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S1 Additional detail on study methodology

S1.1 Details on the CO2 initial condition and model spin-up

We spin up CO2 mixing ratios in the PCTM model using outputs from NOAA’s CarbonTracker
product (Peters et al., 2007). CarbonTracker produces CO2 fluxes and atmospheric mole frac-
tions that are optimized to match available in situ CO2 observations. Our goal is to spin
up CO2 mixing ratios within PCTM in a fashion that is both consistent with CarbonTracker
and with the PCTM model grid. To this end, we initialize CO2 simulations on 1 Jan., 2009.
We average estimated global CO2 mole fractions from CarbonTracker by hemisphere and by
model vertical level. We then use these averages as the CO2 initial condition in PCTM for
1 Jan., 2009. Subsequently, we run PCTM forward using CarbonTracker fluxes until 1 Sept.,
2014 when the model selection simulations begin. We continue these PCTM simulations past
1 Sept., 2014 using a surface flux of zero. These simulations become the spin-up modeled CO2,
and we subtract these spin-up mole fractions from the OCO-2 retrievals (z in Eq. S2). The
resulting vector (z) represents the change in CO2 mole fractions due to fluxes that occurred
after 1 Sept., 2014.

S1.2 Additional detail on the CO2 flux patterns used in model selection

This section provides additional detail on the terrestrial biosphere models (TBMs) and vege-
tation indices that are used in the model selection experiments. These TBMs and vegetation
indices are used as the input fluxes in the PCTM model. We generate modeled XCO2 total
columns using these PCTM outputs, and the modeled XCO2 total columns become the predic-
tor variables in the model selection experiments (Eq. S1). Note that the multiple regression
will scale the magnitude of the TBMs and vegetation indices in each region and each month
to best match the observations (Eq. S2). As a result of this setup, the overall magnitude of
each TBM and of each vegetation index does not affect the model selection results. Rather,
this study utilizes the spatial and temporal patterns in the TBMs and vegetation indices.

We include four TBMs from the recent MsTMIP project (Huntzinger et al., 2013). The
selected TBMs have very different space-time patterns and therefore sample a wide range of
plausible flux patterns. These TBMs include the Dynamic Land Ecosystem Model (DLEM;
e.g., Tian et al., 2011), the Lund-Potsdam-Jena Model Wald Schnee und Landschaft version
(LPJ; e.g., Sitch et al., 2003), the Global Terrestrial Ecosystem Carbon Model (GTEC; e.g.,
King et al., 1997), and the Simple Biosphere Model with the Carnegie-Ames-Stanford Approach
(SIBCASA; e.g., Schaefer et al., 2008). The original MsTMIP model outputs have a spatial
resolution of 0.5◦ latitude by 0.5◦ longitude and a 3-hourly temporal resolution. We regrid the
fluxes to the PCTM model grid (1◦ latitude by 1.25◦ longitude) and input the fluxes into PCTM
at the original 3-hourly resolution. Note that the gridded, 3-hourly MsTMIP flux estimates are
available for years 2004–2010. Few TBMs have readily-available flux estimates for the 2014–
2015 time period of this study, including the TBMs in the MsTMIP study. Instead, we use a
multi-year average of the MsTMIP fluxes as inputs in the PCTM model. We average these 7
years within each separate grid box and for each separate 3-hourly time period to produce this
multi-year average for each MsTMIP flux model.

In addition to these TBMs, we also utilize several vegetation indices (EVI, NDVI, and SIF).
Numerous studies indicate that biospheric CO2 fluxes correlate with these vegetation indices
– with EVI (e.g., Sims et al., 2008; Wu et al., 2011), NDVI (e.g., Cihlar et al., 1992; Wylie
et al., 2003), and GOME-2 SIF (e.g., Guanter et al., 2014; Yang et al., 2015). These indices
are therefore good candidate flux patterns to use within the model selection experiments.

We use EVI and NDVI from the MODIS Aqua product MYD13C1 (Didan, 2015a) and the
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MODIS Terra product MOD13C1 (Didan, 2015b). These products are collectively available at
8-day intervals. The individual Aqua and Terra products are each available at 16-day intervals.
However, the two products are staggered, so Aqua and Terra can be combined to produce EVI
and NDVI estimates every 8 days. These products have a 0.05◦ latitude by 0.05◦ longitude,
and we regrid them to the PCTM model grid (1◦ latitude by 1.25◦ longitude). Both of these
products are available for 2014 and 2015, the time period of this study.

We use level 2 SIF retrievals from GOME-2 (Global Ozone Monitoring Experiment-2)
(Joiner, 2014). We convert the level 2 retrievals to a gridded SIF product using a block kriging
method described by Tadić et al. (2017). This gridded product has a daily temporal resolution
and the same spatial resolution as PCTM. We use this product as an input ‘flux’ into the PCTM
model and incorporate the PCTM outputs as candidate variables the regression (Eq. S1).

S1.3 Additional detail on model selection implementation

This sub-section describes the regression and model selection in greater detail. The regression
used in this paper will quantitative link OCO-2 XCO2 observations with atmospheric model
outputs:

Y = h(X) (S1)

z = Yβ + ε (S2)

ε ∼ N (0, σ2V) (S3)

These equations are an expanded form of the regression equations present in Sect. 2.3. The
vector z (dimensions n×1) represents the XCO2 observations minus the model initial condition
or spin-up (Sect. S1.1). The variable X (dimensions m×p) is a matrix of p different flux models,
and each column of X is a different flux model for a different region and month. The function
h() is an atmospheric model that transports the fluxes to the times and locations of the OCO-2
retrievals, and the resulting matrix Y has dimensions n×p. Furthermore, the variable ε is a n×1
vector of residuals. These residuals are assumed to follow a multivariate normal distribution
with a mean of zero, a variance of σ2, and a covariance structure given by V (dimensions n×n).
The vector of coefficients (β, dimensions p× 1) are estimated as part of the regression.

In this study, we choose a set of variables for X using model selection based on the Bayesian
Information Criterion (BIC) (Schwarz, 1978). We calculate a BIC score for many different can-
didate models. Each candidate model has a different set of columns (X) – different combinations
of flux models in different geographic regions and in different months.

The best model has the lowest BIC score:

BIC = L+ p ln(n∗) (S4)

where L is the log likelihood of a particular candidate model (X). The log-likelihood has the
following form:

L = n∗ ln(σ2) +
n∗

n
RSS (S5)

RSS =
1

σ2
zTz − 1

σ2
zTY(YTY)−1YTz (S6)

where RSS is the residual sum of squares and σ2 is defined above in Eq. S3.
Both the BIC and log-likelihood equations (Eq. S4 and S5) incorporate n∗, the effective

number of independent observations. Jones (2011) discusses this concept in the context of the
BIC. Just because the satellite provides n observations does not mean there are n independent
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pieces of information. Accordingly, n∗ ensures that the model selection framework accurately
assesses the amount of independent information in the observations. It accounts for the fact
that there are often spatial and temporally coherent errors in the satellite observations or in
the transport model. If all of the observations were independent (i.e., if V were diagonal), then
n∗ would equal n. However, we de-weight both components of Eq. S4 as the covariances in V
increase.

We could calculate n∗ directly using V−1 (Jones, 2011). In fact, several CO2 model selection
studies incorporate V−1 directly into the equation for RSS (e.g., Mueller et al., 2010; Gourdji
et al., 2012; Shiga et al., 2014). We use 5,079,165 observations (n) in this study, so V has
5.08× 106 rows and columns. As a result, the inverse of V is computationally intractable. We
instead estimate n∗ using an approach based on Griffith (2005), an approach that does not
require computing V−1 directly:

n∗ =
n

1 + (
∑n

i=1

∑n
j=1,j 6=i Vi,j/n)

(S7)

This equation calculates n∗ using individual elements of V and does not require inverting the
full matrix; it is therefore far more computationally tractable. Subsequent paragraphs describe
how we estimate the elements of V.

The remainder of this section discusses how we characterize the variances (σ2) and covariance
structure (V) of the residuals (ε) (Eq. S3). An estimate of the variance is required to calculate
the residual sum of squares (RSS, Eq. S6), and an estimate of the covariance structure is
necessary to calculate the effective number of independent observations (n∗, Eq. S7).

We first describe the method for characterizing the covariance structure (V). We estimate
the individual elements, Vi,j , in the vicinity of each observation i by fitting a local variogram
model on the model-data residuals (ε). The covariance structure likely differs in different loca-
tions and at different times (i.e., is non-stationary), and several existing studies fit variograms
locally to account for this non-stationary structure (e.g., Alkhaled et al., 2008; Hammerling
et al., 2012; Tadić et al., 2017). We use a similar approach here. Specifically, we estimate this
structure by constructing empirical variograms and fitting spherical variogram models (for an
overview of variograms, refer to Kitanidis, 1997). We use a spherical model because it tapers
off to zero and is therefore faster to compute with large datasets.

For each i, we create a separate spatial experimental variogram and a temporal experimental
variogram. We use all residuals that lie within 3000 kilometers of i and were collected at similar
times (within 1 day) to construct the spatial variogram, and we use residuals within 75 days of
i and a similar location (within 250 km) to construct the spatial variogram. We choose these
spatial and temporal distances because they are larger than transport or retrieval errors that
might covary across an entire biome. We then fit spherical models to the spatial and temporal
variograms, respectively. In our setup, the elements of Vi,j equal the spherical covariance model
multiplied by the temporal covariance model:

Vi,j =

(1− 3
2
di,j
αd,i

+ 1
2

d3i,j
α3
d,i

)(1− 3
2
ti,j
αt,i

+ 1
2

t3i,j
α3
t,i

) if d ≤ αd,i and t ≤ αt,i
0 if d > αd,i or t > αt,i

(S8)

where di,j and ti,j are the distance and time, respectively, between points i and j. The variables
αd,i and αt,i are the decorrelation length and time parameters estimated from the spatial and
temporal emperical variograms, respectively. Note that several existing top-down CO2 studies
use a covariance model with multiplied spatial and temporal components (e.g., Mueller et al.,
2008; Gourdji et al., 2012), though other recent studies use a more advanced approach (Tadić
et al., 2017).
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We then use this estimate for Vi,j to estimate n∗ (Eq. S7). The denominator of Eq. S7
sums over each element i. For each element i in the summation, we use covariance parameters
estimated for that element i. Note that Eq. S7 presents a computational challenge. In this
setup, i = 1...n where n = 5.08 × 106. It would be computationally prohibitive to estimate
5.08×106 local variogram models. Instead, we randomly choose 1000 elements of i and estimate
a variogram model for each of those elements. As a result, the i summation term Eq. S7 only
sums over 1000 elements. More precisely, Eq. S7 becomes

n∗ =
n

1 +
∑

1≤i≤n

∑n
j=1,j 6=i Vi,j

1000

(S9)

where i is a set of 1000 randomly chosen numbers between 1 and n.
The model selection equations (i.e., Eq. S6) also require an estimate for σ2. We estimate a

single value for σ2 using all n residuals:

σ2 =
1

n− 1

n∑
i=1

ε2i (S10)

This implementation of model selection is iterative. We start by estimating the covariance
parameters with all candidate variables included in X. We use these covariance parameters to
estimate n∗ and subsequently run model selection. We run model selection with a heuristic
branch and bound algorithm described by Yadav et al. (2013). This algorithm dramatically
reduces the computing time of the model selection step. We then re-estimate the covariance
parameters using the chosen columns of X. The covariance parameters usually change slightly
with the new, updated X matrix. We alternate between the covariance estimation and model
selection until both the covariance parameters and columns selected for X do not change from
one iteration to the next. The estimated covariance parameters and model selection results
typically converge on a stable answer within two to three iterations.

S1.4 Additional detail on the simulated, synthetic data errors

This section provides additional information on the simulated atmospheric transport errors and
simulated retrieval errors used in the synthetic data experiments (Sect. 2.2 and 2.5).

We use simulated transport errors from an ensemble of meteorology realizations in Miller
et al. (2015). That study follows an approach developed by Liu et al. (2011). Both studies
simulate global meteorology using the Community Atmosphere Model (CAM) in weather fore-
casting mode. The studies also include CO2 as a passive tracer in the model. Miller et al. (2015)
and Liu et al. (2011) then run an ensemble of 64 parallel simulations to estimate the effects
of atmospheric transport uncertainties on modeled CO2. At each time step of the simulations,
they assimilate the mean of the 64-member ensemble to match meteorological observations us-
ing a local ensemble Kalman filter (LETKF) (e.g., Hunt et al., 2007). Miller et al. (2015) also
adjust the ensemble variance to be consistent with the meteorology model-data residuals using
an approach known as adaptive covariance inflation (e.g., Miyoshi, 2011). In the present study,
we randomly choose one of the ensemble members. We use the difference in modeled CO2

mixing ratios between the chosen ensemble member and the ensemble mean as our simulated
atmospheric transport error (Fig. 1). We then interpolate these estimated transport errors from
the CAM model grid (1.9◦ latitude by 2.5◦ longitude resolution) to the locations and times of
the GOSAT observations.

We use two different approaches to simulate satellite retrieval errors. We employ the first
approach in the synthetic data simulations in the main text. We use the second set of errors
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here in the Supplement (Sect. S2.2) as a robustness or sensitivity check on the synthetic data
simulations. In the first approach, we model XCO2 using PCTM and the SiBCASA model. We
then regress the model-data residuals on the retrieval parameters included in the OCO-2 lite
data file. These parameters include retrieved surface pressure; the H2O ratio; temperature at
700 hPa; wind speed; albedo; aerosol optical depth; the log of dust, water, and salt aerosols; the
land fraction in the OCO-2 footprint; surface altitude; the satellite operation mode (e.g., nadir
mode, target mode, etc.); footprint bias; and the change in CO2 vertical gradient between the
surface and retrieval model level 13.

We use this regression to estimate the portion of the residuals that map on to the retrieval
parameters. That result is used as the estimated retrieval error (Fig. 1):

ε = 1β0,r + Xrβr + ζ (S11)

where ε are the model-data residuals from Eq. S2, β0,r is the intercept term in the regression,
Xr is the matrix of retrieval parameters, βr are the estimated coefficients, and ζ is the portion
the residuals (ε) not described any other terms in the equation. We use Xrβr as our estimate
of the retrieval errors.

This approach is one way to estimate the portion of the residuals that maps onto retrieval
parameters. Errors in the model output due to atmospheric transport or due to biospheric
fluxes in X are unlikely to map onto parameters like aerosol optical depth. Rather, errors that
map onto aerosol optical depth may more likely reflect issues in the satellite retrievals. There
is always a possibility that residuals caused by inaccurate fluxes could have patterns similar
to some of the retrieval parameters. For example, errors in modeled XCO2 due to inaccurate
biospheric flux patterns might correlate weakly or modestly with surface albedo, and errors in
modeled XCO2 due to errors in CO2 fossil fuel emissions could correlate weakly or modestly
with aerosol optical depth.

We generate an alternate set of retrieval errors using a different approach as a consistency
check. This approach, described in Sect. 2.2, assigns a non-zero retrieval error if and only if four
different flux estimates (input into PCTM) unanimously disagree with the OCO-2 observations.
There could be error in the retrievals if all of the biospheric models are in good agreement – if
all of the model outputs disagree with the retrievals in the same direction. In that case, either
all four flux models are incorrect, there is a consistent transport bias, or there is an error in
the satellite retrievals. The four flux models chosen in this study have disparate spatial and
temporal patterns, so the first option appears unlikely. The second option (transport errors)
could play a role, but transport errors at different vertical model levels often have different signs
or magnitudes and can cancel out across the total column (e.g., Miller et al., 2015). Hence, the
last option (retrieval errors) may be most likely when all four sets of model outputs consistently
disagree with the XCO2 retrievals. We use this alternative approach for generating retrieval
errors solely as a consistency check on our primary synthetic data results.

S2 Sensitivity of the results to methodological choices

S2.1 Real data results that include glint data

We re-run model selection including all retrieval modes in the observation vector (z) – glint,
nadir, and target. The results in the main manuscript (Fig. 4), by contrast, exclude glint mode
retrievals due to potential biases in these retrievals.

The model selection results that include glint retrievals are shown in Fig. S1, and the results
look similar to those without glint retrievals (Fig. 4). Several factors may explain the similarity
between these two results. The glint retrievals observe CO2 mixing ratios in continental outflow
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but are not likely as sensitive to terrestrial flux patterns as nadir data over land. The model–
data residuals over the ocean (i.e., associated with glint mode) are correlated over longer spatial
and temporal scales relative to residuals over land. As a result, the glint mode retrievals add
a limited amount of new, independent information on terrestrial fluxes in the context of the
model selection experiments.

S2.2 Synthetic data results with an alternative set of simulated retrieval
errors

Figure S2 displays the results of the synthetic data experiment using an alternate estimate for
the retrieval errors, and the results are consistent with those in the main text (Fig. 5). This
alternate set of simulated errors displays different characteristics from the errors used in Fig.
5, yet the model selection results are similar. These alternative simulated errors have a larger
standard deviation but a smaller mean bias and smaller covariances (Fig. 1). Similarly, n∗

is closer to the real data experiments (n∗ = 3700). The larger standard deviation or variance
increases the impact of these errors on the model selection results. However, smaller biases or
covariances decrease their effect on the results. These two effects largely offset each other, and
we therefore obtain similar results using both sets of simulated retrieval errors.
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Figure S1: Results of the real data model selection experiment using all good quality OCO-2
retrievals (including glint mode retrievals). These model selection results are similar to those
in the main manuscript that exclude glint mode data (Fig. 4).
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Figure S2: Results of the synthetic data case study using an alternative estimate for the retrieval
errors (Sect. 2.2). These results are similar to those in Fig. 5, providing a consistency check
on the synthetic data simulations.
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