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Abstract. Associativity analysis is a powerful tool to deal
with large-scale datasets by clustering the data on the basis of
(dis)similarity and can be used to assess the efficacy and de-
sign of air quality monitoring networks. We describe here our
use of Kolmogorov–Zurbenko filtering and hierarchical clus-
tering of NO2 and SO2 passive and continuous monitoring
data to analyse and optimize air quality networks for these
species in the province of Alberta, Canada. The methodol-
ogy applied in this study assesses dissimilarity between mon-
itoring station time series based on two metrics: 1−R, R

being the Pearson correlation coefficient, and the Euclidean
distance; we find that both should be used in evaluating mon-
itoring site similarity. We have combined the analytic power
of hierarchical clustering with the spatial information pro-
vided by deterministic air quality model results, using the
gridded time series of model output as potential station lo-
cations, as a proxy for assessing monitoring network design
and for network optimization. We demonstrate that cluster-
ing results depend on the air contaminant analysed, reflecting
the difference in the respective emission sources of SO2 and
NO2 in the region under study. Our work shows that much of
the signal identifying the sources of NO2 and SO2 emissions
resides in shorter timescales (hourly to daily) due to short-
term variation of concentrations and that longer-term aver-
ages in data collection may lose the information needed to
identify local sources. However, the methodology identifies
stations mainly influenced by seasonality, if larger timescales
(weekly to monthly) are considered. We have performed the
first dissimilarity analysis based on gridded air quality model
output and have shown that the methodology is capable of
generating maps of subregions within which a single station

will represent the entire subregion, to a given level of dissim-
ilarity. We have also shown that our approach is capable of
identifying different sampling methodologies as well as out-
liers (stations’ time series which are markedly different from
all others in a given dataset).

1 Introduction

Air quality monitoring networks are established to obtain ob-
jective, reliable, and comparable information on the air qual-
ity of a specific area, and they serve the purposes of sup-
porting measures to reduce impacts on human health and the
natural environment, monitoring specific sources, and docu-
menting air quality trends over time. Typically, the site loca-
tion of an air quality monitoring network may be determined
in response to regulations enforced by government-regulated
agencies (e.g. EEA, 1997; US-EPA, 2008) and requires at
least some a priori knowledge of the expected concentrations
and concentration gradients of the pollutants of interest. The
latter are highly dependent on the spatial and temporal distri-
bution and magnitude of the emission sources, the physical
and chemical properties of the emitted substance, and atmo-
spheric conditions. The extent to which stations are acces-
sible and the availability of electrical power are additional
considerations in monitoring network design. However, rec-
ommendations regarding the optimum location and number
of monitoring stations may also be achieved by the scientific
analysis of existing data. For example, statistical methods
making use of existing data have been used to recommend the
number and location of monitoring stations required in a net-

Published by Copernicus Publications on behalf of the European Geosciences Union.



6544 J. Soares et al.: The use of hierarchical clustering

work (e.g. Lindley, 1956; Rhoades, 1973; Husain and Khan,
1983; Caselton and Zidek, 1984). Analytical tools such as
Gaussian and Eulerian deterministic dispersion models may
also be used to identify possible site locations (e.g. Bauldauf
et al., 2002; Mazzeo and Venegas, 2008; Mofarrah and Hu-
sain, 2009; Zheng et al., 2011). More recently, the spatial
distribution of measured pollutants combined with geostatis-
tical modelling has been used to analyse station data (e.g.
Cocheo et al., 2008; Lozano et al., 2009; Ferradás et al.,
2010; Zhuang and Liu, 2011).

Cluster analysis is a good example of an analysis approach
which assumes, like many statistical methods, that the data
analysed contain a certain degree of redundant information,
which in turn may be used to describe degrees of similar-
ity or dissimilarity between data records from those stations.
Typically applied to large and complex air quality databases
to identify spatial patterns based on a metric describing the
degree of (dis)similarity between data time series from dif-
ferent stations, cluster analysis (Everitt, et al., 2011) may
be used for source identification and network station density
optimization, with a minimum loss of information (Munn,
1981). Hierarchical clustering is a well-established associa-
tivity analysis methodology used to determine the inherent
or natural groupings of objects and/or to provide a summa-
rization of data into groups (Johnson and Wicherrn, 2007).
The theoretical basis of hierarchical clustering has the ad-
vantage of making no assumptions regarding the mutual in-
dependence of samples and does not require examining all
clustering possibilities. The similarity among members is es-
tablished by a distance metric or function, which is used to
create a similarity matrix in which data are cross-compared
using the metric. This is followed by operations on the sim-
ilarity matrix which group data according to their degree
of (dis)similarity with respect to that metric. Many studies
have aimed to quantify the spatial similarities among mon-
itoring sites in terms of concentration levels and time vari-
ation by applying, respectively, the Euclidean distance and
correlation coefficient as similarity metrics. Studies such as
Lavecchia et al. (1996), Gabusi and Volta (2005), Gramsh et
al. (2006), Lu et al. (2006), and Giri et al. (2007) applied
these metrics for analysing the spatial and temporal distri-
bution of air contaminants in cities or regions and present
possible links between those concentrations with specific
sources, topography, or meteorological patterns. The major-
ity of these studies focused on ozone (O3) and particulate
matter (PM). Saksena et al. (2003) applied the methodol-
ogy to nitrogen dioxide (NO2) and sulfur dioxide (SO2),
Ionescu et al. (2000) to NO2, Hopke et al. (1976) and McGre-
gor (1996) to SO2, and Ignaccolo et al. (2008) to PM10, NO2,
and O3. Cluster analysis has also been suggested for monitor-
ing network optimization, including station redundancy anal-
ysis in studies such as Ortuño et al. (2005) for CO, Jaimes et
al. (2005) and Ibarra-Berastegi et al. (2010) for SO2, Omar
et al. (2005) for aerosol optical properties, Pires et al. (2008)
for O3 and PM, and Iizuka et al. (2014) for nitrogen oxides

(NOx), photochemical oxidant (Ox), non-methane hydrocar-
bons (NMHC), and PM. In this past work, cluster analysis
is usually applied to a small number of stations (5 to 70)
in different locations around the globe. Solazzo and Gal-
marini (2015) applied cluster analysis data showing that clus-
ter analysis can potentially accommodate different sampling
technologies and could be applied for large areas without the
need of prior knowledge of the study area. Note that the data
were pre-filtered by iterative moving averages (Kolmogorov–
Zurbenko (KZ) filtering; Zurbenko, 1986) to assess the sim-
ilarity of the spectral components of the hourly time se-
ries, independent of station location or monitoring technol-
ogy employed, without a requirement of prior knowledge
of the study area. Their analysis investigated the extent to
which concentration time series similarities between the air
quality monitoring stations were defined by areas with spe-
cific chemical regimes and/or predominant air masses versus
by country borders and/or monitoring network jurisdiction.
The latter were identified as resulting from differences in
monitoring methodology, reducing comparability of the data
across those borders and jurisdictions.

Monitoring of air quality within and downwind of the
oil sands region is a key concern with the provincial and
federal governments of Canada. In order to better quantify
emissions, downwind chemical transformation, and down-
wind fate of emitted chemicals from this region, the govern-
ments of Canada and Alberta set up the Joint Oil Sands Mon-
itoring (JOSM) Plan to “improve, consolidate and integrate
the existing disparate monitoring arrangements into a single,
transparent government-led approach with a strong scientific
base” (JOSM, 2016). A key part of this overall framework
was to develop methodologies to assess the consistency and
spatial representativeness of the existing air quality network
of the province of Alberta. The assessment presented here is
based on the associativity analysis described in the work of
Solazzo and Galmarini (2015) and references therein and fur-
ther expands that methodology to focus on monitoring net-
work optimization. We use the methodology for the first time
for observation datasets collected in Alberta, analysing the
data using two different similarity metrics, and rank existing
observation stations based on relative station redundancy. We
then extend the methodology to a new application of gridded
air quality model data – showing that time series from a de-
terministic air quality model (Global Environmental Multi-
scale – Modelling Air-quality and Chemistry; GEM-MACH)
may be used as a surrogate for observations in air quality
clustering analysis. Dissimilarity may thus be used to rank
stations in terms of potential redundancy; here we define re-
dundancy as the relative dissimilarity level at which a station
joins a cluster. Stations with the lowest levels of dissimilarity
may hence be considered sufficiently similar to be considered
potentially redundant.

In addition, we apply the same methodology to time se-
ries from a deterministic air quality forecast model (GEM-
MACH) and assess the extent to which the model output can
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be used as a potential surrogate for observations in clustering
analysis. The combined use of the model and clustering anal-
ysis is shown to be a potentially powerful tool for network
design and/or optimization of existing air quality networks.

We introduce the methodology to assess potential redun-
dancy of monitoring stations (Sect. 2) and describe the ob-
servational and model data used to develop the methodol-
ogy (Sect. 3). In subsequent sections we present the associa-
tivity analysis for the continuous monitoring (Sect. 4) and
discuss how the methodology can be used to identify differ-
ent sampling methodologies (Sect. 5). We then show how
the same methodology may be used with output from an
air quality model. With favourable comparisons to cluster-
ing results from air quality monitoring station observations,
we show that model output combined with hierarchical clus-
tering provides a new approach for monitoring network de-
sign (Sect. 6). We also discuss potential factors impacting
the methodology (Sect. 7) and our conclusions are drawn in
Sect. 8.

2 Monitoring and air quality model data

2.1 Study area

Alberta, one of the western provinces of Canada (Fig. 1),
is the largest producer of conventional crude oil, synthetic
crude and natural gas and gas products in Canada, and is
home to one of the world’s largest deposits of oil sand (a
mixture of clay, sand, water, and bitumen; CAPP, 2018). The
monitoring of atmospheric pollutants and the provision of
public information on air quality in Alberta is carried out
by non-profit organizations called “airsheds”; these organiza-
tions are responsible for air pollution monitoring in specified
subregions of the province. Figure 1b shows the spatial dis-
tribution of these monitoring networks within the province,
as well as the largest NO2 and SO2 stack emission sources
(National Pollutant Release Inventory, NPRI, 2013). The rel-
ative proportion of emissions from different sources depends
on the subregion. For example, in the Athabasca oil sands
area (monitored by Wood Buffalo Environmental Associa-
tion (WBEA) stations; red symbols, Fig. 1b), SO2 is mainly
emitted from stacks (flue-gas desulfurization; “major point
sources”) and NO2 is emitted from both stacks and off-road
vehicle mine fleets (“area sources”). The 2013 total emis-
sions for Alberta were approximately 681 kt for NOx (NO
and NO2) and 311 kt for SO2, respectively.

2.2 Monitoring data

In this study we included observations from both passive
and continuous instruments measuring NO2 and SO2 am-
bient concentrations, since these are the only two species
in the available data that include observations from both
measurement methodologies. The nine airsheds within Al-
berta are shown in Fig. 1b: West Central Airshed Society

(WCAS), WBEA, Fort Air Partnership (FAP), Alberta Cap-
ital Airshed Alliance (ACAA), Calgary Regional Airshed
Zone (CRAZ), Peace Airshed Zone Association (PAZA),
Palliser Airshed Society (PAS), Parkland Airshed Manage-
ment Zone (PAMZ), and Lakeland Industrial Community
Association (LICA). Figure 1b colour codes the sampling
site locations by airshed, with continuous station locations
shown as circles and passive stations shown as inverted tri-
angles.

Continuous sampling is typically carried out for regula-
tory compliance, where high temporal resolution is required
in order to monitor short-term exceedances in highly variable
concentrations of pollutants in ambient air. The continuous
monitoring principles of ultraviolet pulsed fluorescence and
chemiluminescence are used to detect and measure SO2 and
NO2, respectively, in Alberta, and the maximum value for
detection limits of the NO2 and SO2 continuous samplers is
1.0 ppbv (AEP, 2014, 2016). In contrast, passive sampling is
carried out in order to determine monthly average ambient
air concentrations of atmospheric compounds for determina-
tion of long-term trends, to assess of potential ecological ex-
posure risks, and to understand the spatial distribution of the
measured pollutant. The majority of the Alberta passive mon-
itors for NO2 and SO2 were developed by Maxxam Analytics
Inc. (Tang et al., 1997, 1999; Tang, 2001), with the excep-
tion of those employed by PAS (PAS, 2016). The detection
limit for 30-day average NO2 and SO2 sampling periods with
these samplers is 0.1 ppbv. We analyse here the data records
from 39 continuous and 89 passive SO2 monitoring sites and
38 continuous and 88 passive NO2 monitoring sites within
the province of Alberta.

Passive sampling techniques have several advantages such
as ease of deployment, no power requirements, and low
maintenance, and they have been used as an alternative to
continuous monitors for monitoring temporal trends of air
pollutants in remote areas (Krupa and Legge, 2000; Cox,
2003; Seethapathy et al., 2008; Bytnerowicz et al., 2010)
and evaluation of air quality of large areas (Gerboles et al.,
2006). Their disadvantages are low sensitivity, inability to re-
solve short-duration concentration peaks, and adverse effects
of meteorological conditions on reported observations (Tang
et al. 1997, 1999; Krupa and Legge, 2000; Tang, 2001; Kirby
et al., 2001; Partyka et al., 2007; Fraczek et al., 2009; Salem
et al., 2009; Zabiegala et al., 2010; Vardoulakis et al., 2011).
Moreover, the passive monitors depend on monthly meteo-
rological information, which are needed in order to calculate
diffusion rates. This information is obtained from the near-
est site with meteorological observations, as most Alberta
passive sampling sites do not have collocated meteorolog-
ical measurements. These constraining factors could influ-
ence the sampling and, therefore, the accuracy of the results,
causing under- or overestimation of ambient gas concentra-
tions in relation to continuous analysers (Krupa and Legge,
2000).
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Figure 1. Study area: (a) model domain covering the provinces of Alberta and Saskatchewan; (b) NO2 and SO2 continuous and passive
monitors located at the different air quality monitoring networks (airsheds) and main NO2 and SO2 stacks in the province of Alberta.
Stations are colour-coded according to airsheds and plotted with different polygons (circle for passive, inverted triangle for continuous):
West Central Airshed Society (WCAS), Wood Buffalo Environmental Association (WBEA), Fort Air Partnership (FAP), Alberta Capital
Airshed Alliance (ACAA), Calgary Regional Airshed Zone (CRAZ), Peace Airshed Zone Association (PAZA), Palliser Airshed Society
(PAS), Parkland Airshed Management Zone (PAMZ), and Lakeland Industrial Community Association (LICA).

We first analyse the continuous data, reported as hourly
values to Alberta and Environment and Parks (AEP) for the
period from July 2013 through September 2014, in a manner
similar to Solazzo and Galmarini (2015), by focusing on the
variations associated with different timescales and the deter-
mination of relative redundancy levels for different continu-
ous monitoring stations. The time period for this continuous-
only analysis was chosen to overlap with the Environment
and Climate Change Canada (ECCC) air quality model sim-
ulations (described further in Sect. 2.3). In a second analysis,
continuous and passive observations encompassing the pe-
riod from February 2009 to December 2015 were analysed
together in an effort to cross-compare the different sampling
methodologies. The intent of this second analysis was to de-
termine the extent to which the two methodologies provide
similar results, in addition to determining the relative redun-
dancy levels for the passive monitoring stations. In the sec-
ond analysis, the continuous data were time-averaged to a
similar interval as the passive monitoring data (the passive
data were typically available as monthly or bimonthly aver-
ages).

All data were extracted from AEP archives (http://airdata.
alberta.ca/, last access: 20 February 2007) and were sub-
jected to additional QA–QC procedures due to the require-
ment of cluster analysis methodologies that there are no gaps
in the time series of observations. We followed the recom-
mendations of Solazzo and Galmarini (2015): continuous
station data should be rejected if their hourly data records
for the analysis period have more than 10 % of the total data
for the year missing or contain data gaps of more than 168
consecutive hours in duration. Missing data may indicate a

calibration period or stations which came on- or offline dur-
ing the analysis period. We also follow their recommenda-
tions that data gaps of 1 to 6 h duration are replaced by the
linear interpolation between the nearest valid data on either
side of the gap and, for data gaps of longer duration, the an-
nual average of the non-gap data was used. No substantial
difference was found between the resulting cluster analysis
by filling the longer gaps with these long-term averages ver-
sus using the average of the same number of missing days
both before and after the gap.

For the comparison between passive and continuous SO2
and NO2 observations, the hourly continuous station data
records were subject to the same station rejection criteria and
gap-filling procedures as described above. Passive samplers
nominally record either 1-month or 2-month averages, de-
pending on location. One-month data were averaged to bi-
monthly data in order to have a consistent time interval for
the dataset. When one of the 2-monthly values was missing
from the original data, the bimonthly average was treated
as missing. Passive stations missing more than 25 % of the
data over the 5-year period were rejected from the subse-
quent analysis. This rejection criterion was less stringent than
that applied to continuous data but was necessary in order to
achieve a balance between including monitoring sites with
most complete data and attaining good spatial coverage. An
inclusion criterion of less than 10 % for missing passive data
would have reduced the number of SO2 passive sites in the
analysis from 52 to 18 and NO2 passive sites from 39 to 18.
The missing data were gap-filled using the averages for the
given station for the remainder of the 5-year time period. The
gap-filled continuous data for the 5-year period were aver-
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aged to the same bimonthly intervals as the passive data. The
monitors included in this study are listed in Tables S1, S2,
S3, and S4 in the Supplement for the continuous monitoring
network analysis for NO2 and SO2 and passive monitoring
network analysis for NO2 and SO2, respectively, in Supple-
ment 1.

2.3 Modelling output

GEM-MACH (Moran et al., 2010; Makar et al., 2015a, b;
Gong et al., 2015) is an online chemical transport model
describing several air quality processes, including gas-phase
(42 gases), aqueous-phase, and heterogeneous chemistry, and
aerosol microphysical processes (nine particle species with
a two-bin sectional representation in the configuration used
here). GEM-MACH version 2 simulations were carried out
for the period between August 2013 and July 2014, over a
domain centred over North America with 10 km grid spac-
ing. The resulting outputs were used as initial and bound-
ary conditions for a nested set of simulations at 2.5 km res-
olution for a domain covering the provinces of Alberta and
Saskatchewan (Fig. 1a). The model was driven by regulatory
reported emissions and additional emissions data emissions
developed for the model simulations of JOSM (see Zhang et
al., 2018, for further details on the model emissions) to better
simulate Athabasca oil sand surface mining and processing
facilities.

GEM-MACH simulations have been previously evaluated
for both NO2 and SO2 concentrations against monitoring net-
work data and satellite observations and cross-compared to
the output of other air quality models in Im et al. (2015),
Wang et al. (2015), Makar et al. (2015a, b), and Moran
et al. (2016). Further evaluation of GEM-MACH on the
high-resolution domain used here can be found in Makar et
al. (2018) and Akingunola et al. (2018).

We use the output from GEM-MACH in two ways: ini-
tially, hourly 2.5 km resolution model results were extracted
at monitoring station locations, and then cluster analyses for
the model and observation data were compared. This com-
parison was carried out in order to evaluate the extent to
which the model could act as a proxy for the observations
and provide any caveats on the observation analysis associ-
ated with time averaging, sampling errors, and accuracy of
the observations. In our final analysis, we demonstrate the
use of the model as a proxy for monitoring network design
by treating every model grid cell as if it contained a moni-
toring station – the clustering analysis of this proxy “data”
was then used to define subregions within the model domain
which could be represented by a single station for different
values of the clustering metric. We carried out this analysis
on a 36-by-36 test cell subdomain centred on the Athabasca
oil sands, but the methodology could be scaled to larger re-
gions. The results of this final analysis are spatial maps at
different levels of a given dissimilarity metric, which may

then be used as an aid in determining the locations for obser-
vation stations in an optimized monitoring network.

3 Associativity analysis for monitoring data based on
dissimilarity

3.1 Separating different timescales using KZ filtering

The KZ filter (Zurbenko, 1986) is a means of removing
smaller timescales from a time series, based on an iterative
moving average over a specific time window. The combina-
tion of the number of times the moving average is applied (m)
and the duration of the averaging window (p) determines the
timescales removed from the time series (KZm,p), following
the energy characteristics of the filter. Filtering parameters m

and p can be derived from the transfer function (see Eskridge
et al., 1997, and Zurbenko, 1986, for details on the transfer
function). The removal of high-frequency variations in the
data allows different timescales to be isolated and analysed
separately. The KZ filter belongs to the class of low-pass fil-
ters.

For our analysis, hourly continuous time series data were
KZ-filtered to remove short timescale variations, resulting in
three additional datasets, which have had filtered-out time
variations with periods less than a day (KZ17,3), a week
(KZ95,5), and a month (KZ523,3). The subsequent analysis
may thus examine the effect of removing the signal of the
different timescales on the relationships between the stations.
The time series resulting from each level of filtering may then
be cross-compared, using hierarchical clustering, described
in the following section.

In previous work appearing in the literature (Solazzo and
Galmarini, 2015), the KZ filter was used in a “band-pass”
configuration. A “band pass” is the difference between two
KZ filters, for two different frequencies, and was used in an
attempt to isolate the energy between those two frequencies.
However, Hogrefe et al. (2000, 2003) indicated that applying
the difference in KZ filters for band-pass purposes does not
separate the spectral components completely, with the energy
spectrum overlapping between the neighbour components.
Rather than each band defining an exclusive set of frequen-
cies, some of the energy from one band could be detected
by the neighbouring band. We carried out a detailed analy-
sis of the band-pass configuration and confirmed the analysis
of Hogrefe et al., further finding that this energy “leakage”
between bands was sufficient that the frequency bands asso-
ciated with the shorter timescales could not be distinguished
from each other. However, the KZ filter in its original low-
pass form was found to be able to separate the timescales in
the test data accurately, simply by choosing m and p coeffi-
cients to ensure that all energy was removed below specific
frequencies. Subsequent clustering was shown to distinguish
the influence of the different timescales, given an appropri-
ate choice of the filtering parameters m and p. Our detailed
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analysis of the KZ filter in low-pass and band-pass configu-
rations is described in detail in Supplement 2. Note that the
m and p values used in this study were chosen to give an
equivalent impact as band-pass filters used in Solazzo and
Galmarini (2015).

It should be noted that time filtering and time averaging
do not provide the same information. In the case of low-pass
time filtering, the higher-frequency variation above some fre-
quency is removed from the time series, while in the case of
averaging that information is added to the average.

3.2 Dissimilarity analysis using hierarchical clustering

“Dissimilarity analysis” encompasses a group of methodolo-
gies used to rank datasets based on the extent to which they
are different (or dissimilar) from each other. Dissimilarity
may thus be used to rank stations in terms of potential redun-
dancy such that stations with low levels of dissimilarity may
be similar enough to be redundant. One of the most com-
monly used methodologies for dissimilarity analysis is hier-
archical clustering (Johnson and Wicherrn, 2007).

The first step for hierarchical clustering is to choose a met-
ric to describe how dissimilar the time series are from each
other. This metric is then calculated for all possible pairs of
the time series comprising the dataset. This initial set of cal-
culations results in a dissimilarity matrix, which may then be
used to cluster the data, based on the level of dissimilarity.
The pair of time series with the lowest level of dissimilarity
is combined and forms the first cluster. The metric of dis-
similarity is then recalculated between the first cluster and
the remaining time series, followed by pairing time series
and/or clusters with the lowest dissimilarity in the reduced
matrix. The number of clusters, which was originally equal
to the number of time series in the original dataset, is thus
reduced at each stage of the hierarchical clustering process;
the process will be completed when the two last clusters have
joined.

In this work, we have used two dissimilarity metrics:
(1) 1−R, where R is the Pearson linear correlation coef-
ficient (Solazzo and Gamarini, 2015), and (2) the Euclidean
distance (the latter is the square root of the sum of the squares
of the differences between the two time series’ members).
The metric based on correlation assesses dissimilarities as-
sociated with the changes in concentration as a function of
time, while the Euclidian distance metric assesses dissimi-
larities on the basis of magnitude, over the time period of the
analysis. We included the Euclidean distance out of concern
that 1−R alone would fail to assess the magnitude differ-
ences, which may be more important than correlation, for
some monitoring network applications. An extreme example
would be two perfectly correlated time series, one of which
has average concentrations an order of magnitude lower than
the first; such a comparison could result from two stations
positioned at different distances in a line downwind from an
emissions source. Using 1−R alone, one of these stations

could be considered redundant despite the information in-
herent in the lower concentrations associated with increas-
ing distance from the emissions source. For both metrics, the
recalculation of the dissimilarity matrix is carried out here
with the general averaging method (Næs et al., 2010), as it
provides robust and accurate clustering, with a substantial re-
duction in the processing time required to generate clusters
(Solazzo and Galmarini, 2015).

The level of dissimilarity at which individual station
records, and then clusters of records, merge as each new clus-
ter is called a “node”. The order in which station records
merge, as well as the level of dissimilarity at which they
merge, may be displayed in diagrams known as dendro-
grams. Dendrograms show the pattern of linkages between
nodes as the analysis progressed, with the vertical axis rep-
resenting the level of dissimilarity, vertical lines represent-
ing specific clusters, and horizontal lines joining the clusters
representing the nodes where the clusters are linked. A den-
drogram has the appearance of the roots of a tree, with the
join between the lowest roots representing the node of the
most similar time series and the trunk of the tree the point
at which all data have been joined to clusters. Very similar
stations are thus joined at the bottom of a dendrogram.

3.3 Assessing potential station redundancy

Hierarchical clustering as described above was used to as-
sist in the evaluation of potential monitoring station redun-
dancies (defined as the relative dissimilarity level at which
a station joins a cluster), as one of many considerations that
could influence decision-making on monitoring network de-
sign. Having carried out hierarchical clustering using station
data, the values of the dissimilarity metric as stations join
clusters may be used to define the extent of similarity be-
tween stations, as well as a relative ranking of stations based
on these similarities. This provides a quick assessment of sta-
tion record similarities and offers insight into how the records
are related to each other with respect to their temporal vari-
ations (1−R) and magnitudes (Euclidean distance) through-
out the time interval analysed. We would consider stations
potentially redundant if stations highly correlate with each
other (low 1−R levels) and if the Euclidean distance levels
are low. To decide if stations are redundant or not, a level of
1−R and/or Euclidean distance should be set; all the stations
clustering under the same cluster at that given level should be
under consideration for being removed or moved.

An assessment of monitoring record redundancies must
be made prudently, the metrics used should be carefully as-
sessed, and the physical distance between the stations and
emissions sources should be taken into consideration (see
Sect. 7). The inherent limitations of the analysis should also
be noted. These include the following:

1. The ranking of stations is relative and specific to a given
chemical species, the corresponding set of station time
series, and the parameters used for the hierarchical clus-
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ter analysis: metric of dissimilarity and the method to
recalculate the dissimilarity matrix.

2. Stations excluded because of data incompleteness are
not analysed and not evaluated for possible redundan-
cies.

3. The methodology has been applied in the past using
observations from existing monitoring stations in or-
der to analyse the relative dissimilarity between those
stations’ data records. However, the methodology may
also be applied to gridded model-generated concentra-
tion time series. The latter application provides informa-
tion on possible new locations for monitoring stations
for a given number of monitoring stations or dissimi-
larity level (this process is described in more detail in
Sect. 6).

4. Other considerations may factor strongly into moni-
toring network decision redundancy: for example, the
availability of roads and electrical power, regulatory re-
quirements, and cost.

An important corollary to the first point above is that dif-
ferent methods used in hierarchical clustering may result in
different relative rankings of station records. Station records
which are highly similar when 1−R is used (this metric is
unitless and zero (unity) for the most (least) similar time se-
ries or clusters) may be highly dissimilar when the Euclidean
distance is used (the Euclidean distance will have units of
the chemical species being analysed and will be zero for the
most similar clusters, but the magnitude of the upper limit
of dissimilarity will depend on the specific time series being
clustered).

“Redundancy” with regards to the metrics examined here
is thus relative to a given chemical species and dataset used
for hierarchical clustering. Therefore, we do not propose spe-
cific thresholds of the two metrics for determining redun-
dancy. We note also that the results of the analyses for two
metrics may be combined – station data that are relatively
similar under one metric may be examined for their degree
of similarity under another metric. The metric levels at which
these combinations are examined are themselves also quali-
tative, but station time series which are highly similar under
multiple metrics are in turn a stronger indication of potential
redundancy.

Despite the above limitations, the methodology is never-
theless highly useful. In the event of limited available re-
sources for monitoring, an assessment of relative redun-
dancy, through the use of more than one metric, may aid in
decision-making. Aside from implying redundancy between
two data records, a high level of similarity may also indicate
that a station may provide more information to the network
if placed elsewhere, as opposed to its current location. In the
last part of the analysis (Sect. 6), we show how the method-
ology may be extended through the use of air quality model
output to design dissimilarity-optimized air quality networks.

4 Dissimilarity analysis for the continuous monitoring
networks in Alberta

4.1 Spatial distribution of clusters

The dissimilarity analysis was applied to NO2 and SO2 ob-
servational time series data for all the stations complying
with the QA–QC criteria described in Sect. 2. The dendro-
grams resulting from the analysis are provided in Supple-
ment 1.

The hierarchical clustering results for NO2 using 1−R

as the dissimilarity metric are depicted in Fig. S1 in the
Supplement. This NO2 dendrogram shows frequent cluster-
ing between stations within the same airshed (if represented
by more than a single station) or airsheds that are in rela-
tively close physical proximity, such as airsheds ACAA and
FAP (see Fig. 1b). A horizontal line cutting across a den-
drogram such as Fig. S1 may be used to define the station
records that are part of a cluster at a given level of the dis-
similarity metric, and these may be plotted spatially: Fig. 2
shows the spatial distribution of the clusters of NO2 continu-
ous monitors at three levels of the 1−R dissimilarity metric:
0.75 (Fig. 2a), 0.65 (Fig. 2b), and 0.55 (Fig. 2c). The results
show that stations tend to cluster over successively smaller
areas as the level of dissimilarity decreases (the three clus-
ters of Fig. 2a as dissimilarity decreases become 11 clusters
by Fig. 2c). The clustering at high dissimilarity levels (aka
low correlation coefficients) also allows anomalous group-
ings of stations. For example, cluster 1 in Fig. 2a includes
both WBEA stations at the upper right of the panel, one
WCAS and one PAMZ station, despite the latter two sam-
pling air in other parts of the province and being subject to
different sources. This tendency is reduced at lower levels
of dissimilarity, where stations influenced by similar sources
tend to cluster. For example, in Fig. 2c, cluster 8 includes
all the stations in a highly urbanized area (Edmonton, capital
city of the province) and cluster 11 is a station located at a
relatively high elevation upwind of most emission sources.
Overall, the methodology shows the ability to group together
monitoring station locations which might be expected to be
influenced by similar sources of emissions.

We next examine how the timescales inherent in the
data may affect similarities. Figure 3 shows the clustering
of stations which occurs at a 1−R dissimilarity level of
0.55 after timescales less than daily (Fig. 3a, dendrogram
in Fig. S2), weekly (Fig. 3b, dendrogram in Fig. S3), and
monthly (Fig. 3c, dendrogram in Fig. S4) are removed. Four
clusters are shown on the first panel, three on the second, and
two on the third. Comparing back to Fig. 2c with the original
hourly data, this shows that much of the “signal” in 1−R

contributing to the 11 clusters in Fig. 2c is contained within
the shorter timescales of less than a day and are relatively
similar at longer timescales. Moreover, correlation levels be-
tween stations increase as KZ filtering is applied and shorter
time variability is removed. All of this evidence indicates that
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Figure 2. Associativity analysis for observed NO2 hourly time series using 1−R as the metric to compute the dissimilarity matrix, assuming
a dissimilarity level of (a) 0.75, (b) 0.65, and (c) 0.55. Stations are colour-coded by cluster, and airsheds are plotted with different polygons.
The acronyms for the airsheds are as in Fig. 1.

Figure 3. Associativity analysis for observed NO2 filtered time series using 1−R as the metric to compute the dissimilarity matrix, assuming
a dissimilarity level of 0.55: (a) daily, (b) weekly, and (c) monthly and short time periods. Stations are colour-coded according to cluster
formation, and airsheds are plotted with different polygons. The acronyms for the airsheds are as in Fig. 1.

much of the variation in NO2 in the region takes place on rel-
atively short timescales and is due to local sources. The anal-
ysis also indicates that some stations are more influenced by
seasonality than others; e.g. the high altitude, largely upwind
site of cluster 2 in Fig. 3c, remains separate from the other

stations even when timescales of less than a month are re-
moved from the analysis.

The dissimilarity analysis for SO2 produced different re-
sults from that for NO2. Figure 4 shows the spatial distribu-
tion of the clusters of SO2 continuous monitors with the 1−R

dissimilarity metric (the dendrogram resulting from the hier-
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Figure 4. Associativity analysis for observed SO2 hourly time series using 1−R as the metric to compute the dissimilarity matrix, assuming
a dissimilarity level of (a) 0.75, (b) 0.65, and (c) 0.55. Stations are colour-coded by cluster, and airsheds are plotted with different polygons.
The acronyms for the airsheds are as in Fig. 1.

archical clustering appears in Fig. S5) and can be compared
to Fig. 2. For a given level of 1−R, there are more SO2 clus-
ters than NO2 clusters. The observations of SO2, despite be-
ing largely collocated with the observations of NO2, are nev-
ertheless more dissimilar than the observations of NO2. Even
at higher levels of dissimilarity (compare Figs. 2a and 4a),
there are more SO2 clusters, indicating a greater degree of
local variability in the SO2 data, which drives correlation co-
efficients lower and dissimilarity levels for the 1−R metric
higher. This greater degree of dissimilarity for SO2 is due to
the nature of the SO2 emissions, i.e. almost exclusively from
industrial “point” sources in the region under study, whereas
NO2 concentrations are also influenced by more broadly ge-
ographically dispersed “area” sources of emissions includ-
ing mobile on- and off-road vehicles. The dispersion of SO2
from the former source type is thus more dependent on very
local meteorological conditions governing the rise of buoyant
plumes from stacks than are the emissions from area sources.
The direction and concentration of the rising and dispersing
SO2 plumes are thus more highly variable in time compared
to the area-source-dominated emissions of NO, which are
chemically transformed rapidly to NO2. Concentrations from
the same SO2 source may therefore not correlate to the same
degree between different downwind stations as NO2. This
contributes to the lesser degree of similarity between the SO2
station data even when monthly and shorter timescales are re-
moved (the SO2 dendrograms with the removal of timescales
less than daily, weekly, and monthly appear in Figs. S6, S7,
and S8, respectively).

The Euclidean distance dendrograms for both NO2
(Fig. S9) and SO2 (Fig. S10) do not show the same distinc-
tive clustering within airsheds as can be seen with the 1−R

metric. This might be expected, as Euclidean distance be-
tween two time series may result from a single instance in
which the hourly concentration records of the two stations
differ substantially or several hours in which the concen-
tration differences are smaller. Stations located sufficiently
far apart that they monitor different sources of pollutants
may thus have similar Euclidean distances if their average
concentration magnitude is similar. The analysis also indi-
cates that Euclidean distances become more similar in mag-
nitude and that these magnitudes decrease, as increasingly
larger timescales are filtered, across all of Alberta (Fig. S9
for NO2 and Fig. S10 for SO2). That is, concentration mag-
nitudes recorded at the different stations approach each other
as the shorter-duration time variations are removed. At these
timescales, the magnitude of both species is driven by low
concentration levels of long-term duration and larger spatial
extent. This is particularly true for SO2 monitors that typi-
cally measure low concentration (background levels) inter-
spersed with infrequent short-term high concentrations (sur-
face fumigation events of buoyant plumes). However, within
an airsheds affected by a common set of emissions sources,
Euclidean distance will nevertheless be useful by identify-
ing the presence of high-concentration gradients, as will be
shown in the next section.

In summary, the methodology is able to identify groups of
stations which are influenced by common emissions sources
(e.g. stations which are influenced by oil sand emissions as
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Table 1. Hourly NO2 similarity ranking for the 1−R and Euclidean distance (EuD) metrics. Note that stations at the bottom of the two
columns are the most similar (hence one measure of their level of redundancy) with respect to each metric of dissimilarity. Here we show
only the first 10 and last 10 items of the ranking; the full ranking can be consulted in Table S5.

1−R Name ID Airshed EuD Name ID Airshed

0.72 Maskwa 1248 LICA 1009 Shell Muskeg River 1244 WBEA
0.61 Anzac 1225 WBEA 950 Millennium Mine 1075 WBEA
0.60 ST.LINA 1250 LICA 950 Fort McMurray Athabasca Valley 1064 WBEA
0.56 Steeper 1055 WCAS 923 Grande Prairie (Henry Pirker) 1165 PAZA
0.56 Caroline 1092 PAMZ 839 Calgary Northwest 1039 CRAZ
0.55 Lethbridge 1049 AEP 839 Calgary Central 2 1221 CRAZ
0.55 Crescent Heights 1172 PAS 807 Redwater Industrial 1156 FAP
0.54 Wagner2 1241 WCAS 769 Red Deer Riverside 1142 PAMZ
0.54 Genesee 1057 WCAS 735 Edson 1062 WCAS
0.51 Shell Muskeg River 1244 WBEA 722 Meadows 1058 WCAS
0.18 Range Road 220 1161 FAP 400 Fort Saskatchewan 2001 FAP
0.16 Lamont County 1162 FAP 387 Anzac 1225 WBEA
0.16 Elk Island 1157 FAP 350 Violet Grove 1052 WCAS
0.16 Fort McKay South 1076 WBEA 350 Tomahawk 1053 WCAS
0.16 Fort McKay Bertha Ganter 1032 WBEA 348 Power 1059 WCAS
0.15 Edmonton Central 1028 ACCA 301 Caroline 1092 PAMZ
0.14 Woodcroft 2002 ACCA 280 Steeper 1055 WCAS
0.14 Edmonton South 1036 ACCA 280 ST.LINA 1250 LICA
0.11 Ross Creek 1159 FAP 263 Lamont County 1162 FAP
0.11 Fort Saskatchewan 2001 FAP 263 Elk Island 1157 FAP

opposed to stations located elsewhere) when the methodol-
ogy is applied to hourly and, to some extent, daily time-
filtered time series. Stations mainly influenced by seasonal-
ity are identified when the methodology is applied to weekly
and monthly time-filtered data. The analysis groups stations
according to their degree of similarity but does not provide
the cause for that degree of similarity. The latter may only be
achieved by examination of the data records and the use of
local knowledge of sources and conditions. The level of in-
formation about the sources present in the study area will be
greater when the results of both metrics are combined, and
information about the sources may be inferred from the anal-
ysis; for example, stations could be classified as background
or industrial impacted if seasonality or hourly data are shown
to contain most of the signal.

4.2 Ranking of stations by dissimilarity

Previous work appearing in the literature (Solazzo and
Gamarini, 2015) was motivated by the aims of evaluation
and pre-screening of monitoring data for the purpose of the
evaluation and development of regional-scale air pollution
models. Their focus was on observations of ozone, which,
in the troposphere, is a secondary pollutant resulting from
gas-phase reactions and broader-scale chemistry and trans-
port. They consequently focused on the different timescales
associated with KZ filtering. Here, however, we have shown
that for primary pollutants such as SO2 and “secondary” pol-
lutants such as NO2, which are nevertheless very rapidly (on

timescales of less than 5 min) produced from their primary
precursors, much of the signal driving similarity resides at
shorter timescales. Consequently, our ranking of continuous
monitoring stations in this section is based solely on the orig-
inal hourly observation data, as opposed to KZ-filtered obser-
vations.

The cluster analysis results for hourly time series were
ranked from highest to lowest values of 1−R and Euclidean
distance resulting from clustering of continuous monitoring
station data. Stations clustering at high levels of 1−R and
Euclidean distances are significantly different in time varia-
tion and concentration magnitudes, respectively. Conversely,
stations at the bottom of the ranking are the most similar.
The latter stations could be, therefore, considered potentially
redundant. Our rankings are based on the dissimilarity level
at which a given station joins another station as a new clus-
ter or when a given station joins a pre-existing cluster. If the
latter were to occur at a sufficiently low level of dissimilar-
ity, either the new station or the pre-existing cluster might be
considered potentially redundant. The uppermost and lower-
most ranked stations for NO2 and SO2 are shown in Tables 1
and 2, respectively. The corresponding full ranking for the
full list of stations is shown in Tables S5 and S6.

The tabulated values indicate clear differences between the
two compounds. The stations measuring NO2 cluster with
each other at substantially lower 1−R levels (that is, they cor-
relate at substantially higher values of R) than do the stations
measuring SO2. In one extreme case, the records of one SO2
station, Redwater Industrial, anti-correlate with the records
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of other stations, indicating that the SO2 time series at that
location is substantially different from those of the remaining
stations. However, the NO2 Euclidean distance metric cluster
values tend to form at higher levels than their SO2 counter-
parts, with the exception of Redwater Industrial, indicating
that despite their higher correlations, the NO2 stations may
have larger differences in concentration magnitudes relative
to SO2. We note that the Euclidean distance between SO2
station observations is, in many cases, relatively low (e.g.
24 ppbv for 8760 hourly values summed) and likely indi-
cates stations which rarely record SO2 concentrations above
background levels and hence have relatively “similar” Eu-
clidean distances due to similarly low-concentration records
for much of the recorded time series. Another interesting dif-
ference between the two atmospheric compounds is that the
relative ranking by dissimilarity is closer to being the same
for the two metrics for SO2 than for NO2.

Two different dissimilarity metrics thus result in different
relative rankings of the two chemical species, so the results
must be interpreted with care. For example, the stations Fort
McKay South and Fort McKay Bertha Ganter have the high-
est correlation for SO2 (R = 0.81) but their Euclidean dis-
tance is 177 ppbv, and a similar disparity between 1−R and
Euclidean distance rankings for these stations may be seen
in their values of the corresponding NO2 metrics (R = 0.84
and Euclidean distance of 411 ppbv). These stations are 4 km
apart; the high correlation coefficients indicate that they may
measure similar events, but the high Euclidean distances in-
dicate that the magnitude of the events observed likely varies
considerably despite the small separation distance. That is,
substantial gradients in concentration may exist between the
two stations at any given time. We note again here that low
values of the dissimilarity metrics indicate a greater level of
potential redundancy with respect to the rest of the stations
– a high value of the Euclidean distance between two sta-
tion records, or between a station record and a cluster, in-
dicates that they are very dissimilar, and hence less poten-
tially redundant. A second example is the pair of stations
measuring NO2 with the lowest 1−R, Ross Creek and Fort
Saskatchewan: these stations’ data records are highly simi-
lar with respect to 1−R (that is, they are highly correlated),
but the Euclidean distance between the two is 400 ppbv de-
spite the stations being separated in distance by only 2.6 km.
Again, the gradients in concentration between closely placed
stations can be substantial. The intended purpose of the mon-
itoring at such locations is key to assessing their level of
potential redundancy. For example, if the aim of monitoring
is to provide short-term exposure data for human health im-
pacts, then these large Euclidean distances (despite the high
correlations) indicate the presence of large gradients in con-
centration, and hence such station pairs should be considered
less redundant. The combination of the metrics is thus shown
to be important in network assessment – the addition of the
Eulerian distance metric provides a broader context for sta-
tion ranking than the use of 1−R alone.

5 Hierarchical clustering to cross-compare
methodologies and technologies

Solazzo and Galmarini (2015) noted that clustering analy-
sis can be used to determine the extent to which the differ-
ent monitoring methodologies are comparable. Thus if differ-
ent methodologies do not provide equivalent data, the clus-
ters generated will be split according to methodology rather
than being associated with local chemical and meteorolog-
ical conditions. The combination of monitoring methodolo-
gies here thus has two purposes – to assess the relative dis-
similarities between station records and to verify that both
passive and continuous monitors provide similar data.

The hierarchical clustering methodology was applied to
the 5-year bimonthly averaged time series sampled by con-
tinuous and passive monitors (we leave out the a priori KZ
filtering step as the data in this case are already long-term av-
erages). The dendrograms resulting from the clustering anal-
ysis are shown in Fig. S11 for NO2 and Fig. S12 for SO2.
The spatial distributions for the station clusters for the 1−R

dissimilarity metric will be the focus here.
The spatial distributions of the NO2 clusters at dissimi-

larity levels of 1−R = 0.55 and 0.5 are shown in Fig. 5a
and b, respectively, with the locations of continuous moni-
tors plotted as inverted triangles and passive monitors as cir-
cles. At correlation level R = 0.45 (Fig. 5a) there is a clear
distinction between passive and continuous monitors; all the
continuous monitors belong to cluster 1, independent of their
spatial location. A large number of the passive monitors also
fall within this cluster; however, when a slight increase in
correlation is applied (Fig. 5, R = 0.5), the clustering pattern
changes significantly – most of the continuous monitors re-
main within the same cluster, but the passive monitors form
separate clusters. Two WCAS continuous monitors separate
and form a separate cluster at dissimilarity level 0.5 (Fig. 5b).
Figure 5 also shows several cases of collocated continuous
and passive monitors which do not fall within the same clus-
ter for correlation levels of 0.5 or higher. The analysis shows
that as higher levels of correlation are required, the contin-
uous and passive monitors for NO2 do not cluster together
despite close physical proximity or even collocation. Some
of the passive monitor clusters at R = 0.5 (Fig. 5b) appear
anomalous; for example, cluster 3 (red) includes stations in
LICA and WBEA, despite these airsheds being separated by
a distance of several hundred kilometres. As the level of dis-
similarity is decreased from 0.55 to 0.5, the biggest differ-
ence in clustering patters is seen for WBEA monitors (in the
upper right of the panels of Fig. 5) as passive and continuous
monitors located closer to the oil sands facilities fall within
cluster 1, while some of the passive monitors farther from the
oil sands facilities fall within cluster 3. For levels of correla-
tion above 0.5, the clustering between stations monitoring
similar source areas is rare, independent of the airsheds (see
dendrogram in Fig. S8).
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Table 2. Hourly SO2 similarity ranking. Note that stations at the bottom of the two columns are the most similar (hence one measure of their
level of redundancy) with respect to each metric of dissimilarity. Here are only the first and last 10 items of the ranking; the full ranking can
be consulted in Table S6.

1−R Name ID Airshed EuD Name ID Airshed

1.01 Redwater Industrial 1156 FAP 1594 Redwater Industrial 1156 FAP
0.95 Caroline 1092 PAMZ 709 Mannix 1069 WBEA
0.88 Valleyview 1170 PAZA 532 Mildred Lake 1066 WBEA
0.88 Smoky Heights 1167 PAZA 470 Millennium Mine 1075 WBEA
0.85 Maskwa 1248 LICA 412 Shell Muskeg River 1244 WBEA
0.85 Mannix 1069 WBEA 372 Lower Camp 1074 WBEA
0.83 Red Deer Riverside 1142 PAMZ 269 CNRL Horizon 1226 WBEA
0.81 Steeper 1055 WCAS 231 Wagner2 1241 WCAS
0.81 Power 1059 WCAS 231 Genesee 1057 WCAS
0.81 Meadows 1058 WCAS 220 Edmonton East 1029 ACCA
1.01 Redwater Industrial 1156 FAP 215 Maskwa 1248 LICA
0.48 Wagner2 1241 WCAS 102 Caroline 1092 PAMZ
0.48 Genesee 1057 WCAS 91 Smoky Heights 1167 PAZA
0.45 Range Road 220 1161 FAP 79 Carrot Creek 1054 WCAS
0.45 Fort Saskatchewan 2001 FAP 70 Lethbridge 1049 CRAZ
0.39 Lamont County 1162 FAP 58 Beaverlodge 1168 PAZA
0.39 Bruderheim 2000 FAP 55 Grande Prairie (Henry Pirker) 1165 PAZA
0.35 Fort McMurray Patricia McInnes 1070 WBEA 50 Crescent Heights 1172 PAS
0.35 Fort McMurray Athabasca Valley 1064 WBEA 42 Evergreen Park 1166 PAZA
0.19 Fort McKay South 1076 WBEA 24 Steeper 1055 WCAS
0.19 Fort McKay Bertha Ganter 1032 WBEA 24 Red Deer Riverside 1142 PAMZ

Figure 6 depicts the clustering results for SO2 based on
the 1−R metric for dissimilarity levels 0.75 (Fig. 8a) and
0.65 (Fig. 8b). Higher dissimilarity levels were used as ex-
amples for the generation of spatial distributions than for
NO2 in this figure. The highly variable nature of the SO2
concentrations, as a result of their origin in stack emissions,
results in a greater degree of variability inherent in the col-
lected data, as described earlier (at lower dissimilarity lev-
els, the number of clusters increases markedly). Comparing
Figs. S9 and 6, most of WBEA passive and continuous mon-
itors in the north-east of the region form a common cluster at
R = 0.25 (Fig. 6a, cluster 11, red). However, at this low cor-
relation level, a common cluster connects sites in LICA, FAP,
WBEA, and PAZA airsheds, despite these sites being widely
separated in space and influenced by different local sources
of SO2 (cluster 12, green, Fig. 6a). At the slightly higher cor-
relation level of R = 0.35 (Fig. 6b), the clustering across air-
sheds has been reduced, though LICA and FAP still share a
common cluster (number 4, light blue). Again, the most di-
rect interpretation of the differences between the SO2 and
NO2 results for the 1−R metric analysis, when passive and
continuous monitors are clustered together, is that the data
time series records for SO2 are more highly variable than for
NO2. If 1−R similarity is used for assessing potential station
redundancies, then there is a lesser overall degree of poten-
tial redundancy in the SO2 data due to its greater degree of
variability. However, the cause of that variability should also
be considered. For example, we note again that some of the

collocated passive and continuous monitors for SO2 do not
fall within the same cluster at lower 1−R values (these are
shown as different colours in overlapping inverted triangles
and circles in Fig. 6b). This indicates that at least some of
the variability may reside in the measurement methodologies
employed.

In their analysis of European ozone monitoring networks,
Solazzo and Galmarini (2015) found similar patterns be-
tween different European nations, noting that the differences
are likely related to different sampling methodologies, instru-
ment sensitivities, and data acquisition protocols not being
harmonized between the countries. The same seems to be
true for the Alberta passive and continuous monitoring sta-
tions, as the 1−R cluster analysis shows that the continuous
stations are more similar to each other within and across air-
sheds than they are to the passive stations within the same
airsheds, or located nearby. Collocated continuous and pas-
sive stations do not always show high levels of similarity,
which would be expected had they reported the same con-
centrations. We analysed WBEA data alone using the 1−R

metric (dendrogram in Fig. S13) and found that most of the
continuous monitors formed a separate cluster from the pas-
sive monitors at relatively high levels of the 1−R metric, in-
dicating that the two sources of data provide fundamentally
different records. Collocated passive and continuous moni-
tors also tended to have high levels of the Euclidean distance
(not shown). Thus, at least some of the variability noted with
these datasets seems to lie with the overall sampling method-
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Figure 5. Associativity analysis for passive and continuous bimonthly NO2 averages for 1−R= 0.55 (R = 0.3) Stations are colour-coded
according to cluster formation, with continuous stations are marked as inverted triangles and passive stations as circles. The acronyms for
the airsheds are as in Fig. 1.

ology, and related confounding factors, discussed further in
Sect. 7.

There have been several studies comparing passive and
continuous analysers in Alberta (WBK, 2007; Hsu et al.,
2010; Pippus, 2012; Bari et al., 2015). Bari et al. (2015), the
study with the highest number of samples, cautioned that di-
rect comparisons between NO2 and SO2 continuous and pas-
sive methods may be hampered by lower field accuracy in the
passive methodology. Several studies show that passive sam-
plers overestimate SO2 ambient concentrations and underes-
timate NO2 relative to continuous monitors. For example, the
Bari et al. (2015) study showed that the median values for the
absolute difference between the collocated passive and con-
tinuous monitors for NO2 is 1.5 and 0.2 ppbv for SO2. The
same study assessed the relationship between passive and
continuous measurements by regression analysis, concluding
that the agreement between the different types of monitors is
moderate, with the coefficient of determination being 0.42
and 0.40 for NO2 and SO2, respectively. We note that these
previous comparisons were done for urban sites only; in this
study we have carried out cluster analysis including passive
and continuous monitoring data for rural, urban, and indus-
trial sites outside of urban regions.

6 Model information as a potential surrogate for
observations: optimized monitoring network design

Air quality models such as GEM-MACH provide gridded
time series concentrations of atmospheric pollutants and re-
lated chemicals at a common time interval, as a standard out-
put. These are compared to observations in order to evalu-
ate the model’s performance (for traditional evaluations us-
ing the model output used herein, cf. Makar et al., 2018;
Akingunola et al., 2018; Stroud et al., 2018). We introduce
here for the first time the concept of the use of these time se-
ries of air quality model output, combined with hierarchical
clustering analysis, as a surrogate for station data, for the pur-
poses of monitoring network analysis and design. Two pos-
sible approaches can be taken. First, the model output at the
model grid squares containing existing monitoring stations
may be analysed in order to determine the extent to which
the clustering analysis of model output mimics the clustering
analysis of the corresponding observational data. Aside from
presenting a new means by which the model output can be
evaluated, this approach also can highlight possible causes
for the observation data clustering results. The second ap-
proach is to use the gridded model output as a surrogate for a
dense monitoring network (one “station” at every model grid
square centre). The outcome of this second approach is a set
of gridded maps – similar to the sparsely distributed observa-
tion location maps shown in the figures above, these show the
clustering of potential stations. However, the cluster maps re-
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Figure 6. Associativity analysis for passive and continuous bimonthly SO2 averages for 1−R= 0.7 (R = 0.3) Stations are colour-coded
according to cluster formation, with continuous stations are marked as triangles and passive stations as circles. The acronyms for the airsheds
are as in Fig. 1.

sulting from the use of the dense “network” of model grid
squares define more precisely a set of regions, within each
of which a single station may represent that larger region for
the value of the dissimilarity metric chosen. We investigate
this second approach from the standpoint of monitoring net-
work design. Note that, in the work above, we have attempted
to show how hierarchical clustering may be used to analyse
existing monitoring networks; here we show how the same
techniques, coupled with the output of a long-term simula-
tion of an air quality model, can provide an optimized net-
work design (where we here define “optimized” as “having a
common level of dissimilarity for potential station locations,
for the dissimilarity metrics chosen”). Equivalently, these op-
timized networks maximize the dissimilarity, and hence min-
imize the potential redundancy, in the location of monitoring
network stations.

Our first analysis using model output evaluates the extent
to which the model is capable of creating similar clusters as
the observations. Hourly model output for the 1-year simula-
tion of GEM-MACH was extracted from those model grid
squares containing the station locations, and the resulting
time series data were submitted to the same hierarchical clus-
tering methodology as described above. Figure 7 shows the
spatial distribution for the cluster analysis at the same lev-
els of 1−R, 0.75, 0.65, and 0.55, as was shown using ob-
servation data (compare to Sect. 4, Fig. 2). Each airshed is
plotted with a different polygon, and colours indicate clus-
ters. The corresponding dendrograms for these model re-

sults are shown in Fig. S14. Note that cluster colours and
numbers differ between Figs. 2 and 7; stations fall within
similar clusters in each figure. For SO2 dissimilarity level
1−R= 0.75 (Fig. 7a), the difference between the results
for model and observations is not substantial; the clustering
is identical aside from a single station in both WBEA and
LICA, as well as AEP and PAS stations not forming sepa-
rate clusters. The difference between observed and modelled
NO2 clustering results is more notable as the level of dissimi-
larity decreases (Fig. 7b, c): the model tends to create a larger
number of clusters than the observations at intermediate lev-
els of dissimilarity (comparing Figs. 2b and 7b: 6 clusters
versus 10 clusters; 2c and 7c: 11 clusters versus 13 clusters).
The model results also tend to cluster within the same air-
sheds to a greater degree compared to the observations re-
sults. The model dendrograms tend to have clusters form-
ing at higher levels of dissimilarity for some stations such as
Steeper (Fig. S14 for Steeper is 1−R= 0.8, while Fig. S1
for Steeper’s node is 1−R= 0.7). Some of these differences
may be due to inaccuracies in the emissions data driving the
model. For example, the major point source emissions data
used in the simulations is based on regulatory reporting to
the NPRI, wherein the regulatory requirement for reporting
is an annual total. These annual totals must be temporally
allocated using assumed temporal profiles for each source,
and these month-of-year, day-of-week, and hour-of-day tem-
poral profiles may not always match actual hourly emission
levels at any given time. We show elsewhere (Akingunola et
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Figure 7. Associativity analysis for modelled NO2 hourly time series using 1−R as the metric to compute the dissimilarity matrix, assuming
a dissimilarity level of (a) 0.75, (b) 0.65, and (c) 0.55. Stations are colour-coded according to cluster formation, and airsheds are plotted with
different polygons. The acronyms for the airsheds are as in Fig. 1.

al., 2018) that hourly continuous emissions monitoring data
used as model inputs may result in very different short-term
concentration behaviour, with the corollary here that tempo-
ral allocation used here may influence the pattern of clusters.
However, the model results at level of dissimilarity 0.65 tend
to cluster more similarly with the observation results at level
of dissimilarity at 0.55, indicating that the clustering analysis
for the model results and observations show a similar spatial
distribution, though the model shows overall higher correla-
tion values than the observations.

The results for SO2 (dendrograms for the cluster analy-
sis in Fig. S12, compare to Fig. S5) show the model results
clustering similarly to the observations for PAMZ, ACCA,
and WCAS stations. WBEA stations in the model results
(Fig. S15, red station labels) are split into two clusters, while
these stations are part of the same cluster in the observation-
based analysis (Fig. S5). At 1−R level 0.75, both model
and observation cluster analysis results (Fig. 8a, compare to
Fig. 4a) already show many clusters composed of one or
few stations, with the model showing slightly more clus-
ters than the observations (21 clusters versus 25, respec-
tively). As noted earlier, SO2 in this region is emitted mainly
by point sources, and the use of annual emissions data
with an assumed temporal allocation, along with the addi-
tional inherent difficulties in accurately predicting plume rise
(Akingunola et al., 2018), makes the reproduction of the time
record of SO2 by the model a challenge. Inaccuracies in both
the emissions and the model meteorology may contribute to
these differences.

We next show an example of how hierarchical clustering
using gridded model output may be used to generate an op-
timized monitoring network. For this analysis, we focus on a
specific subsection of the model grid; namely a 72× 72 block
of model grid squares centred on the Athabasca oil sands.
Figure 9 depicts the resulting mapped 1−R cluster analysis
in this area, when each model grid cell has been treated as a
potential monitoring station location. Figure 9a and c show
the values of 1−R for each grid cell at the point in the anal-
ysis where that grid square becomes part of a cluster for NO2
and for SO2, respectively. Those grid cells with high values
of 1−R thus join clusters at much lower correlation levels
than those which have joined clusters at low values of 1−R.
As a result, the maps show the extent of dissimilarity for the
grid cells; higher values show grid cells which are so unlike
others that they remain separate from the clusters through-
out much of the analysis. In contrast, Fig. 9c and d show
the clusters which exist for a specific level of 1−R. These
show how the methodology may be used to design a moni-
toring network for a given number of stations (i.e. one station
within each of the coloured regions will be sufficient to rep-
resent that coloured region, to within the value of 1−R used
to generate the clusters). Figure 9b and d show the spatial
distribution of the clusters generated by dissimilarity levels
of 0.65 for NO2 and 0.8 for SO2, respectively (these levels
were chosen based on the analysis above, where the model
was shown to provide reasonable results). All the panels in
Fig. 9 have the areas where the oil and gas extraction sites
and processing facilities are located as a visual aid; these ar-
eas are contoured in black.
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Figure 8. Associativity analysis for modelled SO2 hourly time series using 1−R as the metric to compute the dissimilarity matrix, assuming
a dissimilarity level of (a) 0.75, (b) 0.65, and (c) 0.55. Stations are colour-coded according to cluster formation, and airsheds are plotted with
different polygons. The acronyms for the airsheds are as in Fig. 1.

The 1−R metric maps (Fig. 9a and c) have the highest val-
ues where main emissions sources are located – these iden-
tify the main open-pit mine facilities of the oil sands, within
which may be found both area and stack emissions sources.
These regions of high variability are thus where the influ-
ence of the emissions and the local meteorology on the dis-
persion of the emissions is the strongest. In the NO2 dissim-
ilarity map “point” (stack), “line” (roads) and “area” sources
(mines) can be distinguished; for SO2 the locations of the
stacks for processing and flaring are identified. The spatial
distribution of the clusters (each cluster is mapped with a
different colour in Fig. 9b and d) shows the areas wherein a
single measurement station, placed anywhere within a given
coloured region, would represent that region to the given
level of dissimilarity. Figure 9c thus shows that for NO2
and for a 1−R dissimilarity level of 0.65, 17 monitoring
stations, each placed at any location within each of the 14
coloured regions, would constitute an optimized network for
NO2. Similarly, Fig. 9d shows that 17 stations would be re-
quired to monitor SO2 with a common 1−R dissimilarity of
0.80, and the regions over which those stations could each be
placed. The analysis thus identifies regions which are equiv-
alent from the standpoint of the dissimilarity metric used.

We note that in some cases a single cluster can be discon-
tinuous, split into more than one area. An example of this
can be seen in Fig. 9c, where a cluster is split into two sep-
arate red coloured regions (cluster 3), whereas Fig. 9d does
not show the same split. Local knowledge of the emissions
sources, as well as analysing Fig. 9a and b, help explain these
results. The dark yellow region (cluster 5) in Fig. 9c and the
grey region (cluster 8) in Fig. 9d mark the location of a lo-

cal emissions source, moderate in magnitude relative to the
larger sources in the middle of the domain (oil sand facility
boundaries marked in these figures). The clustering thus rec-
ognizes the local influence of this moderate source of emis-
sions; however, at greater distances from this source, the im-
pact of the larger sources dominates. The red areas (cluster
3) in Fig. 9c and the green area (cluster 4) in Fig. 9d show
that the larger sources have both a local and long-range influ-
ence, which only locally can be overwhelmed by the moder-
ate source for both SO2 and NO2. We note that we are using
1−R in this application of the methodology with determin-
istic model output, so the magnitude of the signal of the two
chemicals is not being analysed – rather, its time variation is.
To satisfy different monitoring objectives, stations are placed
by both geographical and physical location, with physical lo-
cation defined by the concept of spatial scale of represen-
tativeness, the area where actual pollutant concentrations are
reasonably uniform. We note that each of these coloured sub-
regions in which a single station could be placed has a rela-
tively large geographic extent and, using this metric, do not
describe the concentration gradient in the region but could
be used as a first guess for areas of representativeness, po-
tentially providing useful input for applications such as data
assimilation of air quality and meteorological observations.
Combining spatial distribution of the clusters for 1−R met-
ric with the Euclidean distance will provide further informa-
tion about the concentration gradients in the area of repre-
sentativeness. Note that maps such as these could be overlaid
with other geographic information (e.g. road networks, the
local power grid) to further optimize and decide on potential
station locations. The similarity maps, combined with these
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Figure 9. Dissimilarity maps based on 1−R metric for (a) NO2 and (c) SO2 modelled hourly output at each GEM-MACH grid cell.
Associativity analysis maps for modelled NO2 and SO2 based on these gridded output time series, appear in panels (b) and (d), respectively.
The latter maps were generated using a (1−R) dissimilarity level of (b) 0.65 and (d) 0.8. All maps show the areas enclosing the property
boundaries of the main mining facilities operating in the Athabasca oil sands region (black contours enclosing transparent light grey shading).

other factors, could be used to aid in the design of air pollu-
tion monitoring networks.

The cluster distribution maps show that the areas for po-
tential station location depend on the pollutant – the SO2
map is influenced to a greater degree by the wind direc-
tions throughout the year than NO2, likely due to the emis-
sions sources for the former pollutant being driven almost
entirely by stack sources in this region. The wind-rose-like
pattern around SO2 sources likely stems from plume fumi-
gation events at different times of the year, leading to a high
correlation of SO2 concentrations leading downwind from
the sources. The NO2 cluster distribution is patchier, reflect-
ing both the impact of the stacks (which account for about
40 % of the total NO emissions in the region) and the off-
road mobile mine fleet (other “area” sources, which account
for the bulk of the remainder of the NOx emissions). If po-
tential multi-pollutant monitoring station locations are de-
sired, overlapping the optimized maps for each pollutant, for
a given number of stations, would be a further way of aiding
the monitoring network design process.

We also note that other metrics could be used in order
to capture other aspects of concentration spatial and tempo-
ral variability, such as concentration gradients, in addition to
temporal correlation – here we have demonstrated a “proof of
concept”, and other metrics will be analysed in future work.

7 Potential factors impacting the analysis

Factors that can negatively impact the results of hierarchi-
cal clustering include data dispersion (large variance between
cluster members), outliers, and non-uniform cluster densities
(clusters which are non-compact and non-isolated, and thus
not properly distinct from one another; cf. Mangiameli et al.,
1996; Milligan, 1980). However, we find that the analysis it-
self may also be used to identify these conditions. We have
shown in the results in Sects. 4 and 5 that the analysis has in-
deed identified stations that are outliers relative to the rest of
the dataset – these stations separate from the other stations
as single-member clusters at high levels of dissimilarity. In
other words, the analysis identifies the records of those sta-
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tions as being substantially different from all other station
records, for the dissimilarity metric used. This was particu-
larly noticeable in the bimonthly data analyses. The method-
ology also identified cases of data dispersion, for example,
the analysis of combined bimonthly passive and continuous
monitors showed cases where monitors in close proximity
or even collocated did not cluster together. The methodol-
ogy thus seems capable of isolating outlier records and data
dispersion as well as recognizing cases of substantial differ-
ences between data collection methodologies. The latter was
noted in the case of hourly ozone observations by Solazzo
and Galmarini (2015).

The analysis of combined continuous and passive data has
identified systematic differences between the two monitoring
methodologies as a potential confounding factor on the sta-
tion ranking of passive stations; the analysis identifies col-
located stations with concentration differences and poorly
matching concentration time variation, but cannot identify
the causes for these differences. These issues should be the
subject of follow-up work. Nevertheless, we note that both
passive and continuous data may be subject to errors associ-
ated with the accuracy and precision of the sampling method-
ology.

We examined the potential errors associated with the re-
ported detection limit of the monitoring methodology by us-
ing the GEM-MACH derived time series at station locations.
Random noise was added to the original model time series
results, with the maximum magnitude of the noise for each
species taken from the detection limit range of each instru-
ment (i.e. random noise in the range ±0.5 ppbv was added
to the NO2 time series and ±1 ppbv was added to the SO2
time series). The NO2 cluster results for hourly time series
using 1−R as the dissimilarity metric (Fig. S13, compare
to Fig. 2) show no significant difference between the orig-
inal and noise-added time series. However, this changed as
timescales were removed from the original datasets by KZ
filtering, especially once monthly and all shorter timescales
were removed. Random noise was thus shown to be a poten-
tial confounding factor in 1−R hierarchical clustering anal-
yses. However, for the corresponding NO2 Euclidean dis-
tance metric, both the hourly and monthly filtered data, with
and without noise added, resulted in identical clustering (not
shown). The SO2 results showed a larger variation between
the clusters generated with the original time series and those
containing additional random noise. The difference in clus-
tering was particularly noticeable for the 1−R dendrograms,
for both hourly and time-filtered data, and slightly less pro-
nounced for Euclidean distances (not shown). The work de-
scribed above suggests that much of the “signal” for primary
emitted or quickly reacting secondary pollutants for corre-
lation analysis resides in the shorter timescales (hourly to
daily); the greater influence of random noise on the results of
the time-filtered data implies that the latter are dominated by
close-to-background concentrations, which are in turn sim-
ilar in magnitude to the noise levels added here, and hence

a greater influence is seen on clustering of the time-filtered
data. For species such as SO2, which are dominated by short-
duration high-concentration plumes, this effect may extend
to the shorter timescales as well.

Besides the detection limit of the instrument, airsheds
report the passive observations with a reporting limit of
0.1 ppbv; hence we also tested the accuracy of the instrument
or the number of significant figures being reported, again us-
ing the model time series at station locations as a surrogate
for observation data. The model results were filtered for three
or zero significant figures below the decimal, and the result-
ing analyses were compared. As for the random error test, we
found that for both NO2 and SO2 the dendrogram patterns
changed, indicating that the use of fewer significant digits
in data reporting will result in enough loss of information to
change the interpretation of the data.

In the analysis described in Sect. 4, it was noted that as
successively larger timescales are filtered from the data used
for clustering, the magnitudes of the clustering metrics show
an increasingly higher degree of similarity, with monitors
clustering both within and across airsheds. However, the fil-
tering of time series to remove successively larger timescales
is not equivalent to averaging, in which shorter timescale
information may be retained in the average. To specifically
examine the effect of time averaging during data collection
on clustering results, the clusters for the hourly data were
compared to those from daily, weekly, and monthly aver-
ages (Fig. 10). With the original hourly data, specific airsheds
were identified as unique clusters (as expected, for 1−R hier-
archical clustering; stations located close to airshed-specific
sources were identified as being more similar). However,
with increasing averaging times, this airshed-specific clus-
tering was gradually lost. Most of the information driving
the ability of 1−R clustering to link local sources was thus
shown to reside in the shorter timescales. Nevertheless, this
information was lost as increasing averaging periods were
applied (Fig. 10). A fundamental result of this analysis is
that measurements that consist of long-term averages may
lose the ability to identify the influence of local sources on
the basis of time variation, i.e. they will correlate at an equal
level with both adjacent monitoring stations and those that
are located in distant regions. However, this information is
retained in hourly records, and the latter may be used to iden-
tify unique source regions on the basis of correlation.

We note here that the results of analyses of this nature are
dependent on the time series data used (including its dura-
tion). We have used a 5-year dataset to evaluate bimonthly
observation data and a 1-year dataset to evaluate hourly data
and deterministic model results. Longer time periods may be
preferred in future applications to limit the potential impact
of year-to-year variability. Nevertheless, if emissions change
in the future, the analysis should be repeated in order to deter-
mine whether the pattern of clusters has changed in response
to the changes in emissions. Similarly, while long time sets
are desired from the standpoint of removing the potential
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Figure 10. Dendrogram analysis for NO2 and SO2 hourly (a and b, respectively) and monthly or shorter timescales time series (c and d,
respectively) using 1−R as the metric to compute the dissimilarity matrix, for the airsheds described in Fig. 1. The dendrogram is colour-
coded according to airsheds. Right side: stations ranked from low to high correlation level.

impacts of annual variability in meteorological conditions,
if changes in emissions happen frequently, it may argue for
yearly rather than multi-year analyses.

8 Conclusions

A methodology for cross-comparing air quality monitoring
networks was proposed here, expanding on the work of So-
lazzo and Galmarini (2015) by including the Euclidean dis-
tance as well as 1−R as dissimilarity metrics for hierarchical
clustering and by making use of chemical reaction transport

model output as a surrogate for observation station data. We
adopted the KZ filter in its original low-pass configuration in
order to improve the ability of the methodology to distinguish
the impact of different timescales of variation on clustering.
The Euclidean distance metric allowed cross-comparison of
the stations in terms of the magnitude of the concentrations,
whereas 1−R evaluated their temporal variation similarity.
Both metrics can be used together or separately to evalu-
ate the similarity of the stations and their potential redun-
dancy. The relative level of potential redundancy for existing
observation stations was ranked based on each dissimilarity
metric, and we recommend evaluating monitoring station re-
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dundancy using both metrics where possible. Stations which
form clusters at low values of both 1−R and Euclidean dis-
tance are the most redundant, while those with high values
of either or both of these metrics are the least redundant. Ab-
solute thresholds for redundancy cannot be generated since
the relative rankings depend on the available observation data
(number of stations and chemical species observed). In addi-
tion, other considerations, such as spatial proximity to sen-
sitive receptors, the regulatory purpose of the station(s), and
logistics (e.g. accessibility or power supply), may outweigh
the recommendations based on similarity alone.

We have shown, through several analyses, that much of
the observation signal which may be used to identify com-
mon sources of both primary pollutants and secondary prod-
ucts of fast reactions resides in shorter timescales (hourly to
daily). When hourly data are available, the methodology is
able to identify groups of stations that are influenced by com-
mon emissions sources (e.g. stations that are influenced by
oil sand emissions as opposed to stations located elsewhere)
as well as outliers or station records that are markedly dif-
ferent from all others in a given dataset. The former property
is useful for identifying the influence range of specific emis-
sion sources. The latter property shows that the methodology
is a useful tool for identifying station instrumentation that
may be located such that they are subject to unique condi-
tions (e.g. very nearby sources, anomalous long-term vari-
ation) or that have anomalous readings. However, for data
consisting of longer-term averages, or observations in which
the shorter timescales have been removed by filtering, at least
some of the information which identifies the influence of
common emissions sources is lost. Nonetheless, the method-
ology, when applied to time-filtered data, is able to single out
stations mainly influenced by seasonality.

Clustering was shown to depend on the chemical species
analysed, suggesting that optimization of networks using this
methodology should be carried out on a “by species” basis
rather than a “by station” basis. The two species examined
here originate in different types of emissions sources in the
region under study and consequently have different dissimi-
larity rankings for the corresponding stations.

We have corroborated the work of Solazzo and Gal-
marini (2015) for ozone in that the methodology is capa-
ble of identifying monitoring stations making use of different
monitoring methodologies (via our 5-year analysis of passive
and continuous SO2 and NO2 observations on a common bi-
monthly averaging interval). Passive and continuous moni-
tors in the same airsheds did not always fall within common
clusters (with several examples in which collocated moni-
tors from the two technologies did not correlate). Some of
these issues may be the result of averaging time, though data
round-off and accuracy (random noise) were also shown to
have a negative influence on the clustering results.

We have expanded the use of hierarchical clustering for
air pollution to include its use with air quality model out-
put. This presents a new avenue for monitoring network op-

timization and design in that each high-resolution air quality
model grid square can be treated as a potential monitoring
station location. Comparisons of the results of the clustering
of model and observed time series at monitoring station loca-
tions showed clusters generated from model output tended to
be more similar within airsheds than was the case for clusters
generated from observations. However, the results are quite
comparable, albeit at higher correlation levels for the model
than the observations, and the match to observations depends
on the chemical species. Tests in which gridded model out-
put was treated as potential station locations resulted in the
first dissimilarity-analysis-based maps of optimized air pol-
lution monitoring networks. These showed that the method-
ology is capable of generating subregions within which a sin-
gle station will represent that entire subregion, to a given
level of a dissimilarity metric. Maps of this nature may be
combined with other georeferenced data (e.g. road networks,
power availability) to assist in monitoring network design.

While hierarchical clustering’s pitfalls include data disper-
sion and outliers, we show here that the methodology is also
able to identify differences in sampling methodologies and
anomalous stations records. The analysis was shown to be
particularly sensitive for monitors sampling air contaminants
such as SO2 in areas of low background concentrations and
sudden concentration peaks. For SO2, this is a result of the
variation inherent in the type of sources that dominate SO2
emissions in our study region, i.e. large stack plumes. We
also note that comparing observation-based cluster analysis
with those of air quality model output at station locations
might help identify possible deficiencies in the emission data
used to drive air quality models. Given that short-term varia-
tion has been shown here to have a key impact on identifying
common sources, the use of annual totals and assumed tem-
poral profiles as the basis for emission inventory reporting
should be avoided, and more time specific records, should be
used where possible.

Code and data availability. The continuous air quality obser-
vations are available from the publicly accessible database,
http://airdata.alberta.ca/ (Airdata warehouse, 2018), and the
passive observations can be made available upon request to
Yayne Aklilu (AEP). The model results are available upon re-
quest to Paul A. Makar (ECCC). GEM-MACH, the atmospheric
chemistry library for the GEM numerical atmospheric model (©
2007–2013, Air Quality Research Division and National Prediction
Operations division, Environment and Climate Change Canada), is
a free software which can be redistributed and/or modified under
the terms of the GNU Lesser General Public License as published
by the Free Software Foundation – either version 2.1 of the license
or any later version. Much of the emissions data used in our model
are available online: Executive Summary, Joint Oil Sands Moni-
toring Program Emissions Inventory report (https://www.canada.
ca/en/environment-climate-change/services/science-technology/
publications/joint-oil-sands-monitoring-emissions-report.html;
Joint oil sands monitoring program emissions inventory re-
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port, 2018) and Joint Oil Sands Emissions Inventory Database
(http://ec.gc.ca/data_donnees/SSB-OSM_Air/Air/Emissions_
inventory_files/; Emissions inventory files, 2018). The cluster
analysis code can be made available upon request to the main
author (Joana Soares); the code is based on the work published by
Cheng and Milligan (1996a, b, 1995).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-18-6543-2018-supplement.
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