb over the southeastern
US and 5.3 ppb over the CONUS. Still, large O3 biases of
∼ 11 ppb are present over the southeastern US (compared to
those of 6–9 ppb over the CONUS) even though the clouds
and radiation fields that are relevant to photochemistry are
corrected. This result implies that errors resulting from other
processes exist and are responsible for the surface O3 over-
predictions over the southeastern US. More in-depth studies
that find and quantify errors are therefore required to better
predict the O3 over the southeastern US as well as CONUS.

Atmos. Chem. Phys., 18, 7509–7525, 2018 www.atmos-chem-phys.net/18/7509/2018/



Y.-H. Ryu et al.: Quantifying errors in surface ozone predictions 7519

Figure 7. (a) Probability density function of maximum daily 8 h average (MDA8) O3 bias (model value minus observation value) for the
VOC-limited regime under cloudy-sky conditions defined with a COD threshold of 20. (b) Same as (a), but for the NOx -limited regime.
(c) Median values of MDA8 O3 bias with respect to COD threshold in the CNTR simulation (solid lines with cross marks) and in the GOES
simulation (dashed line with triangles) for VOC-limited (purple color) and NOx -limited regimes (green color). (d) Difference in median
values of MDA8 O3 bias between the two simulations with respect to COD threshold (i.e., CNTR minus GOES).

Figure 8. (a) Net chemical production of O3, (b) OH concentration, and (c) HO2 concentration with variations of cloud optical depth for
the VOC-limited regime. The black line indicates the median, and cyan shading indicates the 25th and 75th percentiles. Similar variables are
shown for the NOx -limited regimes (d–f).
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Table 3. Sensitivity coefficient of O3 to JNO2, i.e.,
dln(O3) / dln(JNO2). The values of dln(O3) / dln(JNO2) for
the period of 09:00–13:00 LST are averages over only the CONUS
EPA stations that have monotonically increasing O3 concentrations
with time.

Cloudy sky Clear
(5 < COD < 20) sky

VOC limited 0.59 1.27
NOx limited 0.35 0.77

5.5 Ozone formation sensitivity to changes in
photolysis rates

The difference in O3 sensitivity to changes in photolysis rates
(resulting from the presence of clouds) in different regimes
is determined by calculating dln(O3) / dln(JNO2) ratios as
in Kleinman (1991). Table 3 lists those sensitivity coeffi-
cients of O3 to JNO2 and shows that O3 is more sensitive
to JNO2 in VOC-limited than in NOx-limited regimes, being
1.69 times larger under cloudy-sky conditions and 1.65 times
greater under clear-sky conditions. Similar sensitivities were
reported for OH by Berresheim et al. (2003) with the sen-
sitivity of OH to JO1D, dln(OH) / dln(JO1D), of 0.8 at high
NO2 levels (∼ 10 ppb) and 0.68 at low to moderate NO2 lev-
els (∼ 1 ppb). The corresponding sensitivities from our study
are 1.1 for VOC-limited regimes and 0.66 for NOx-limited
regimes under clear-sky conditions. Similar results are also
found for the net chemical production of O3 and OH concen-
tration, revealing stronger responses to changes in cloudiness
in VOC-limited regimes than NOx-limited regimes (Fig. 8).
It is interesting to note that OH and HO2 have local maxima
at CODs between 2 and 5. As shown in Ryu et al. (2017),
the enhancement of actinic flux at the surface due to opti-
cally thin clouds (CODs < 5) is considerable for high-level
clouds, i.e., cirrus. The local maxima, therefore, likely result
from the fact that the GOES clouds have the largest portion
of cirrus for CODs of 2–5 as seen in Fig. 2b. Figure 8 also
shows that the variation (defined by 25 and 75 percentiles) of
net chemical production of O3 with respect to COD is much
larger in VOC-limited conditions. This result suggests that
predicting O3 under cloudy conditions is likely more diffi-
cult in VOC-limited than in NOx-limited regimes. It is also
noticeable that the HO2 radical concentration remains rela-
tively high in NOx-limited regimes even under cloudy con-
ditions compared to the VOC-limited regimes. Note that the
results of WRF-Chem here include the effect of both photol-
ysis rates and BVOC emissions.

A simplified box model (BOXMOX; Knote et al., 2015)
simulation using the same chemical mechanism (MOZART-
4) as in WRF-Chem was performed to better understand
O3 sensitivity to changing cloudiness in different chemistry
regimes. The emission rates for the VOC-limited (NOx-
limited) regime are those of the Chicago urban (rural) area in

Figure 9. Results of box modeling for production and loss rates
of ROx (=OH+HO2+RO2) radicals. “Others” in the legend in-
dicates the photolysis of VOCs and reactions between alkenes and
O3. The value of 1 of normalized Jvals on the x axis indicates the
photolysis rates for clear-sky conditions.

the WRF-Chem simulation. The initial conditions are taken
from the CNTR simulation at 09:00 CST on 7 July 2013
in the Chicago suburban area for both regimes. Dry de-
position is not considered. Photolysis rates for all species
that are photodissociable are varied from clear- to cloudy-
sky conditions with up to 80 % reduction. The 80 % reduc-
tion roughly corresponds to COD of 35 (not shown). The
box model is integrated for 3 h and photolysis rates are kept
constant during the simulation (i.e., no diurnal variations).
The box model results are found to be consistent with the
results from the WRF-Chem simulations: the variations of
O3 and OH with respect to decreasing photolysis rates are
larger in the VOC-limited regime than in the NOx-limited
regime (Fig. S5). Note that the net chemical production
of O3 obtained from the box model results also shows a
larger sensitivity to cloudiness in VOC-limited regimes than
in NOx-limited regimes, which is similar to Fig. 8a and d
(not shown). Figure 9 shows production and loss terms of
ROx (=OH+HO2+RO2) radicals with variations in pho-
tolysis rates for VOC-limited and NOx-limited regimes. In
both regimes, the decreased sunlight due to clouds reduces
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OH formation by photodissociation of O3 (primary source of
OH). The larger sensitivity of OH radicals to COD in VOC-
limited regimes as seen in Fig. 8 is associated with the loss
of OH by the radical termination reaction between OH and
NO2 under NOx-rich conditions, which leads to the large de-
crease in OH (Fig. 9a). However, in NOx-limited regimes, the
radical termination reactions are the radical–radical reactions
(Fig. 9b). In this regime, OH mainly reacts with VOCs and
propagates through radical cycles by producing HO2 / RO2
radicals, rather than being terminated by the reaction with
NO2. Given that the reaction between NO and HO2 becomes
the largest source of OH budget (secondary source of OH) at
an NOx concentration of ∼ 1 ppb (Ehhalt and Rohrer, 2000;
Eisele et al., 1997), OH can be relatively less sensitive to
the changes in radiation. Note that the mean daytime NOx

concentration over the CONUS in NOx-limited regimes it is
1.2 ppb and that in VOC-limited regimes is 6.7 ppb for this
study period. Another attribute is a greater contribution of
H2O2 photodissociation to the production of ROx in NOx-
limited regimes than that of HNO3, which is negligible. Un-
like the radical terminated in VOC-limited conditions, a non-
negligible amount of terminated radicals can be recycled in
the NOx-limited regime.

6 Sensitivity of cloud optical depth and O3 to
microphysics and convective schemes

It should be emphasized that our study was performed using
a specific representation of the cloud microphysics by Mor-
rison et al. (2009) and cumulus parameterization (Grell and
Devenyi, 2002). To test the robustness of our results with re-
gard to the representation of clouds, another microphysics
scheme, the Thompson scheme (Thompson et al., 2008), is
employed for a 10-day (3 July–12 July 2013) sensitivity sim-
ulation. The COD comparison in Fig. S6 shows that with
the Thompson scheme the model predicts fewer clouds for
all ranges of CODs compared to GOES retrievals, except for
the very thin ones (COD < 1) in which the number of those
clouds is still overpredicted as seen in the simulation with
the Morrison scheme. Compared to the Morrison scheme,
the Thompson scheme produces significantly less high-level
(cirrus) clouds. This is also consistent with the findings of
Cintineo et al. (2013). Despite this difference, the shape of
the COD distribution from the two microphysics schemes is
rather similar.

The MDA8 O3 bias with the Thompson scheme is eval-
uated (Fig. S7) and compared to that of the Morrison
scheme for the same period. Under the conditions of COD
greater than 20, for example, the baseline simulation with
the Thompson scheme (that uses model-generated clouds)
shows that a median bias (14.79 ppb) is a bit smaller than
that with the Morrison scheme (16.22 ppb) for that period in
VOC-limited regimes. In the sensitivity simulation with the
Thompson scheme that uses GOES satellite clouds for pho-

tochemistry, the median bias is reduced by 5.45 ppb (∼ 37%,
Fig. S7a) in VOC-limited regimes and by 2.06 ppb (∼ 20%,
Fig. S7c) in NOx-limited regimes, which is consistent with
the results of our base simulation. The degree of the effects
of cloud correction in the sensitivity simulations with the
Thompson scheme, ranging from 0.5 to 5.5 ppb, is similar to
that found in our base simulation with the Morrison scheme.
Therefore, the general conclusions remain the same: i.e., er-
rors in O3 predictions resulting from errors in cloud predic-
tions are considerable (up to ∼ 5 ppb on average) and the ef-
fects of cloud corrections are larger in VOC-limited regimes
than in NOx-limited regimes.

To estimate the sensitivity of our results to cumulus param-
eterization schemes, sensitivity simulations with the Grell–
Freitas scheme (Grell and Freitas, 2014) are performed. As
performed for the microphysics scheme, a period of 10 days
(3–12 July 2013) was considered. In Fig. S8, the histograms
of CODs obtained for the 10-day period from the Grell–
Freitas scheme and from the Grell 3-D scheme show that the
distributions of CODs are in general similar to each other.
The Grell–Freitas scheme tends to produce fewer clouds with
small or moderate CODs (Fig. S8). As shown in Fig. S9,
the degree of cloud correction in reducing O3 bias is larger
in VOC-limited regimes than in NOx-limited regimes in the
simulation with the Grell–Freitas scheme, and thus the con-
clusions originally drawn remain unchanged.

7 Conclusions and discussion

We performed quantitative analyses of the WRF-Chem
model mesoscale (12 km) simulations to determine how
much errors in cloud predictions contribute to errors in sur-
face O3 predictions during summertime over the CONUS.
Clouds were generated using the Morrison microphysics and
Grell 3-D cumulus parameterization schemes. It is found that
the WRF-Chem model is able to generate roughly 55 % of
the clouds in the right locations by comparing to satellite
clouds. A quantitative comparison of COD shows that the
WRF-Chem model predicts too many thin cirrus clouds with
CODs less than 1, and also considerably underpredicts the
optical depths for the majority of cloud systems.

The errors in cloud predictions can lead to large hourly
O3 biases of up to 60 ppb, for example, for specific cases
in which the model misses deep convective clouds that are
present in reality. On average, the errors in MDA8 O3 of
1–5 ppb are found to be attributable to errors in cloud pre-
dictions under cloudy-sky conditions. We separately quan-
tify the contribution of changes in photolysis rates and emis-
sions of light-dependent BVOCs to cloud-related errors in
surface O3. The contribution of photolysis rates to surface
O3 is larger (∼ 80 % on average) than that of BVOC emis-
sions. The contribution of BVOC emissions to O3 can be-
come important (∼ 40 %) in the VOC-limited regimes in
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which BVOC emissions are large (i.e., cities of the south-
eastern US).

The effects of cloud corrections are more impactful in
VOC-limited (or high-NOx) than in NOx-limited (or low-
NOx) regimes. The sensitivity of O3 with respect to COD
is about 2 times larger in VOC-limited than in NOx-limited
regimes. This finding is consistent with the box modeling re-
sults that were performed for typical urban and rural condi-
tions under varying photolysis rates. The production of rad-
icals (OH, HO2, and RO2) decreases with decreasing pho-
tolysis rates in the presence of clouds. The primary reason
for the larger sensitivity of O3 formation to clouds in VOC-
limited regimes is that the loss of OH is much stronger in
VOC-limited regimes due to the reaction with NO2. Thus,
OH cannot readily propagate through the radical cycles. In
NOx-limited regimes, the radicals terminated from the rad-
ical cycles are mostly HO2 and RO2 rather than OH. Thus,
OH can remain in the cycles and continue to produce HO2
and RO2 by reacting with VOCs before termination. The in-
terconversion of HO2 to OH is the dominant process in NOx-
limited regimes, and therefore OH and O3 formations are less
sensitive to changes in radiation.

We showed that considerable reduction in O3 bias is
achieved by correcting cloud-related radiation fields; how-
ever, O3 is still overpredicted by the WRF-Chem model. The
remaining bias likely results from other processes involved in
the O3 life cycle such as precursor emissions from both an-
thropogenic and biogenic sources, transport, turbulent mix-
ing, and dry deposition, for which quantitative assessment is
beyond the scope of this study.

One should keep in mind that the quantitative estimate of
the O3 bias related to the cloud effects on radiation as re-
ported in this study could be sensitive to several factors. In
particular, this study is based on a particular configuration
of the WRF-Chem model with regard to the radiation, mi-
crophysics, cumulus, boundary layer parameterization, and
the chemistry scheme. We have tested the sensitivity of our
results to the choice of microphysics and cumulus parameter-
ization schemes, and have shown that MDA8 O3 biases are
reduced by up to ∼ 5 ppb with the satellite cloud corrections
in the simulations with the different microphysics and cumu-
lus parameterization schemes, which is consistent with the
results found in our base simulations.

This study suggests that accurate cloud predictions
through data assimilation or cloud mask corrections with
near-real-time satellite cloud data would improve the accu-
racy of O3 predictions and that the benefit is expected to
be greater in VOC-limited than in NOx-limited regimes. It
should be noted that our estimates are based on WRF-Chem
simulations that use initial and boundary conditions from
meteorological reanalysis data, which is an improved esti-
mate of the meteorological state compared to forecast data,
and thus the reduction of errors in O3 predictions could be
even greater in a forecasting setting. From the perspective of
the O3 forecast, our study indicates that there is a need for

an enhanced understanding of the evolution of errors in O3
forecasts associated with errors in cloud forecasts, and for
optimizing the use of meteorological forecasts to allow more
accurate near-term O3 predictions. The present study corrects
cloud fields in WRF using only satellite clouds for radiation
that is relevant to photochemistry, and those cloud correc-
tions do not affect other meteorological variables such as sur-
face temperature, wind, humidity, boundary layer height, etc.
In a future study, we plan to examine the effects of satellite
cloud assimilation on near-term O3 forecasts using enhanced
forecasts such as the Rapid Refresh products from NOAA
(Benjamin et al., 2016) that take into account cloud data as-
similation to derive meteorology. Rapid Refresh uses satellite
cloud products as well as cloud observations from the ground
and considers the thermodynamic balance between tempera-
ture and humidity due to the presence of clouds. Thus, this
will allow the investigation of the effects of cloud assimila-
tion on O3 forecasts not only through changes in radiation
for photochemistry but also through changes in meteorolog-
ical variables.
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SEAC4RS are available at https://www-air.larc.nasa.gov/
cgi-bin/ArcView/seac4rs, and those for NOMADSS are
available at http://data.eol.ucar.edu/master_list/?project=SAS.
The model codes and simulation data used in this study
can be obtained from the authors upon request. The GOES
cloud retrievals are available at https://satcorps.larc.nasa.gov
or can be found in https://search.earthdata.nasa.gov/
with keywords of CER_GEO_Ed4_GOE13_NH_V01
for GOES13 and CER_GEO_Ed4_GOE15_NH_V01 for
GOES15. The EPA ozone data can be downloaded at
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