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Abstract. In his study, we use a combination of multivari-
ate statistical methods to understand the relationships of
PM2.5 with local meteorology and synoptic weather patterns
in different regions of China across various timescales. Us-
ing June 2014 to May 2017 daily total PM2.5 observations
from ∼ 1500 monitors, all deseasonalized and detrended to
focus on synoptic-scale variations, we find strong correla-
tions of daily PM2.5 with all selected meteorological vari-
ables (e.g., positive correlation with temperature but neg-
ative correlation with sea-level pressure throughout China;
positive and negative correlation with relative humidity in
northern and southern China, respectively). The spatial pat-
terns suggest that the apparent correlations with individual
meteorological variables may arise from common associa-
tion with synoptic systems. Based on a principal component
analysis of 1998–2017 meteorological data to diagnose dis-
tinct meteorological modes that dominate synoptic weather
in four major regions of China, we find strong correlations of
PM2.5 with several synoptic modes that explain 10 to 40 %
of daily PM2.5 variability. These modes include monsoonal
flows and cold frontal passages in northern and central China
associated with the Siberian High, onshore flows in eastern
China, and frontal rainstorms in southern China. Using the
Beijing–Tianjin–Hebei (BTH) region as a case study, we fur-
ther find strong interannual correlations of regionally aver-

aged satellite-derived annual mean PM2.5 with annual mean
relative humidity (RH; positive) and springtime fluctuation
frequency of the Siberian High (negative). We apply the re-
sulting PM2.5-to-climate sensitivities to the Intergovernmen-
tal Panel on Climate Change (IPCC) Coupled Model Inter-
comparison Project Phase 5 (CMIP5) climate projections to
predict future PM2.5 by the 2050s due to climate change,
and find a modest decrease of ∼ 0.5 µg m−3 in annual mean
PM2.5 in the BTH region due to more frequent cold frontal
ventilation under the RCP8.5 future, representing a small
“climate benefit”, but the RH-induced PM2.5 change is in-
conclusive due to the large inter-model differences in RH
projections.

1 Introduction

Air pollution caused by high surface concentrations of partic-
ulate matter (PM) and ozone in megacities are of utmost pub-
lic health concern in China currently (Xu et al., 2013). China
has experienced deteriorating air quality since the 1990s due
to rapid industrial and economic development. Episodes of
haze and smog pollution with dangerous levels of fine par-
ticulate matter (PM2.5, particles with an aerodynamic diam-
eter of or less than 2.5 µm) are becoming more common in
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the most developed and highly populated city clusters in
China (Chan et al., 2008; Zhang et al., 2007; Q. Zhang et
al., 2014). For example, annual mean PM2.5 concentration
in Beijing increased dramatically from 12 µg m−3 in 1973
to 66 µg m−3 in 2013 (Han et al., 2016), with an average
growth rate of +0.7 µg m−3 yr−1 for the past 4 decades. Out-
door air pollution in China alone has been shown to cause
over 1 million premature deaths every year (Cohen et al.,
2017). Many epidemiological studies have documented the
harmful effects of PM2.5 on cardiovascular and respiratory
health (Cao et al., 2012a; Krewski et al., 2009; Madaniyazi
et al., 2015; Pope and Dockery, 2006). Urban PM2.5 origi-
nates from many sources including power plants, industry,
vehicular emissions, road and soil dust, biomass burning, and
agricultural activities (Zhang et al., 2015), but the regional
concentrations are also strongly dependent on pan-regional
transport (e.g., Jiang et al., 2013) and ventilation by atmo-
spheric circulation (e.g., Chen et al., 2008; Zhang et al., 2012,
2016).

The severity of PM2.5 pollution is known to be strongly
dependent not only on emissions but also on weather condi-
tions. For example, Zhang et al. (2016) showed using GEOS-
Chem that cold surge occurrences over northern China ex-
plain about half of the variability of total PM2.5. Several
modeling studies have examined the effects of historical (Fu
et al., 2016) and future (Jiang et al., 2013) changes in emis-
sions and climate (i.e., long-term changes in weather statis-
tics) on PM2.5 air quality in East Asia, but large uncertainty
remains due to the complexity of PM2.5–meteorology in-
teractions (Jiang et al., 2013; Shen et al., 2017; Tai et al.,
2012b). Such poor understanding stems mainly from the di-
verse sensitivities of different PM2.5 chemical components
to meteorological changes, and from the strong coupling of
PM2.5 with synoptic circulation and the hydrological cycle.
In this study, we apply a combination of multivariate statisti-
cal techniques to identify important local-scale meteorolog-
ical variables and synoptic-scale meteorological modes that
dominantly control the daily and interannual variability of
PM2.5 in China, and illustrate how these modes enable ef-
fective diagnosis of the effects of future synoptic circulation
changes on China PM2.5 air quality.

Local meteorological conditions are known to strongly
influence the levels of all air pollutants including PM2.5.
PM2.5–meteorology interactions are complex due to the
varying responses of PM2.5 species to different meteorologi-
cal variables. Higher temperature favors the formation of sul-
fate and secondary organic aerosols due to the faster oxida-
tion of sulfur dioxide (SO2) and volatile organic compounds
(VOCs; Jacob and Winner, 2009). Higher temperature also
increases the emissions of biogenic VOCs from vegetation,
especially in southern China where high-emitting broadleaf
evergreen trees are prevalent (Ding et al., 2012; Zhang and
Cao, 2015). Higher temperature favors the volatilization of
nitrate, ammonium, and semivolatile organics by shifting the
gas–aerosol phase equilibria toward the gas phase (Jiang et

al., 2013; Shen et al., 2017), thereby decreasing these com-
ponents. Depending on the region, an increase in relative hu-
midity (RH) may enhance the production of hydroxyl (OH)
radical and hydrogen peroxide (H2O2), which promotes SO2
oxidization and increases the uptake of semivolatile compo-
nents including nitrate and organics (Seinfeld and Pandis,
2016). Precipitation, via its direct scavenging effect, is a prin-
cipal sink for all PM2.5 components (Koch et al., 2003; Tai et
al., 2010). Meanwhile, both strong wind and boundary layer
mixing also tend to ventilate or dilute PM2.5 (Chen et al.,
2008; Jacob and Winner, 2009; Wang et al., 2012; Zhang and
Cao, 2015). For instance, Han et al. (2016) found that annual
mean PM2.5 and wind speed in Beijing on stable meteoro-
logical days were negatively correlated over 1973–2013, il-
lustrating the importance of ventilation on interannual PM2.5
variability.

In addition to local meteorological conditions, synoptic-
scale circulation patterns also play important roles in driving
PM2.5 variability. Different classification schemes for a wide
range of synoptic circulation patterns have been researched
extensively (Huth et al., 2008) and used worldwide to evalu-
ate pollution–meteorology interactions (e.g., McGregor and
Bamzelis, 1995; Shahgedanva et al., 1998; Shen et al., 2017;
Tai et al., 2012a; Zhang et al., 2012). Tai et al. (2012a)
showed that cold fronts associated with midlatitude cyclone
passages and maritime inflows were the major ventilation
mechanisms of PM2.5 in the US. Shen et al. (2017) further
showed that the variability of PM2.5 over the USA explained
by both local meteorology and synoptic factors (43 %) are
on average about 10 % higher than solely using local meteo-
rology (34 %). In Asia, Chen et al. (2008) demonstrated that
synoptic high-pressure systems in northern Mongolia asso-
ciated with cold fronts facilitate the dispersion of air pollu-
tants over northern China, whereas a surface high centered on
Beijing–Tianjin–Hebei (BTH) favors accumulation. Zhang
et al. (2013) showed similar results by extracting nine dis-
tinct synoptic pressure patterns over the North China Plain
(NCP), and discovered that weak pressure tendency in NCP
favors pollutant accumulation. Zhang et al. (2016) found that
a cold surge associated with the East Asian winter mon-
soon significantly reduced PM2.5 concentration in Beijing by
110 µg m−3 within a few days. Moreover, the effects of local
meteorology and synoptic circulation are not independent of
each other. For instance, Tai et al. (2012a) found that much of
the apparent observed correlation of PM2.5 with temperature
and pressure in the eastern USA are attributable to common
association with cold frontal passages. To understand how
meteorological changes may affect future PM2.5 air quality,
therefore, requires keen consideration of the co-variation of
meteorological variables with synoptic-scale phenomena in
an integrated framework (Jiang et al., 2005).

In this study, we perform correlation analysis to estimate
the sensitivities of observed daily total PM2.5 to a suite of
meteorological variables from June 2014 to May 2017. As
discussed in Sect. 3, however, correlations between local me-
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Figure 1. Average (a) site and (b) gridded 2.5◦× 2.5◦ total PM2.5 concentrations (µg m−3) of China during the years 2015–2016 obtained
from the Chinese Ministry of Environmental Protection (MEP, http://pm25.in; last access: 2 July 2017). Gridded data are obtained by spatially
interpolating site data using an inverse weighting method as in Tai et al. (2010). The four main regions of our study are indicated in panel
(b): Beijing–Tianjin–Hebei (BTH), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and the Sichuan Basin (SCB).

Table 1. Meteorological variables considered in this studya.

Variable Meteorological parameter (abbreviation, unit)

X1 Surface air temperature (T or SAT, K)b

X2 Surface air relative humidity (RH, %)b

X3 Surface precipitation rate (prec., mm d−1)b

X4 Sea level pressure (SLP, hPa)
X5 Sea level pressure tendency (dP/dt , hPa d−1)

X6 Surface wind speed (wind, m s−1)b,c

X7 West–east direction indicator (cosθ , dimensionless)
X8 South–north direction indicator (sinθ , dimensionless)

a From the National Center for Environmental Prediction/National Center for
Atmospheric Research (NCEP/NCAR) Reanalysis 1 for 1998–2017. All data are 24 h
averages and are deseasonalized as described in the text. b Surface data are from 0.995
sigma level. c Calculated from the horizontal wind vectors (u, v). d θ is the angle of the
horizontal wind vector counterclockwise from the east. Positive values of X7 and X8
indicate westerly and southerly winds, respectively.

teorology and PM2.5 are complicated by co-variations among
individual meteorological variables, which are at least par-
tially driven by synoptic systems. We therefore apply prin-
cipal component analysis to construct different meteorolog-
ical modes that differentiate between unique synoptic-scale
meteorological regimes, and we apply principal component
regression (PCR) of daily PM2.5 on these modes to not only
interpret the observed correlations of daily PM2.5 with in-
dividual meteorological variables, but also to determine the
dominant meteorological modes of daily PM2.5 variability,
in four major city clusters of China: BTH, the Yangtze River
Delta (YRD), the Pearl River Delta (PRD), and the Sichuan
Basin (SCB; Fig. 1). Furthermore, using BTH as a case study,
we undertake spectral analysis of the time series of dominant
meteorological modes over the past decade to examine the in-
terannual correlations between synoptic frequencies and an-
nual mean PM2.5. We finally construct a statistical model us-
ing annual median synoptic frequency and annual mean lo-
cal meteorology to project 2000–2050 PM2.5 changes given
present-day and future climate simulations by an ensemble of
climate models. This study represents an advancement over

that of Tai et al. (2012a, b) in terms of methodology by con-
sidering the joint effects of synoptic frequency and local me-
teorology, on par with Shen et al. (2017), which, however,
focused only on the US. Our work represents the first attempt
to apply these methods to Chinese air quality in an effort to
derive a statistical projection of future PM2.5 concentrations
based on historical PM2.5–meteorology relationships. These
historical relationships can also be used to compare results
from process-based models (e.g., Jiang et al., 2013).

2 Data and methods

Daily assimilated meteorological fields for 1998–2017 over
China are obtained from National Centers for Environmen-
tal Prediction/National Center for Atmospheric Research
(NCEP/NCAR) Reanalysis 1 provided by the National
Oceanic and Atmospheric Administration (NOAA) of the
USA (Kalney et al., 1996). The dataset has a horizontal res-
olution of 2.5◦× 2.5◦. Following Tai et al. (2012a, b), eight
meteorological variables are considered here (Table 1), in-
cluding surface air temperature (X1), relative humidity (X2),
precipitation rate (X3), sea-level pressure (X4), pressure ten-
dency (X5), wind speed (X6), and two wind direction indica-
tors (X7,X8). To conduct correlation analysis and PC regres-
sion, meteorological data, except from variables X5, X7 and
X8, are deseasonalized and detrended by subtracting the cor-
responding centered 31-day moving averages from the orig-
inal data to focus on day-to-day, synoptic-scale variability.
Specifically, for a meteorological variableXk in any grid, the
deseasonalized meteorology X̃k is calculated as follows:

X̃k(t)=Xk(t)−
1
31

∑t+15
n=t−15

Xk(n). (1)

The deseasonalized and detrended data are also normalized
to their standard deviations to yield zero means and unit vari-
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ances:

X̂k (t)=
X̃k (t)− X̃k

sX̃k

, (2)

where X̂k(t) represents the normalized meteorological time
series, X̃k and sX̃k are the mean and standard deviation of the
deseasonalized time series, respectively.

PM2.5 monitoring has been introduced in the national air
quality monitoring network in China since 2012 with the
published third revision of the National Ambient Air Qual-
ity Standards (NAAQS; Zhang and Cao, 2015). Before that,
observational spatial distribution of PM2.5 was mostly esti-
mated by satellite retrievals (Ma et al., 2015; van Donke-
laar et al., 2010; Xue et al., 2017; Zheng et al., 2016).
One of the disadvantages of PM2.5 monitoring at present is
that there are very few sites with detailed speciation data
in China, although short-term studies of PM2.5 speciation
have been conducted (Cao et al., 2012b; Huang et al., 2014;
Yang et al., 2005, 2011; J. K. Zhang et al., 2014). In this
study, hourly mean data of total PM2.5 from 1 June 2014 to
30 May 2017 are obtained from the Chinese Ministry of En-
vironmental Protection (MEP). Data are archived from 1497
monitors across China (Fig. 1a), most of which are concen-
trated in eastern, northeastern, and southern China, and are
made available through a repository website (http://pm25.in;
last access: 2 July 2017). We cross-check and correct the lo-
cations of the different monitoring sites, removing unrealistic
values and instrumental errors. PM2.5 data are then deseason-
alized and detrended in the same way as for the meteorolog-
ical variables.

To conduct the statistical analysis, MEP observations are
interpolated using inverse distance weighting onto the same
2.5◦× 2.5◦ resolution as that for the NCEP/NCAR data to
produce daily mean PM2.5 fields for 2014–2017. Sampled
values (zj ) from sites within a search distance (dmax) are
weighted inversely by their distances (di) from the cell cen-
troid to produce an average (zj ) for each grid cell j :

zj =

∑nj
i=1(1/di)

kzi∑nj
i=1(1/di)

k
, (3)

where nj is the number of sampled sites for grid cell j and k
is the power parameter. We choose k = 2 and dmax = 500 km
as recommended by Tai et al. (2010). Figure 1 shows the av-
eraged site and interpolated PM2.5 values for 2015 and 2016.
As shown in Fig. 1, sites in much of southwestern China
(e.g., in the provinces of Tibet and Qinghai) are relatively
sparse, leading to likely unrepresentative interpolated values
in the corresponding grid cells. These regions are excluded
from our analysis.

For the purpose of examining long-term interannual PM2.5
variability, we also make use of the annual mean concen-
trations of surface total PM2.5 for 1998–2015 derived from
satellite measurements (van Donkelaar et al., 2016). Total

column aerosol optical depth (AOD) retrievals from multi-
ple satellite instruments and model simulations, such as the
MODerate resolution Imaging Spectroradiometer (MODIS),
the Multiangle Imaging SpectroRadiometer (MISR), and
the GEOS-Chem chemical transport model, were weighted
by the ground-based AOD observations from the Aerosol
Robotic Network (AERONET) sun photometers. The daily
AOD and near-surface PM2.5 were simulated by GEOS-
Chem to obtain the AOD-PM2.5 relationship, which were
applied to the satellite AOD retrievals to yield weighted
PM2.5 concentrations. Annual mean values of PM2.5 were
computed and then calibrated to ground-based PM2.5 ob-
servations using the global geographically weighted regres-
sion (GWR) method (Brunsdon et al., 1996). Figure S1 in
the Supplement shows the spatial variation of the satellite-
derived PM2.5 over China from van Donkelaar et al. (2016),
which has a spatial correlation of r = 0.79 with MEP total
PM2.5 for year 2015.

To project the 2000–2050 effect of climate change on fu-
ture PM2.5, we use the meteorological variables in Table 1
archived from an ensemble of 15 climate models participat-
ing in the Coupled Model Intercomparison Project Phase 5
(CMIP5) under the representative concentration pathway 8.5
(RCP8.5). We regrid the data from different models into the
same 2.5◦× 2.5◦ resolution. The details of the models can be
found in Table S1 in the Supplement.

3 Correlations between daily PM2.5 and meteorological
variables

Here we first discuss the general correlation patterns between
PM2.5 and individual meteorological variables in China, and
highlight what we can and cannot conclude from them. The
Pearson’s correlation coefficients between each meteorolog-
ical variable in Table 1 and interpolated daily total PM2.5 are
computed for each grid cell from June 2014 to May 2017.

Figure 2 shows the correlation maps for the whole pe-
riod. Temperature is found to have an overall significant pos-
itive correlation with deseasonalized PM2.5 in most regions
of China (Fig. 2a), with the highest values appearing in BTH
and SCB (r = 0.6). The correlation map of SLP (Fig. 2d),
which is often an indicator of the passages of synoptic sys-
tems, has a similar spatial pattern to that with temperature
but with an opposite sign and smaller magnitudes, suggesting
that PM2.5 tends to be low when SLP is high. The anticorre-
lation pattern is relatively weaker in southern China. Temper-
ature and SLP are themselves found to be significantly nega-
tively correlated throughout most of China (Fig. S2), and thus
it is difficult to conclude whether they are the direct physical
drivers of PM2.5 variability, or the correlations simply reflect
common association with larger meteorological regimes that
control PM2.5 variability.

Correlation between RH and PM2.5 shows different pat-
terns in northern vs. southern China (Fig. 2b). A positive
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Figure 2. Correlation coefficients of daily PM2.5 with different me-
teorological variables in Table 1, including (a) surface air temper-
ature (X1, K), (b) relative humidity (X2, %), (c) precipitation (X3,
mm d−1), (d) sea level pressure (X4, hPa), (e) pressure tendency
(X5, hPa d−1), (f) wind speed (X6, m s−1), and (g) wind direction
(X7 and X8, unitless), for China from June 2014 to May 2017.
PM2.5 data are from MEP. Meteorological data are deseasonal-
ized by subtracting 31-day moving averages and normalized, and
daily total PM2.5 are also deseasonalized the same way to focus on
day-to-day variability. Only values with significant correlations at
p value ≤ 0.05 are shown. Panel (g) is plotted by finding the vec-
tor sums of the correlation coefficients for X7 and X8, with posi-
tive correlations pointing eastward and northward, respectively. The
direction of the vector sum indicates the prevalent wind direction
when PM2.5 has a positive anomaly.

correlation (r = 0.4) is seen in BTH, likely reflecting higher
PM water content in ambient air which can enhance the up-
take of semivolatile components (Dawson et al., 2007b), con-
sistent with previous findings (Wang et al., 2014). In south-
ern China, however, RH is negatively correlated with PM2.5,
with larger correlations in SCB and PRD (r =−0.4) than in
YRD (r =−0.2). As can be seen in Fig. 2c, negative corre-
lation of precipitation with PM2.5 in southern China is very
similar to that of RH in Fig. 2b, likely reflecting the asso-
ciation of high RH with precipitation (Fig. 2c) and onshore
wind (Fig. 2f), which can facilitate PM2.5 deposition or ven-
tilation (Zhu et al., 2012). Such a strong association between
RH and precipitation may also explain the apparently posi-

tive correlation between precipitation and PM2.5 in northern
China, where RH-promoted aerosol formation is likely more
important than wet deposition in the overall relationship.

Pressure tendency and wind speed exhibit similar correla-
tion patterns (Fig. 2e–f). Pressure tendency, another indica-
tor of synoptic-scale motions, is negatively correlated with
PM2.5 in southern China, including PRD (r =−0.3) and in
northeastern China, suggesting that PM2.5 tends to be low
when SLP is increasing. Wind speed is also negatively corre-
lated with PM2.5 in similar regions. These patterns are con-
sistent with advecting cold fronts with strong winds help-
ing to ventilate PM2.5 in heavily polluted regions (Tai et al.,
2012a). Pressure tendency and wind speed have a positive
correlation with PM2.5 in northern China and some parts of
western China, which may be due to the co-varying strong
winds and frontal passages promoting the mobilization of
mineral dust from the semiarid regions and deserts there.

Figure 2g shows the correlation of wind direction with
PM2.5, in which arrow directions indicate wind directions as-
sociated with increasing PM2.5. The corresponding mass di-
vergence map together with its calculation is shown in the
Supplement (Fig. S3). For instance, PM2.5 increases with
southeasterly wind for all of eastern and northeastern China
with a correlation of r = 0.3 on average. This relationship
suggests that northwesterly wind tends to ventilate PM2.5 in
most of China. Two divergent wind patterns are seen, one in
central China and one in Taklamakan Desert, and their po-
sitions mirror regions with the highest PM2.5 concentrations
in Fig. 1b. This result implies that wind transports pollutants
from source regions to the peripheries.

A generally consistent correlation among neighboring grid
cells may be associated with synoptic effects because the cor-
relation pattern extends to a synoptic regional length scale.
The correlation maps for most of the meteorological vari-
ables in Fig. 2 show such an effect. The commonality among
the correlation patterns of PM2.5 with different meteorologi-
cal variables, which among themselves have various degrees
of correlation, renders the interpretation of individual PM2.5–
meteorology relationships more difficult because the true
driver of PM2.5 variability may be masked by the collinearity
among meteorological variables (as is pointed out above for
the case of temperature and SLP). Whenever a strong correla-
tion between PM2.5 and a given meteorological variable (e.g.,
temperature, RH, precipitation, wind speed) is found, there
can be three interpretations: (1) this variable is truly the phys-
ical driver for PM2.5 variability; (2) at least part of the corre-
lation may arise from the correlation of this variable with an-
other local variable that is the true physical driver; and (3) at
least part of the correlation may reflect common association
with a larger, synoptic-scale phenomenon that drives PM2.5
variability. To quantitatively differentiate between these pos-
sibilities and to ascertain the roles of local meteorology vs.
synoptic-scale circulation on PM2.5 variability, we conduct
principal component analysis (PCA) on the eight meteoro-
logical variables to capture their common co-variations in an
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ensemble of independent meteorological modes. We follow
Tai et al. (2012a), and regress daily PM2.5 on the resulting
principal component (PC) time series to identify the domi-
nant synoptic drivers of PM2.5 variability. Their approach is
particularly useful in that it enables the quantification of the
fraction of PM2.5 variability that can be explained by synop-
tic meteorological regimes.

4 Dominant meteorological modes for daily PM2.5
variability based on principal component regression

We perform PCA on the eight meteorological variables for
1998–2017 in Table 1 to extract synoptic circulation patterns,
focusing on the four major metropolitan regions in China
(BTH, YRD, PRD, and SCB). We use this longer period of
meteorological data for the PCA despite the relatively short
time history of PM2.5 data from MEP (2014–2017) because
we aim to characterize the climatologically important synop-
tic systems in China. The longer period also overlaps with the
annual mean PM2.5 data available for quantifying interannual
variability (see Sect. 5), so that a unified set of meteorologi-
cal modes can be used to explain both daily and interannual
PM2.5 variability. We conduct PCA for individual seasons
and for the whole period. All gridded daily meteorological
data are spatially averaged over the grid cells covering each
of the four regions, deseasonalized, and normalized to yield
zero means and unit variances, as described above. The re-
sulting time series for each region are then decomposed to
produce the PC time series (Uj = U1, . . ., U8):

Uj (t)=
∑8

k=1
αkj X̃k(t)=

∑8
k=1

αkj

[
X̃k (t)− X̃k

]
sX̃k

, (4)

where X̃k represents the deseasonalized regionally averaged
meteorological fields in Table 1, X̃k and sX̃k are the tempo-
ral mean and standard deviation of X̃k , X̂k is the normalized
value of X̃k , and αkj is the elements of the transformation
matrix (i.e., eigenvector or empirical orthogonal function,
EOF) of PCA. The PC time series are ranked by their vari-
ances λ, with the leading three to four PCs capturing most
of the meteorological variability (Wilks, 2011). For exam-
ple, the first four PCs for the BTH region explain 76 % of the
total meteorological variability. The last few PCs with vari-
ances λ< 1 are truncated using Kaiser’s rule since they likely
represent noises (Wilks, 2011). Each PC represents a distinct
meteorological mode, the physical meaning of which is re-
flected by the values of αkj in Eq. (2) and verified by cross-
examination of synoptic weather maps.

For each region, we then extract the PCs for 2014–2017
only, and construct a PCR model for deseasonalized, region-
ally averaged daily PM2.5 (̃y, µg m−3) on the daily PC values
(Uj ) for 2014–2017, both for the whole period and for indi-
vidual seasons:

ỹ (t)=
∑N

j=1
βjUj (t), (5)

where βj is the regression coefficient (µg m−3), and N the
number of PCs retained after truncation (mostly 3 to 4).

We define a dominant meteorological mode seasonally or
annually by computing the ratio of the resulting regression
sum of squares (SSRj ) to total sum of squares (SST) for each
PC:

R2
synoptic, j =

SSRj
SST

=

∑
t [βjUj (t)]

2∑
t [y(t)]

2 . (6)

This ratio characterizes the fraction of variance of daily
PM2.5 that can be explained by the j th PC in the PCR model.
The PC with the largest SSR/SST is deemed the dominant
meteorological mode for that region. Any PC which has an
SSR/SST more than half of that of the dominant PC in a given
season is also recognized as an important PC for that region.
The total percentage of PM2.5 variability explained by the K
dominant synoptic modes in a region can be written as

R2
synoptic =

∑K

j
R2

synoptic,j . (7)

The PCR model also allows us to separate between syn-
optically driven and locally driven PM2.5 variability from
the total meteorologically driven PM2.5 variability. Regress-
ing PM2.5 using all eight individual meteorological variables
yields a total R2 value, which entails both synoptically and
locally driven PM2.5 variability, as discussed in Sect. 3. Us-
ing R2 and R2

synoptic from the PCR model, we can infer the
variability explained by local meteorology alone unrelated to
synoptic modes, using

R2
local = R

2
−R2

synoptic, (8)

where R2
local indicates the overall locally driven PM2.5 vari-

ability.
Here we discuss the synoptic meteorological systems that

dominate PM2.5 variability on annual timescales for each re-
gion. Discussion of regimes that control PM2.5 on seasonal
timescales, as well as information on the values of SSR/SST
and β, is included in the Supplement. We also note that in
our interpretation, we focus only on the physical effects of
meteorological phenomena. Non-physical drivers such as an-
thropogenic emissions can be correlated with meteorology to
some extent (e.g., cold weather leading to higher emissions
from heating); such effects, if any, would be encapsulated in
the statistical model, but are difficult to diagnose explicitly
due to a lack of corresponding data.

Figure 3 shows the dominant meteorological mode in
BTH, which explains nearly 36 % of PM2.5 variability
throughout the year. Figure 3a shows a strong anticorrela-
tion between the time series of this mode and deseasonal-
ized observed total PM2.5 for the sample month of Decem-
ber 2014. Figure 3b shows the meteorological composition
of the EOF of this annually dominant mode, with a positive
phase consisting of low temperature, high SLP, and strong
northwesterly winds. The error bars represent two standard
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Figure 3. Annually dominant meteorological mode for observed PM2.5 variability in Beijing–Tianjin–Hebei (BTH). (a) Time series of
deseasonalized observed total PM2.5 concentrations and the principal component (PC) time series in the sample month of December 2014.
(b) Composition of this mode as determined by the coefficients αkj , with error bars showing 2 standard deviations of the eigenvector
coefficients. Meteorological variables are listed in Table 1. (c) Synoptic weather map on 30 December 2014 with temperature (K) as shaded
colors, wind speed (m s−1) as vectors, and sea level pressure (hPa) as contours. The rectangle indicates BTH. The weather map, which shows
an example of positive influence of the mode, is plotted using NCEP/NCAR reanalysis I data.

errors of the meteorological composition, computed by the
formula shown in Sect. S1 in the Supplement. Similar load-
ings are seen for winter, spring, and fall. We choose 30 De-
cember 2014 as a representative day with PC changing from
negative to positive phase to explain the physical meaning of
this PC. As seen in the weather map (Fig. 3c), the positive
phase of the PC represents a high-pressure system associated
with the Siberian High with dry cold fronts sweeping across
BTH from northwest to southeast. The Siberian High is the
driver of the winter monsoon in East Asia, and such north-
westerly flow efficiently advects PM2.5 across BTH. Fig-
ure 3c shows a strongly decreasing temperature gradient and
increasing pressure tendency originating from the Siberian
High. PM2.5 concentration decreases by nearly 240 µg m−3

over 29 to 31 December (Fig. 3a). Regressing PM2.5 on all
eight individual meteorological variables yields an R2 value
of 43 %, indicating that local meteorology only contributes
to an extra 7 % of the PM2.5 variability in addition to that al-
ready explained by synoptic circulation. In addition to cold

fronts from the Siberian High, easterly onshore flow with
high humidity and southerly monsoon also controls daily
PM2.5 variability in spring and summer, explaining 18 and
17 % springtime and summertime variability of PM2.5, re-
spectively (see Sect. S2).

Figure 4 shows the dominant mode in YRD. This mode
is important in spring, fall, and winter, and contributes up to
14 % of the PM2.5 variability for the whole year. The two
time series of the PC and PM2.5 demonstrate anticorrelation
with each other in March 2015 (Fig. 4a). The positive phase
of this mode consists of low temperature, high RH and rain-
fall, high and decreasing pressure, and strong easterly winds
(Fig. 4b). This set of meteorological phenomena is charac-
teristic of onshore flow with rainfall, as demonstrated by the
weather map on 25 March 2015, which shows cold and moist
easterly winds originated from the high pressure centered
over the East China Sea. Such winds sweep away pollutants
and decrease PM2.5 concentration by 30 µg m−3 (Fig. 4c),
and the associated rainfall also wash out PM2.5. The nega-
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Figure 4. Same as Fig. 3 but for the Yangtze River Delta (YRD). (a) Deseasonalized total PM2.5 concentrations and the PC time series in the
sample month of March 2015. (b) Composition of this dominant mode as determined by the coefficients αkj . (c–d) Synoptic weather charts
on 25 and 18 March 2015, with precipitation (mm d−1) shown as shaded colors, wind speed (m s−1) as vectors, and sea level pressure (hPa)
as contours. Panel (c) shows the positive influence characterized by onshore wind with rainfall that corresponds to decreasing PM2.5, while
panel (d) shows the negative influence with little wind on YRD. The rectangles indicate YRD.

tive phase of this mode, as represented on 18 March 2015,
shows anticyclonic flow leading to accumulation of PM2.5
(Fig. 4d). Local meteorology is found to contribute to an
additional 11 % of the PM2.5 variability on top of that ex-
plained by synoptic effects. In addition to onshore flow, PCA
for summer alone indicates that summertime low-pressure
systems also deplete PM2.5, likely due to the associated pre-
cipitation, explaining 24 % of summertime PM2.5 variabil-
ity. This PC is also sometimes characterized by northward-
propagating tropical cyclones, with strong wind and rainfall
(see Sect. S3).

Figure 5 shows the dominant mode for explaining PM2.5
variability in PRD. This mode is dominant in spring, fall, and
winter, and in total contributes 22 % of variability in PM2.5
throughout the year. Figure 5a reveals a negative correlation
between the PC for this mode and PM2.5 in October 2014.
The positive phase of this mode consists of high RH, pre-
cipitation, increasing pressure, and strong northerly winds

(Fig. 5b). This set of meteorological phenomena represents
a cold frontal rainstorm, as demonstrated by the weather
map in Fig. 5c, which shows a frontal rain belt coinciding
with the positive phase of the PC on 21 October 2014. Pres-
sure contours were advected southward by northerly winds,
and a regional rain belt brought maximum rainfall of up to
15 mm d−1 to southern China. In general for this mode, ad-
vancing cold air sweeps from north to south and lifts the
warmer and moister air, leading to precipitation and some-
times thunderstorms. Annually, regressing PM2.5 on individ-
ual meteorological variables yields an R2 value of 33 %; thus
local meteorology contributes to an extra 11 % of PM2.5 vari-
ability unexplained by synoptic circulation. In addition to
cold frontal rainstorms, summertime PCA also shows that
the air quality in summer PRD is also influenced by rainfall
from low-pressure troughs as well as by landfalls of tropi-
cal cyclones (see Figs. S11, S12). These two modes explain
18 and 15 % of summertime PM2.5 variability, respectively.
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Figure 5. Same as Fig. 3 but for fall in the Pearl River Delta (PRD). (a) Deseasonalized total PM2.5 concentrations and the PC time series
in the sample month of October 2014. (b) Composition of this dominant mode as measured by the coefficients αkj . (c) Synoptic weather
map on 21 October 2014, corresponding to the positive influence from the mode, with precipitation (mm d−1) as shaded colors, wind speed
(m s−1) as vectors, and sea level pressure (hPa) as contours. The rectangle indicates PRD.

The troughs cause rainfall that scavenges pollutants; tropi-
cal cyclones making landfall to the east of PRD cause inver-
sion layers that trap pollutants and degrade air quality (see
Sect. S4).

Figure 6 shows the dominant mode in SCB in winter,
which has a negative correlation with PM2.5, as shown for
the sample month of January 2015 (Fig. 6a). This mode dom-
inates PM2.5 variability year-round, explaining 25 % of its
day-to-day variability. PCA shows that its positive phase is
characterized by low temperature, high SLP, and weak north-
westerly winds (Fig. 6b), which resembles the dominant EOF
in BTH. This mode is characterized by a northwesterly flow
also associated with the Siberian High. On 29 January 2015,
the Siberian High was situated southeast of Lake Baikal
(Fig. 6c), advecting a clean, northwesterly cold front toward
SCB and ventilating PM2.5 by 150 µg m−3 over 25 to 29 Jan-
uary. On 24 January, this mode was in its negative phase and
SCB was under a relatively mild weather (Fig. 6d), while
PM2.5 was at a local maximum (Fig. 6a). Annually, local
meteorology contributes to another 20 % of the total PM2.5
variability. In addition to cold frontal passages, rainfall also
drives PM2.5 variability especially in winter and spring, ex-

plaining 18 and 16 % of wintertime and springtime PM2.5
variability, respectively. This mode represents a cold frontal
rain system that promotes wet deposition of pollutants (see
Sect. S5).

5 Synoptic frequency and local meteorology as metrics
for climate change impact on PM2.5

Future climate change can significantly affect synoptic-scale
circulation patterns and local meteorology, modifying the
transport and deposition of PM2.5 (Fiore et al., 2015; Jiang et
al., 2013; Mickley et al., 2004). Based on the demonstrated
strong relationships of synoptic circulation and local meteo-
rology on daily PM2.5, we build a regression model to infer
how interannual variations of local and synoptic meteorol-
ogy affect interannual PM2.5 variability, which we then ap-
ply to future climate projections. This approach allows us to
evaluate the potential impacts of climate change on PM2.5
air quality. Here we adopt the PCA spectral analysis ap-
proach, namely, to apply a fast Fourier transform (FFT) to
the daily time series of the dominant PCs for all seasons
to extract the median frequencies from the resulting spec-
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Figure 6. Same as Fig. 3 but for winter in the Sichuan Basin (SCB). (a) Deseasonalized total PM2.5 concentrations and the PC time series
in the sample month of January 2015. (b) Composition of this dominant mode as measured by the coefficients αkj . (c–d) Synoptic weather
maps on 29 and 24 January 2015. Panel (c) shows the positive influence characterized by a cold front from the Siberian High that advects
PM2.5 away, while panel (d) shows the negative influence characterized by stagnation over SCB. Temperature (K) is shown as shaded colors,
wind speed (m s−1) as vectors, and sea level pressure (hPa) as contours. The rectangles indicate SCB.

tra. We use the same PCs generated using the 1998–2017
NCEP/NCAR meteorological data (Sect. 4), and smooth the
resulting FFT spectra with a second-order autoregressive fil-
ter (Wilks, 2011). We focus on BTH as a case study. For ex-
ample, spectral analysis shows that the Siberian High fluctu-
ates between 58 and 67 times per year on average, and has a
climatological frequency of 63 times per year averaged over
1998–2015.

Satellite-retrieved PM2.5 has large uncertainties in sea-
sonal mean values, and thus we make use of only the annual
mean PM2.5 values for building our regression model. We
construct a multiple linear regression (MLR) model for the
1998–2015 satellite-retrieved annual mean PM2.5 over BTH
by spatially averaging the grid boxes covering the region. In
selecting predictor variables, we consider the annual mean
local meteorological variables in Table 1 (except SLP ten-
dency,X5, and the two wind direction indicators,X7 andX8,
whose averages are often nearly zero) and the annual median
frequencies of synoptic circulation patterns from all individ-
ual seasons diagnosed from spectral analysis. The predictand
(annual mean PM2.5) and potential predictors are detrended

by subtracting from them the respective 7-year moving av-
erages in order to remove long-term trends driven by emis-
sion changes. We adopt a forward selection approach (Wilks,
2011) to identify which climatic variables explain the great-
est amount of interannual PM2.5 variability, starting from the
one explaining the largest percentage of PM2.5 variability
(having the largest adjusted R2 value), and adding predictor
variables until the enhancement in adjusted R2 given by an
additional predictor is less than 0.05. Variables that lead to a
large variance inflation factor (> 2) are also excluded to avoid
the issue of multicollinearity, which often leads to higher im-
precision of regression estimates. Typically the forward se-
lection algorithm does not yield more than three predictor
variables for interannual PM2.5 variability.

Table 2 shows the interannual PM2.5 variability explained
by the predictors, the corresponding regression coefficients
and the p values for the BTH region. The two predictors se-
lected by the forward selection algorithm are the frequency
of the first PC in spring (i.e., the springtime Siberian High,
Fig. S5) and annual mean RH. Figure 7 shows the correla-
tion of detrended annual mean PM2.5 with detrended annual
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Figure 7. Detrended annual mean total PM2.5 concentration and climate variables chosen by the forward selection model of 1998–2015,
including (a) annual mean frequency of springtime Siberian High (r =−0.51) and (b) relative humidity (r = 0.49). Annual mean surface
PM2.5 concentrations are derived from satellite AOD by van Donkelaar et al. (2016). All variables are detrended by subtracting the 7-year
moving averages from the annual mean values.

Table 2. Regression model that explains interannual variability of satellite-derived PM2.5 in Beijing–Tianjin–Hebei (BTH).

Frequency of springtime Relative
Siberian High humidity

PM2.5 sensitivity −0.31 µg m−3 yr 1.00 µg m−3 %−1

Standard error ±0.16 µg m−3 yr ±0.57 µg m−3 %−1

p value for each predictor 0.0776 0.0977

Adjusted R2 value 0.309
F statistic 4.81
Total p value 0.0244

mean RH and the frequency of fluctuation of the spring-
time Siberian High. The negative correlation (r =−0.51)
between springtime PC frequency and annual PM2.5 indi-
cates that more frequent occurrences of cold advection from
the high-pressure systems further north, especially during
spring, help ventilate PM2.5 in BTH and influence annual
mean PM2.5 here. This is consistent with the relationship
we found between PM2.5 and Siberian High on the daily
timescale (Sect. 4). Annual mean RH has a positive correla-
tion with PM2.5 (r = 0.49), which is consistent with Sect. 3
where we found higher RH coinciding with higher PM2.5 on
the daily timescale. Adding RH helps explain an additional
9 % of interannual PM2.5 variability, and the two predictors
in total give an adjusted R2 value of 31 %, which represents
a reasonably high value for a linear model, given that non-
linear PM2.5–meteorology interactions and emission-driven
PM2.5 variability are not included in the model. Although
temperature has a strong daily correlation of r = 0.6 with
PM2.5 in the correlation analysis in Sect. 3, annual mean tem-
perature does not appear to correlate significantly with an-
nual mean PM2.5 (r = 0.18) and was not selected by the for-
ward selection algorithm. Annual mean temperature also has
a weak correlation with springtime Siberian High fluctuation
frequency (r =−0.25), which indicates that more frequent
synoptic fluctuations have only little bearing on annual mean

temperature, and that the strong daily PM2.5–temperature co-
variation is mostly a manifestation of synoptic influence. All
other annual mean local meteorological variables have in-
significant correlations with annual mean PM2.5.

Our findings show that meteorological effects on daily
PM2.5 at least in part contribute to interannual variability
PM2.5, a finding which we can utilize to estimate future
changes in PM2.5. To this end, we extract the meteorologi-
cal variables in Table 1 from the results of 15 models in the
Climate Model Intercomparison Project Phase 5 (CMIP5) for
1996–2005 and 2046–2055 under the RCP8.5 scenario (Ta-
ble S1). This scenario represents a business-as-usual future.
We diagnose the 2000–2050 changes in the decadal averages
of these variables and the median frequencies of the con-
structed PCs (Fig. 8a). To obtain an ensemble mean and dis-
tribution of the meteorological changes (Fig. 8b), we apply
the weighting algorithm of Tebaldi et al. (2005) to the CMIP5
model outputs, which can discount any poorly performing
models yielding meteorology that diverges from the present-
day observations (using NCEP/NCAR reanalysis data in this
study) or that diverges too much from the weighted ensemble
mean, by giving those models a lower weight in the calcula-
tion of the ensemble mean and distribution.

We combine the meteorological changes with the PM2.5-
to-climate sensitivities (i.e., regression coefficients in Ta-
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Figure 8. Projected changes in PM2.5 from 2000 to 2050, as cal-
culated from meteorological outputs from the CMIP5 model en-
semble. (a) Future projections of mean relative humidity (RH, %)
and median synoptic frequency of springtime Siberian High (yr−1)
as computed by 15 CMIP5 models. (b) Statistical distributions
of CMIP5-projected RH and synoptic frequency as computed by
model weighting algorithm of Tebaldi et al. (2005). (c) Changes in
PM2.5 (µg m−3) from 2000 to 2050 based on climate projections
from 15 models and statistical sensitivities from our multiple linear
regression model. (d) Statistical distributions of projected PM2.5
based on Monte Carlo sampling of all possible uncertainty spaces.
Dashed lines indicates the simple ensemble mean of the changes,
red dots indicate positive changes, and blue dots indicate negative
changes. The label “RH” indicates changes associated with rela-
tive humidity, “freq” indicates changes associated with frequency
of cold fronts from the Siberian High, and “total” denotes the sum
of the two.

ble 2) to obtain an estimate for the 2000–2050 change in
annual mean PM2.5 due to climate change alone (Fig. 8c),
according to the following formula:

1PM2.5 =
∑N

i

∂PM2.5

∂xi
1xi, (9)

where 1PM2.5 is the total PM2.5 change due to climate
change, N is the total number of predictors selected by the
forward selection algorithm, and1xi is the change of the ith
predictor selected by the algorithm. Here we make the “sta-
tionarity” assumption that the PM2.5-to-climate sensitivities,
∂PM2.5/∂xi , remain unchanged in the near future, such that
1PM2.5 is totally due to changes in future meteorology. We
then use a Monte Carlo approach to characterize the proba-
bility distribution and statistical significance of the changes
in PM2.5 concentration arising from the uncertainties of the
regression coefficients in the MLR model and from the dif-
ferences in model physics among CMIP5 models. Our ap-
proach involves repeated (> 5000 times) sampling of regres-

sion coefficients of the MLR model from their distributions
as parameterized by the means and standard errors in Ta-
ble 2, along with the sampling of the performance-weighted
ensemble distributions of meteorological changes from the
Tebaldi et al. (2005) algorithm. The sampling distributions
are aggregated in accordance with Eq. (9) to obtain the fi-
nal distributions of PM2.5 changes for each predictor and the
sum of the two (Fig. 8d).

Figure 8 shows the future changes of PM2.5 concentra-
tions with the corresponding changes in future meteorology.
Changes in RH among CMIP5 models show high inconsis-
tency, with values ranging from −2.01 to +3.19 % (Fig. 8a).
The ensemble mean of CMIP5 models shows a statistically
insignificant increase (p value= 0.32) of RH of 0.23± 1.24
percentage points by 2050s in BTH (Fig. 8b), consistent with
a future prediction of a change within < 1 % over BTH in
the Fifth Assessment Report of Intergovernmental Panel on
Climate Change (IPCC AR5; Fig. 12.21 in Collins et al.,
2013). Past modeling studies show that RH remains nearly
constant on climatological timescales and continental spatial
scales (Randall et al., 2007), while recent investigation shows
that near-surface RH decreases over most land areas globally
(O’Gorman and Muller, 2010). IPCC AR5 (2013) shows that
the regional mean RH in BTH changes by less than 1 stan-
dard deviation of interannual variability by year 2065, and
the variability is dominated more by naturally occurring pro-
cesses than by human activities.

We find that 10 of the 15 models project an increase
in this synoptic frequency (Fig. 8a). Based on the weight-
ing algorithm for discounting poorly performing models,
we project an overall very likely (i.e., 90–100 % likelihood
according to IPCC guideline in Stocker et al., 2013) sta-
tistically significant increase (p value= 0.0008) in the fre-
quency of synoptic-scale fluctuation of the Siberian High by
1.46± 0.39 yr−1 by the 2050s (Fig. 8b). The generally in-
creasing frequency is possibly driven by the future reduction
in meridional temperature gradient, which decreases the in-
tensity of the midlatitude jets and favors the amplification
and persistence of surface anticyclones (e.g., Francis and
Vavrus, 2012; Zhang et al., 2012). Francis and Vavrus (2012)
showed that the upper tropospheric midlatitude jet (in the
form of Rossby wave) exhibited reduced zonal velocity and
augmented wave amplitude under warming over 1979–2010,
which may have led to an increase in atmospheric blocking
events (Barriopedro et al., 2006) and an enhancement in the
likelihood of cold surges from the Siberian High. In another
multi-model study, Park et al. (2011), however, found no sig-
nificant correlation between cold surge occurrences and sur-
face air temperature over East Asia, and thereby concluded
that cold surge occurrences would remain constant in fre-
quency under a warming climate. Our results based on PCA
spectral analysis show a modest increase instead of unchang-
ing frequency in synoptic-scale fluctuation of the Siberian
High in the future.
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Figure 8c and d show the corresponding future PM2.5
changes from the baseline value of 57.2 µg m−3 in the 2000s.
Across the model results, we find an overall PM2.5 change of
0.21 to +1.79 µg m−3 due to changing RH, and of −0.29 to
0.63 µg m−3 due to changing synoptic frequency (Fig. 8c).
From the Monte Carlo sampling of the performance-
weighted distribution of meteorological changes and un-
certainties of statistical parameters, the RH-induced PM2.5
change is 0.21± 1.44 µg m−3 (p value= 0.58), and the
frequency-induced PM2.5 change is −0.46± 0.28 µg m−3

(p value= 0.028, 97 % likelihood; Fig. 8d). While the RH-
induced PM2.5 change is statistically insignificant and its
sign inconclusive, we show that the higher frequency of fluc-
tuation in the Siberian High alone, through enhancing cold
frontal frequency, could lead to a very likely reduction in an-
nual mean PM2.5 and thus constitute a slight climate “ben-
efit” for PM2.5 air quality over BTH of China. We find that
the greatest uncertainty stems from large inter-model differ-
ences in the future projections of RH and, which are much
larger than those in the synoptic frequency projections. The
regression coefficients have relatively moderate standard er-
rors (Table 2) and contribute only little to the overall projec-
tion uncertainty.

6 Conclusions and discussion

In this study we use a combination of multivariate statisti-
cal methods to investigate the local and synoptic meteoro-
logical effects on daily and interannual variability of PM2.5
in China. Based on the resulting statistical relationships be-
tween PM2.5 with annual mean meteorological variables and
synoptic frequencies, we also project future PM2.5 changes
in the Beijing–Tianjin–Hebei (BTH) region. First, we find
strong correlations between daily observed PM2.5 and indi-
vidual meteorological variables in China over 2014–2017,
and the spatial patterns of correlations suggest common asso-
ciation of these variables with synoptic circulation and trans-
port. We therefore apply PCA on spatially averaged meteoro-
logical variables for four major metropolitan regions (BTH,
YRD, PRD, SCB) for 1998–2017 (for all seasons and for the
whole period) to diagnose the dominant synoptic meteoro-
logical modes, and the time series of these modes are used
as predictor variables in an MLR model to explain day-to-
day PM2.5 variability for each region. We find that, in BTH,
the presence of the Siberian High strongly controls PM2.5
levels. Northerly monsoonal flows and advecting cold fronts
from the Siberian High play key roles in ventilating PM2.5
in BTH for all seasons except JJA. In YRD, onshore wind
with precipitation from the East China Sea is the dominant
meteorological mode, effectively scavenging PM2.5 for all
seasons except JJA. In PRD, frontal rain is a key driver re-
ducing PM2.5 by wet deposition for all seasons except JJA.
In SCB, the Siberian High plays a key role in bringing clean
air from the north that effectively dilutes pollution for all sea-

sons. Different synoptic meteorological regimes in different
seasons explain about 16–37 % of PM2.5 variability in 2014–
2017.

We further show that the long-term fluctuations in the fre-
quencies of the dominant synoptic modes also shape inter-
annual variability of PM2.5. Using the BTH region as a case
study, we use regionally averaged annual mean local mete-
orological variables and annual median frequencies of the
dominant synoptic modes of all individual seasons as po-
tential predictors in a forward-selection MLR model to ex-
plain the interannual variability of satellite-derived annual
mean PM2.5 over 1998–2015. The forward selection model
finds two significant predictors, namely, the frequency of
springtime frontal passages (which indicates the interannual
fluctuation in the strength of the Siberian High) and an-
nual mean RH, with observed PM2.5-to-climate sensitivi-
ties of −0.31± 0.16 µg m−3 yr and 1.00± 0.57 µg m−3 %−1,
which together explain 31 % of the variability of annual mean
PM2.5. The signs of correlations between PM2.5 and the two
predictors are also consistent with that from the daily PC
regression analysis, showing a broad consistency in PM2.5–
meteorology relationships across different timescales.

We further address the effect of 1996–2055 climate change
on future PM2.5 air quality, using an ensemble of 15 CMIP5
climate model outputs under the RCP8.5 scenario. Ten out
of 15 models show an increase in the frequency of strength
fluctuation of the Siberian High with an ensemble mean of
1.46 yr−1. Nine out of 15 models show a statistically insignif-
icant change in future RH. Inter-model differences in the pro-
jected changes in RH are much larger than that in synop-
tic frequency of fluctuation in the Siberian High, owing to
the high inconsistency in future projections of atmospheric
humidity, especially on a regional scale (IPCC, 2013). We
combine the ensemble projection of RH and synoptic fre-
quency with the PM2.5-to-climate sensitivity from our sta-
tistical model to project future PM2.5 changes, with uncer-
tainties quantified using a Monte Carlo approach. While
the RH-induced PM2.5 change is insignificant and incon-
clusive, we project for the 2050s a statistically significant
and very likely (∼ 97 % likelihood) decrease in PM2.5 of
−0.46± 0.28 µg m−3 due to increasing frequency in the fluc-
tuation of the Siberian High. The overall projection is in-
conclusive mostly due to the highly uncertain RH projec-
tions. Our prediction is comparable in magnitude with other
studies (e.g., Jiang et al., 2013) and predictions for the USA
(Shen et al., 2017; Tai et al., 2012b; Pye et al., 2009; Avise
et al., 2009) and Europe (Juda-Rezler et al., 2012), but much
smaller in magnitude compared with the baseline value of
57.2 µg m−3 in the 2000s, suggesting that the “climate bene-
fit” from higher synoptic frequency is rather small especially
in comparison with what emission control efforts could do to
curb PM2.5 concentrations in China. Jiang et al. (2013) pro-
jected changes of PM2.5 over China due to climate change
alone under IPCC A1B scenario, and the resulting change
over BTH is about +1 µg m−3 averaged annually. They at-
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tributed their predictions to (1) changing precipitation that
leads to a change in wet deposition and (2) increasing tem-
perature that results in more volatilization of nitrate and am-
monium, which differs from our conclusion that cold frontal
ventilation dominates the PM2.5–temperature correlation and
total PM2.5 response. Our statistical results (for BTH only)
do not show significant relationships between temperature
and PM2.5 (r = 0.18) nor between rainfall and PM2.5 (r =
0.20) on an interannual timescale, despite strong correlations
on a daily timescale. This discrepancy between empirical re-
sults and process-based model results may stem from the
inadequacy of satellite-derived PM2.5 in capturing the vari-
ability caused by volatilization effect, an inadequate process-
based model representation of the PM2.5–temperature rela-
tionship (Shen et al., 2017), and from the uncertainty in emis-
sions of PM precursors in the process-based model.

There are two major limitations of the statistical approach
developed in this study. First, due to accuracy constraints of
the satellite-derived PM2.5 concentrations, we could only use
annual mean PM2.5 instead of seasonal mean PM2.5 as the
basis for interannual regression and future projections. Shen
et al. (2017) showed that PM2.5 responds to meteorologi-
cal conditions differently in different seasons in the US. Due
to the short period of surface monitoring data (see Sect. 2),
we rely on the annual mean satellite-derived PM2.5 with no
seasonality in this study, and thus no seasonal predictions
of PM2.5 are possible. Another limitation is that the statis-
tical projections rely on the stationarity assumption that the
PM2.5-to-climate sensitivities will be more or less constant in
the future (see Eq. 7). This assumption may be acceptable for
near-future projections (Fiore et al., 2012; IPCC, 2013), but
it is less reliable for multidecadal projections especially as
significant changes in emission levels may alter the chemical
nature of total PM2.5 and thus the interactions with meteo-
rology. While process-based modeling studies of the future
evolution of PM2.5–meteorology relationships under varying
levels of emissions in China are highly warranted, the empiri-
cal relationships as diagnosed from investigation of historical
data in this study are valuable in providing a basis for testing
and validating the process-based model sensitivities of PM2.5
air quality to climate change.

Data availability. Data used in this study, including site-
interpolated daily mean PM2.5, NCEP/NCAR Reanlaysis I
meteorological data, and satellite-derived annual mean PM2.5, are
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any questions regarding the data, can be directed to the principal
investigator, Amos P. K. Tai (amostai@cuhk.edu.hk).
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