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Abstract. We use observations of boundary layer methane
from the SEAC*RS aircraft campaign over the Southeast
US in August-September 2013 to estimate methane emis-
sions in that region through an inverse analysis with up to
0.25° x 0.3125° (25 x 25km?) resolution and with full er-
ror characterization. The Southeast US is a major source
region for methane including large contributions from oil
and gas production and wetlands. Our inversion uses state-
of-the-art emission inventories as prior estimates, includ-
ing a gridded version of the anthropogenic EPA Greenhouse
Gas Inventory and the mean of the WetCHARTSs ensemble
for wetlands. Inversion results are independently verified by
comparison with surface (NOAA/ESRL) and column (TC-
CON) methane observations. Our posterior estimates for the
Southeast US are 12.840.9 Tga~! for anthropogenic sources
(no significant change from the gridded EPA inventory) and
9.440.8 Tga™! for wetlands (27 % decrease from the mean
in the WetCHARTS ensemble). The largest source of error in
the WetCHARTSs wetlands ensemble is the land cover map
specification of wetland areal extent. Our results support the
accuracy of the EPA anthropogenic inventory on a regional
scale but there are significant local discrepancies for oil and
gas production fields, suggesting that emission factors are
more variable than assumed in the EPA inventory.

1 Introduction

Methane is an important greenhouse gas (Myhre et al., 2013).
Individual countries must report their national emissions
to the United Nations Framework Convention on Climate
Change (UNFCCC; United Nation, 1992). Observations of
atmospheric methane reviewed by Brandt et al. (2014) have
implied that the US national inventory reported by the Envi-
ronmental Protection Agency (EPA) may be greatly underes-
timated. Here we use aircraft observations from the NASA
SEACA*RS aircraft campaign over the Southeast US (Toon
et al., 2016), together with a newly gridded version of the
EPA inventory (Maasakkers et al., 2016), in a fine-resolution
inversion with detailed error characterization to better quan-
tify methane emissions over this major source region.

The EPA (2016) reports a national anthropogenic emission
total of 29.2 TgCHq4 a—! for 2014, with no significant trend
over the past decade and less than 43 % interannual vari-
ability. Major contributors are livestock (32 %), the oil and
gas industry (32 %), waste (22 %), and coal mining (8 %).
The EPA (2016) inventory is consistent with Lyon et al.
(2015) for oil and gas systems and Wolf et al. (2017) for
livestock, and 8 % higher than the previous versions (EPA,
2013, 2014), largely due to updated oil and gas emissions.
There is also a highly uncertain natural source from wet-
lands, estimated at 4.5-14 Tga~! for the contiguous US in
the WETCHIMP compilation of inventories (Melton et al.,
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2013). Inverse analyses of atmospheric methane observa-
tions have suggested that the EPA bottom-up inventory (EPA,
2013, 2014) is too low by about 30 % (Miller et al., 2013;
Turner et al., 2015; Alexe et al., 2015). However, Turner et al.
(2015) and Alexe et al. (2015) relied on prior estimates from
the global EDGAR v4.2 inventory (European Commission,
2011) that have large errors in source patterns particularly
for oil and gas systems (Maasakkers et al., 2016; Sheng et al.,
2017). Errors in source patterns used as prior estimates can
greatly bias inversion results (Jacob et al., 2016), though this
depends on the constraint from observations and on the un-
certainty assigned to the prior estimates. Miller et al. (2013)
used a geostatistical inversion that did not rely on any prior
estimates, but had little constraints in the Southeast US.

The SEACRS aircraft campaign conducted in August—
September 2013 offers an opportunity for better estimating
methane emissions in the Southeast US, a region that ac-
counts for about half of total anthropogenic methane emis-
sions in the US, according to the gridded EPA inventory
(Maasakkers et al., 2016), and also has extensive wetlands.
The aircraft flights provided extensive boundary layer mea-
surements of methane across the region. We conduct an
inverse analysis of the SEAC*RS data with the GEOS-
Chem chemical transport model (CTM) at 0.25° x 0.3125°
resolution, using state-of-the-art prior estimates from the
gridded EPA inventory of Maasakkers et al. (2016) and
the WetCHARTSs extended ensemble wetlands inventory of
Bloom et al. (2017). This allows us to evaluate the EPA in-
ventory with better accuracy and resolution than has been
done before and also to gain better understanding of US wet-
land emissions.

2 Methods

We derive an optimized estimate of spatially resolved
methane emissions in the Southeast US (domain of Fig. 1)
through Bayesian inverse analysis of atmospheric methane
observations from the SEAC*RS aircraft campaign. Let the
vector x represent a gridded ensemble of methane emissions
in the region (state vector for the inversion).The inversion
minimizes the cost function J(x) by solving V,J(x) =0 as
follows:

1 Tg—1
J(x)=§(x—xA) S, (x —xa) ()
1
+§(y—Kx)TS(_)l(y—Kx).

Here the methane observations are assembled as a vector y,
x A is the prior emission estimate, K is the Jacobian matrix
describing the sensitivity of concentrations to emissions, and
Sa and S are the prior and observational error covariance
matrices, respectively. The observational error includes con-
tributions from both the instrument error and the model trans-
port error.
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Analytical solution of V J(x) = 0 yields the optimal esti-
mate X, the posterior error covariance matrix S, and the asso-
ciated averaging kernel matrix A as follows (Rodgers, 2000;
Brasseur and Jacob, 2017):

£ =xa+St (KST « +S0) 7' (y —Kxa), 2)
S!'=KTSp 'K +S;!, 3)
A=1,-Ss;", 4)

where I, is the identity matrix with n being the dimension of
the state vector x. Inversions of atmospheric methane obser-
vations may solve V,J(x) = 0 either analytically, or numer-
ically using an adjoint method (Jacob et al., 2016). Unlike
adjoint-based inversions, analytical solution provides direct
error characterization of the optimal estimate X through its
error covariance matrix S. The related averaging kernel ma-
trix A describes the sensitivity of the optimal estimate X to
the true emissions x. The trace of A quantifies the degrees
of freedom for signal (DOFS), i.e., the number of pieces
of information in the observing system for constraining the
methane emissions (DOFS < n).

The Jacobian matrix K for the inversion is constructed
with the GEOS-Chem CTM (http://www.geos-chem.org, last
access: 1 November 2017), which relates methane emissions
to atmospheric concentrations through simulation of atmo-
spheric transport. We use a nested version of GEOS-Chem
as described by Kim et al. (2015) with 0.25° x 0.3125° hor-
izontal resolution over the North America window and ad-
jacent oceans (9.75-60° N, 130-60° W), driven by GEOS-
FP assimilated meteorological data from the NASA Global
Modeling and Assimilation Office (GMAO). The same ver-
sion of the GEOS-Chem has been applied to simulation
of other chemical observations from the SEAC*RS cam-
paign (Kim et al., 2015; Fisher et al., 2016; Marais et al.,
2016; Travis et al., 2016; Zhu et al., 2016; Yu et al., 2016;
Chan Miller et al., 2017). The boundary conditions for the
nested-grid simulation are from a 4° x 5° global simula-
tion by Turner et al. (2015) using methane emissions opti-
mized with three years of GOSAT satellite data. The GOSAT-
optimized emissions have been independently evaluated with
atmospheric methane observations from the NOAA surface
network (Turner et al., 2015). The GEOS-Chem uses a 3-
D archive of monthly average OH concentrations from Park
et al. (2004) to compute the methane sink, with a lifetime
of 8.9 years in the troposphere consistent with observational
constraints (Prather et al., 2012; Turner et al., 2017). The sink
is irrelevant for our North American simulation since ventila-
tion of the domain is much faster (Wecht et al., 2014). Since
we treat OH concentrations as decoupled from methane in
the inversion, the relationship between emissions and con-
centrations is strictly linear, so that K fully describes the
GEOS-Chem model for the purpose of the inversion.

The prior emission estimates for the inversion are taken
from the 0.1° x0.1° gridded version of the EPA an-
thropogenic greenhouse gas emission inventory for 2012
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Figure 1. Methane emissions in the Southeast US in August—September 2013. Panel (a) shows the prior anthropogenic and wetland methane
emissions, and panel (b) shows the inversion results including posterior emissions, scaling factors (posterior / prior emission ratios), and the
diagonal elements of the averaging kernel matrix representing the sensitivity of the inversion results to the observations. The sum of these
diagonal elements over the domain (trace of the averaging kernel matrix) quantifies the degrees of freedom for signal (DOFS) of the inversion.
Numbers inset in the emission panels are the regional totals expressed as annual means for clarity (i.e., assuming that August—September
emission rates hold for the rest of the year). Values in parentheses are the totals for the region with averaging kernel sensitivities larger than

0.05 (stippled areas in lower left panel).

(Maasakkers et al., 2016) and the mean wetland emissions
from the 0.5° x 0.5° monthly WetCHARTS extended ensem-
ble for 2013 (Bloom et al., 2017). Figure 1 (top panels) shows
the distribution of these prior methane emissions over the in-
version domain for August—September 2013. Emissions to-
tal 13.3Tga~! for anthropogenic sources and 13.0 Tga™!
for wetlands over these two months (expressed on an an-
nual basis). Anthropogenic emissions in the EPA inventory
have little seasonal or interannual variability (Turner et al.,
2015; Maasakkers et al., 2016), while wetland emissions
have a large seasonal variation.

The SEAC*RS DC-8 aircraft conducted 21 flights over
the Southeast between 6 August and 21 September 2013.
Methane was measured by gas chromatography from whole
air flask samples and calibrated to the NOAA standard. Fig-
ure 2 (left panel) shows the SEAC*RS flight tracks and the
spatial distribution of the methane flask measurements below
2 km altitude. The mean observed vertical profile is shown in
the right panel of Fig. 2, and compared to the GEOS-Chem
profile using the prior emissions. The model is unbiased in
the free troposphere above 2 km, implying a successful rep-
resentation of background methane by the boundary con-
ditions. Model overestimation in the boundary layer below
2 km suggests that the prior US emissions are too high. For
the inversion, we use the SEAC*RS observations below 2 km
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altitude averaged over the 0.25° x 0.3125° GEOS-Chem grid
for individual flights. This represents 652 individual methane
observations.

We use the residual error method (Heald et al., 2004) to
estimate the diagonal elements of the observational error
covariance matrix Sg. The method assumes that the mean
model bias between the observations and the model is due
to error in prior emissions to be corrected by the inversion.
The residuals are the differences between observed and mod-
eled values after removing the mean model bias. The resid-
ual error standard deviation (RSD) is taken to represent the
observational error including contributions from the instru-
ment and the transport model. Figure 3 shows the vertical
profile of the RSD for the ensemble of the SEAC*RS data
over the Southeast US. The RSD is about 60 ppb below 2 km
and 20 ppb in the free troposphere above. Subsetting the data
by latitudinal bands gives similar results. Thus we use 60 ppb
for the standard deviation of the observational error (diagonal
elements in Sg). The instrument precision is better than 2 ppb
(Simpson et al., 2002), therefore most of that observational
error is from the transport model. We take S to be diagonal
since error correlations between boundary layer observations
on the GEOS-Chem grid are not significant (Wecht et al.,
2014).
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(a) SEAC*RS flight tracks and boundary layer methane

(b) Methane vertical profile
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Figure 2. Boundary layer methane concentrations over the Southeast US measured during the SEAC*RS aircraft campaign (6 August—
21 September 2013). Panel (a) shows the flight tracks in grey and the methane measurements at 0-2 km altitude. The three NOAA/ESRL
sites at SGP (Southern Great Plains, Oklahoma; 36.6° N, 97.5° W), WKT (Moody, Texas; 31.3° N, 97.3° W), and SCT (Beech Island, South
Carolina; 33.4°, 81.8° W) are indicated. SGP is co-located with the TCCON site at Lamont, Oklahoma. Panel (b) shows the mean methane
vertical profiles over the Southeast US domain measured from the aircraft and simulated by GEOS-Chem using the prior and posterior

emissions.
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Figure 3. Residual standard deviation (RSD) of the difference be-
tween SEAC*RS methane observations and the GEOS-Chem model
with prior emissions, for 1km altitude bins. The RSD defines the

observational error standard deviations for the inversion as de-
scribed in the text. Values are shown for two latitudinal bands.

The inversion can, in principle, optimize emissions at the
0.25° x 0.3125° grid resolution of the GEOS-Chem model,
representing 3004 grid cells over the inversion domain. But
the aircraft observations do not have sufficient information
to constrain emissions at that resolution. In order to reduce
the dimensionality of the state vector, we project the 3004
grid cells onto 216 elements of a Gaussian mixture model
(GMM) with radial basis functions based on spatial proxim-
ity and source type patterns (Turner and Jacob, 2015). The
use of the GMM allows us to retain high resolution of up
to 25 km for major localized sources while degrading reso-
lution in areas of weak or broadly distributed sources. Areas
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dominated by wetlands have resolution of 100-200 km in the
GMM because they are broadly distributed.

The anthropogenic inventory of Maasakkers et al. (2016)
and the wetlands inventory of Bloom et al. (2017) both in-
clude gridded error estimates that serve as the diagonal ele-
ments of the prior error covariance matrix Sp. Maasakkers
et al. (2016) found no significant spatial error correlation at
0.1° x 0.1° resolution in their inventory while a variogram
analysis across the elements of the WetCHARTS ensemble
indicates a spatial error correlation length scale of 130km.
Here we ignore this correlation and take Sa to be diagonal.

3 Results and discussion

Figure 1b shows the results of the inversion including the
optimized posterior emissions, the corrections to the prior
emissions, and the DOFS as measured by the diagonal ele-
ments of the averaging kernel matrix. Figure 4 (top panels)
compare the observed boundary layer methane concentra-
tions to the values simulated by GEOS-Chem with prior and
posterior emissions (Fig. 1). The simulation with prior emis-
sions has a positive bias that is effectively corrected when
using posterior emissions. The coefficient of determination
(R?) between model and observations increases from 0.30 to
0.50 when using posterior emissions. Figure 4 also evaluates
the SEAC*RS inversion results with independent surface air
observations from the three NOAA/ESRL surface network
sites in the region (Andrews et al., 2014) and with methane
column observations from the TCCON site in Lamont, Okla-
homa (Wunch et al., 2011; Wennberg et al., 2017). The pos-
terior emissions improve the simulation of these independent
data sets. GOSAT satellite observations are another source
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Evaluation of the SEAC*RS inversion results
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Figure 4. Evaluation of the SEAC“RS inversion of methane emis-
sions in the Southeast US for the 6 August-21 September 2013
period. Panels (a, b) compare GEOS-Chem methane concentra-
tions with the SEAC*RS observations, using prior emissions (left)
and posterior emissions (right). Panels (¢, d) compare GEOS-
Chem methane concentrations with independent observations from
the three NOAA/ESRL surface sites in the inversion domain (see
Fig. 2 and caption). Panels (e, f) compare GEOS-Chem methane
columns with TCCON hourly column observations at Lamont, Ok-
lahoma (Wennberg et al., 2017), after correction for stratospheric
bias in the model (Turner et al., 2015). The 1 : 1 lines (dashed) and
the reduced-major-axis(black solid line) linear regressions are also
shown, along with the coefficients of determination (R2) and the
slopes (£10) derived from the bootstrap method.

of independent data but the 2 month period is too sparse for
useful evaluation (Wecht et al., 2014).

Total posterior emissions over the SEAC*RS domain are
15% (4Tg a—1) lower than the prior estimate (Fig. 1). The
inversion is able to constrain about 10 pieces of informa-
tion in the spatial distribution of methane emissions as mea-
sured by the DOFS. It is strongly sensitive to the Gulf Coast
and to large anthropogenic source areas such as the Floyd
Shale in central Alabama. For the regions with averaging
kernel sensitivity larger than 0.05, posterior emissions are
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Figure 5. Prior and posterior methane emissions in the Southeast
US (domain of Fig. 1) for August—September 2013. The prior an-
thropogenic emissions are from the EPA national inventory for 2012
(EPA, 2016; Maasakkers et al., 2016) and the prior wetland emis-
sions are the means of the WetCHART's extended ensemble (Bloom
et al., 2017). Error bars (one standard deviation) on sectoral emis-
sions are from the prior and posterior error variances of our inver-
sion. Methane emissions in the subdomain with averaging kernel
sensitivities larger than 0.05 (Fig. 1) are also indicated.

35 % lower than the prior estimate. The posterior errors are
18-30 % over these regions. The scaling factors show large
downward corrections of prior emissions in Louisiana and
Mississippi, and along the Gulf Coast, where wetlands are
the dominant sources. There are also downward corrections
in southern West Virginia, where coal mines are dominant,
and in the Haynesville Shale gas production region of north-
ern Louisiana and southern Arkansas. On the other hand,
there are significant upward corrections for the coal mines of
southern Illinois and for the Floyd Shale in central Alabama.

We can attribute the 0.25° x 0.3125° scaling factors from
the inversion to specific methane source sectors by using the
sector-resolved spatial patterns in the prior emission invento-
ries, as described by Turner et al. (2015) but here with the im-
proved anthropogenic source patterns from Maasakkers et al.
(2016) and wetland emissions from (Bloom et al., 2017). An-
thropogenic and wetland sources are well separated spatially
in these inventories. Figure 5 compares our results with the
prior emission totals for the different sectors in the Southeast
US. We find a significant 27 % reduction in regional wet-
land emissions relative to the prior estimate (mean of the
WetCHARTSs extended ensemble). For the subdomain with
averaging kernel sensitivity larger than 0.05 that reduction
is 42 %. By contrast, we find no significant regional bias in
the EPA anthropogenic inventory for any of the major source
sectors for the period of August—September 2013. However,
there are large local biases that tend to cancel each other on
a regional scale (e.g., Haynesville Shale vs. Floyd Shale for
natural gas). This suggests that methane emission factors for
the oil and gas sector are more variable than assumed in the
EPA (2016) inventory.
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The WetCHARTS extended ensemble includes 18 wetland
methane emission models intended to encompass the un-
certainties in estimating wetland emissions (Bloom et al.,
2017). The different models (ensemble members) use dif-
ferent datasets for wetland extent fraction A [m? wet-
landsm~2 surface area], heterotrophic respiration rate R
[mgC day~! m~2 of wetland area], temperature-dependent
factor qlTO/ 0%fC respired as CH4 [mg CHy mg_1 C] where T
is the surface skin temperature, and global scaling factors s.
The wetland methane emission flux £ [mgCHs;m~2 day™!]
at a time ¢ and location x for each of these members is given
by the following equation:

T(t,x)/10

E(t,x) =sA(t,x)R(t,x)q, (®)]

The 18-member ensemble consists of three temperature de-
pendence factors (q10 =1,2,3), three global scale factors
(s =125, 166, 208), and two wetland extent maps (A) from
the Global Lakes and Wetlands Database (GLWD; Lehner
and Dolla, 2004) and GLOBCOVER (Bontemps et al.,
2011). The heterotrophic respiration rate (R) is the me-
dian output from the carbon data model framework (CAR-
DAMOM; Bloom et al., 2016), and is not varied across that
ensemble.

Figure 6 shows the Southeast US wetland emissions for
each WetCHART's member, along with the root-mean-square
error (RMSE) of its spatial distribution relative to our opti-
mized posterior estimate on the 0.25° x 0.3125° grid. Con-
sistency in spatial distribution with our optimized estimate
is indicated by a low RMSE. We find that the specification
of wetland extent is the most systematic source of error in
wetland emission estimates; all GLOBCOVER-based mod-
els underestimate wetland emissions, while all GLWD-based
models overestimate emissions. Estimates using g19 = 1 (no
temperature dependence in the CHy : C respiration ratio) ex-
hibit the lowest RMSE values. The WetCHARTSs ensemble
mean used as prior for our inversion has the lowest RMSE,
although this may reflect its influence on the posterior solu-
tion.

4 Conclusions

We used extensive boundary layer methane observations
from the SEAC*RS aircraft campaign over the Southeast US
in August—September 2013 to optimize methane emissions
in that region with up to 0.25° x 0.3125° spatial resolution
and with detailed error characterization. The inversion used
new state-of-the-art inventories as prior information, includ-
ing the gridded version of the EPA (2016) national anthro-
pogenic inventory from Maasakkers et al. (2016) and the
WetCHARTS wetlands extended ensemble from Bloom et al.
(2017). The inversion domain over the Southeast US ac-
counts for 45 % of national methane emissions in the EPA
inventory, and for 56 % of wetland emissions over the con-
tiguous US in the mean WetCHARTS estimate.

Atmos. Chem. Phys., 18, 6483-6491, 2018
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Figure 6. Range of wetland emission estimates in the Southeast
US (domain of Fig. 1) for August-September 2013. The figure
shows the spread of the WetCHART s extended ensemble and com-
pares with the posterior emission estimate from our inversion in
terms of emission total and root-mean-square error (RMSE) on the
0.25° x 0.3125° spatial grid. The RMSE of the posterior emission
estimate with itself is zero by definition. WetCHARTSs ensemble
members use wetland areal extent data from either the GLOB-
COVER (Bontemps et al., 2011) or GLWD (Lehner and Délla,
2004) databases, as well as different estimates of temperature sen-
sitivity g1o and global scaling factors s (see Eq. 5 and text). The
posterior wetland emission estimate from our inversion is shown
as black solid diamond with its associated error standard deviation.
The mean of the WetCHART' ensemble used as prior for our inver-
sion is shown as blue solid circle with its associated error standard
deviation.

Our inversion results suggest that the EPA emission inven-
tory has no significant bias on the regional scale for the major
anthropogenic source sectors (livestock, oil and gas, waste,
coal), while the mean of the WetCHARTSs wetland ensem-
ble needs to be reduced by 27 % over the inversion domain.
These results are supported by independent methane obser-
vations from the NOAA/ESRL surface network and from
the TCCON site in Lamont, Oklahoma. The specification of
wetland areal extent is the dominant source of error in the
WetCHARTS ensemble. Results also indicate that a low tem-
perature dependence for the CHy : C heterotrophic respira-
tion ratio best explains the spatial variability of the posterior
emissions. Despite regional agreement with the EPA anthro-
pogenic inventory, we still find significant local discrepan-
cies with the EPA inventory for the oil and gas sector, sug-
gesting that methane emission factors are more variable than
assumed in the inventory.

Data availability. SEAC4ARS  aircraft methane observations
are available at https://www-air.larc.nasa.gov/cgi-bin/ArcView/
seacdrs\T1\textbackslash#BLAKE.DONALD/ (last access:
1 November 2017). TCCON data (Wunch et al., 2011; Wennberg
et al,, 2017) are available at http://tccondata.org (last access:
1 November 2017). The NOAA data (Andrews et al., 2014) are
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available at https://www.esrl.noaa.gov/gmd/ccgg/obspack/ (last
access: 1 November 2017).

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. This work was funded by the NASA Earth
Science Division. Part of this research was carried out at the
Jet Propulsion Laboratory, California Institute of Technology,
under a contract with NASA. Special thanks to Donald R. Blake
for providing SEAC*RS aircraft methane observations (avail-
able at https://www-air.larc.nasa.gov/cgi-bin/ArcView/seacdrs#
BLAKE.DONALDY/, last access: 1 November 2017). TCCON
data were obtained from the TCCON Data Archive, hosted
by CaltechData (http://tccondata.org, last access: 1 Novem-
ber 2017). The NOAA data are available from the ObsPack
portal (https://www.esrl.noaa.gov/gmd/ccgg/obspack/, last access:
1 November 2017).

Edited by: Christoph Gerbig
Reviewed by: two anonymous referees

References

Alexe, M., Bergamaschi, P., Segers, A., Detmers, R., Butz, A.,
Hasekamp, O., Guerlet, S., Parker, R., Boesch, H., Frankenberg,
C., Scheepmaker, R. A., Dlugokencky, E., Sweeney, C., Wofsy,
S. C., and Kort, E. A.: Inverse modelling of CHy emissions
for 2010-2011 using different satellite retrieval products from
GOSAT and SCIAMACHY, Atmos. Chem. Phys., 15, 113-133,
https://doi.org/10.5194/acp-15-113-2015, 2015.

Andrews, A. E., Kofler, J. D., Trudeau, M. E., Williams, J. C., Neff,
D. H., Masarie, K. A., Chao, D. Y., Kitzis, D. R., Novelli, P. C.,
Zhao, C. L., Dlugokencky, E. J., Lang, P. M., Crotwell, M. J.,
Fischer, M. L., Parker, M. J., Lee, J. T., Baumann, D. D., Desai,
A. R., Stanier, C. O., De Wekker, S. F. J., Wolfe, D. E., Munger,
J. W., and Tans, P. P.: CO,, CO, and CH4 measurements from tall
towers in the NOAA Earth System Research Laboratory’s Global
Greenhouse Gas Reference Network: instrumentation, uncer-
tainty analysis, and recommendations for future high-accuracy
greenhouse gas monitoring efforts, Atmos. Meas. Tech., 7, 647—
687, https://doi.org/10.5194/amt-7-647-2014, 2014.

Bloom, A. A., Exbrayat, J.-F., van der Velde, I. R., Feng, L.,
and Williams, M.: The decadal state of the terrestrial carbon
cycle: Global retrievals of terrestrial carbon allocation, pools,
and residence times, P. Natl. Acad. Sci. USA, 113, 1285-1290,
https://doi.org/10.1073/pnas.1515160113, 2016.

Bloom, A. A., Bowman, K. W., Lee, M., Turner, A. J., Schroeder,
R., Worden, J. R., Weidner, R., McDonald, K. C., and Ja-
cob, D. J.: A global wetland methane emissions and un-
certainty dataset for atmospheric chemical transport models
(WetCHARTS version 1.0), Geosci. Model Dev., 10, 2141-2156,
https://doi.org/10.5194/gmd-10-2141-2017, 2017.

Bontemps, S., Defourny, P., Bogaert, E. V., Arino, O., Kalogirou, V.,
and Perez, J R.: GLOBCOVER 2009: Products Description and
Validation Report, Tech. rep., ESA, 2, 2011.

www.atmos-chem-phys.net/18/6483/2018/

6489

Brandt, A. R., Heath, G. A., Kort, E. A., O’Sullivan, E,
Pétron, G., Jordaan, S. M., Tans, P, Wilcox, J., Gop-
stein, A. M., Arent, D., Wofsy, S., Brown, N. J., Bradley, R.,
Stucky, G. D., Eardley, D., and Harriss, R.: Methane Leaks from
North American Natural Gas Systems, Science, 343, 733-735,
https://doi.org/10.1126/science.1247045, 2014.

Brasseur, G. P. and Jacob, D. J.: Modeling of Atmospheric Chem-
istry, 1st Edn., Cambridge University Press, 2017.

Chan Miller, C., Jacob, D. J., Marais, E. A., Yu, K., Travis, K. R.,
Kim, P. S., Fisher, J. A., Zhu, L., Wolfe, G. M., Hanisco, T. F,,
Keutsch, F. N., Kaiser, J., Min, K.-E., Brown, S. S., Washen-
felder, R. A., Gonzdlez Abad, G., and Chance, K.: Glyoxal yield
from isoprene oxidation and relation to formaldehyde: chemi-
cal mechanism, constraints from SENEX aircraft observations,
and interpretation of OMI satellite data, Atmos. Chem. Phys., 17,
8725-8738, https://doi.org/10.5194/acp-17-8725-2017, 2017.

EPA: Inventory of US Greenhouse Gas Emissions and Sinks 1990—
2011, US Environmental Protection Agency, Washington DC,
2013.

EPA: Inventory of US Greenhouse Gas Emissions and Sinks 1990—
2014, US Environmental Protection Agency, Washington DC,
2014.

EPA: Inventory of US Greenhouse Gas Emissions and Sinks 1990—
2014,US Environmental Protection Agency, Washington DC,
2016.

European Commission: Emission Database for Global Atmospheric
Research (EDGAR), release version 4.2, Tech. rep., Joint Re-
search Centre (JRC)/Netherlands Environmental Assessment
Agency (PBL), available at: http://edgar.jrc.ec.europa.eu (last ac-
cess: 1 November 2017), 2011

Fisher, J. A., Jacob, D. J., Travis, K. R., Kim, P. S., Marais, E.
A., Chan Miller, C., Yu, K., Zhu, L., Yantosca, R. M., Sul-
prizio, M. P, Mao, J., Wennberg, P. O., Crounse, J. D., Teng,
A. P, Nguyen, T. B., St. Clair, J. M., Cohen, R. C., Romer,
P., Nault, B. A., Wooldridge, P. J., Jimenez, J. L., Campuzano-
Jost, P, Day, D. A., Hu, W., Shepson, P. B., Xiong, F., Blake,
D. R, Goldstein, A. H., Misztal, P. K., Hanisco, T. F., Wolfe,
G. M., Ryerson, T. B., Wisthaler, A., and Mikoviny, T.: Or-
ganic nitrate chemistry and its implications for nitrogen budgets
in an isoprene- and monoterpene-rich atmosphere: constraints
from aircraft (SEAC4RS) and ground-based (SOAS) observa-
tions in the Southeast US, Atmos. Chem. Phys., 16, 5969-5991,
https://doi.org/10.5194/acp-16-5969-2016, 2016.

Heald, C. L., Jacob, D. J., Jones, D. B. A., Palmer, P. 1., Logan, J. A.,
Streets, D. G., Sachse, G. W., Gille, J. C., Hoffman, R. N.,
and Nehrkorn, T.: Comparative inverse analysis of satellite (MO-
PITT) and aircraft (TRACE-P) observations to estimate Asian
sources of carbon monoxide, J. Geophys. Res., 109, D23306,
https://doi.org/10.1029/2004JD005185, 2004.

Henze, D. K., Hakami, A., and Seinfeld, J. H.: Development of
the adjoint of GEOS-Chem, Atmos. Chem. Phys., 7, 2413-2433,
https://doi.org/10.5194/acp-7-2413-2007, 2007.

Jacob, D. J., Turner, A. J., Maasakkers, J. D., Sheng, J., Sun,
K., Liu, X., Chance, K., Aben, 1., McKeever, J., and Franken-
berg, C.: Satellite observations of atmospheric methane and
their value for quantifying methane emissions, Atmos. Chem.
Phys., 16, 14371-14396, https://doi.org/10.5194/acp-16-14371-
2016, 2016.

Atmos. Chem. Phys., 18, 6483-6491, 2018


https://www.esrl.noaa.gov/gmd/ccgg/obspack/
https://www-air.larc.nasa.gov/cgi-bin/ArcView/seac4rs#BLAKE.DONALD/
https://www-air.larc.nasa.gov/cgi-bin/ArcView/seac4rs#BLAKE.DONALD/
http://tccondata.org
https://www.esrl.noaa.gov/gmd/ccgg/obspack/
https://doi.org/10.5194/acp-15-113-2015
https://doi.org/10.5194/amt-7-647-2014
https://doi.org/10.1073/pnas.1515160113
https://doi.org/10.5194/gmd-10-2141-2017
https://doi.org/10.1126/science.1247045
https://doi.org/10.5194/acp-17-8725-2017
http://edgar.jrc.ec.europa.eu
https://doi.org/10.5194/acp-16-5969-2016
https://doi.org/10.1029/2004JD005185
https://doi.org/10.5194/acp-7-2413-2007
https://doi.org/10.5194/acp-16-14371-2016
https://doi.org/10.5194/acp-16-14371-2016

6490 J.-X. Sheng et al.: Methane emissions in the Southeast US using SEAC*RS aircraft observations

Kim, P. S., Jacob, D. J., Fisher, J. A., Travis, K., Yu, K., Zhu, L.,
Yantosca, R. M., Sulprizio, M. P, Jimenez, J. L., Campuzano-
Jost, P, Froyd, K. D., Liao, J., Hair, J. W., Fenn, M. A., But-
ler, C. F,, Wagner, N. L., Gordon, T. D., Welti, A., Wennberg,
P. O., Crounse, J. D., St. Clair, J. M., Teng, A. P, Millet,
D. B., Schwarz, J. P., Markovic, M. Z., and Perring, A. E.:
Sources, seasonality, and trends of southeast US aerosol: an in-
tegrated analysis of surface, aircraft, and satellite observations
with the GEOS-Chem chemical transport model, Atmos. Chem.
Phys., 15, 10411-10433, https://doi.org/10.5194/acp-15-10411-
2015, 2015.

Lehner, B. and Délla, P.: Development and validation of a global
database of lakes, reservoirs and wetlands, J. Hydrol., 296, 1-22,
https://doi.org/10.1016/j.jhydrol.2004.03.028, 2004.

Lyon, D. R., Zavala-Araiza, D., Alvarez, R. A., Harriss, R., Pala-
cios, V., Lan, X., Talbot, R., Lavoie, T., Shepson, P., Yacov-
itch, T. I, Herndon, S. C., Marchese, A. J., Zimmerle, D.,
Robinson, A. L., and Hamburg, S. P.: Constructing a Spa-
tially Resolved Methane Emission Inventory for the Bar-
nett Shale Region, Environ. Sci. Technol., 49, 8147-8157,
https://doi.org/10.1021/es506359¢, 2015.

Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Turner, A. J.,
Weitz, M., Wirth, T., Hight, C., DeFigueiredo, M., Desai, M.,
Schmeltz, R., Hockstad, L., Bloom, A. A., Bowman, K. W.,
Jeong, S., and Fischer, M. L.: Gridded National Inventory of US
Methane Emissions, Environ. Sci. Technol., 50, 13123-13133,
https://doi.org/10.1021/acs.est.6b02878, 2016.

Marais, E. A., Jacob, D. J., Jimenez, J. L., Campuzano-Jost, P.,
Day, D. A., Hu, W., Krechmer, J., Zhu, L., Kim, P. S., Miller,
C. C,, Fisher, J. A., Travis, K., Yu, K., Hanisco, T. F., Wolfe,
G. M., Arkinson, H. L., Pye, H. O. T., Froyd, K. D., Liao, J.,
and McNeill, V. F.: Aqueous-phase mechanism for secondary or-
ganic aerosol formation from isoprene: application to the south-
east United States and co-benefit of SO emission controls, At-
mos. Chem. Phys., 16, 1603-1618, https://doi.org/10.5194/acp-
16-1603-2016, 2016.

Melton, J. R., Wania, R., Hodson, E. L., Poulter, B., Ringeval, B.,
Spahni, R., Bohn, T., Avis, C. A., Beerling, D. J., Chen, G.,
Eliseev, A. V., Denisov, S. N., Hopcroft, P. O., Lettenmaier, D.
P., Riley, W. J., Singarayer, J. S., Subin, Z. M., Tian, H., Ziircher,
S., Brovkin, V., van Bodegom, P. M., Kleinen, T., Yu, Z. C.,
and Kaplan, J. O.: Present state of global wetland extent and
wetland methane modelling: conclusions from a model inter-
comparison project (WETCHIMP), Biogeosciences, 10, 753—
788, https://doi.org/10.5194/bg-10-753-2013, 2013.

Miller, S. M., Wofsy, S. C., Michalak, A. M., Kort, E. A,
Andrews, A. E., Biraud, S. C., Dlugokencky, E. 1.,
Eluszkiewicz, J., Fischer, M. L., Janssens-Maenhout, G.,
Miller, B. R., Miller, J. B., Montzka, S. A., Nehrkorn, T,
and Sweeney, C.: Anthropogenic emissions of methane in the
United States, P. Natl. Acad. Sci. USA, 110, 20018-20022,
https://doi.org/10.1073/pnas.1314392110, 2013.

Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt,
J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza,
B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and
Zhang, H.: Anthropogenic and Natural Radiative Forcing, in:
Climate Change 2013: The Physical Science Basis. Contribution
of Working Group I to the Fifth Assessment Report of the Inter-
governmental Panel on Climate Change, edited by: Stocker, T. F.,

Atmos. Chem. Phys., 18, 6483-6491, 2018

Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J.,
Nauels, A., Xia, Y., Bex, V. and Midgley, P. M., Cambridge Uni-
versity Press, Cambridge, UK and New York, NY, USA, 2013.

Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M.,
and Chin, M.: Natural and transboundary pollution influ-
ences on sulfate-nitrate-ammonium aerosols in the United
States: Implications for policy, J. Geophys. Res., 109, D15204,
https://doi.org/10.1029/20031D004473, 2004.

Prather, M. J., Holmes, C. D., and Hsu, J.: Reactive greenhouse
gas scenarios: Systematic exploration of uncertainties and the
role of atmospheric chemistry, Geophys. Res. Lett., 39, L09803,
https://doi.org/10.1029/2012GL051440, 2012.

Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: The-
ory and Practice, World Scientific Publishing, Singapore, 2000.

Sheng, J.-X., Jacob, D. J., Maasakkers, J. D., Sulprizio, M. P,
Zavala-Araiza, D., and Hamburg, S. P.: A high-resolution (0.1° x
0.1°) inventory of methane emissions from Canadian and Mex-
ican oil and gas systems, Atmos. Environ., 158, 211-215,
https://doi.org/10.1016/j.atmosenv.2017.02.036, 2017.

Simpson, I. J., Chenm, T.-Y., Blake, D. R., and Rowland, F. S.:
Implications of the recent fluctuations in the growth rate of
tropospheric methane, Geophys. Res. Lett., 29, 1171-1174,
https://doi.org/10.1029/2001GL014521, 2002.

Toon, O. B., Maring, H., Dibb, J., Ferrare, R., Jacob, D. J.,
Jensen, E. J., Luo, Z.J., Mace, G. G., Pan, L. L., Pfister, L.,
Rosenlof, K. H., Redemann, J., Reid, J. S., Singh, H. B., Thomp-
son, A. M., Yokelson, R., Minnis, P., Chen, G., Jucks, K. W.,
and Pszenny, A.: Planning, implementation, and scientific goals
of the Studies of Emissions and Atmospheric Composition,
Clouds and Climate Coupling by Regional Surveys (SEAC4rs)
field mission, J. Geophys. Res.-Atmos., 121, 2015JD024297,
https://doi.org/10.1002/2015JD024297, 2016.

Travis, K. R., Jacob, D. J., Fisher, J. A., Kim, P. S., Marais, E. A.,
Zhu, L., Yu, K., Miller, C. C., Yantosca, R. M., Sulprizio, M.
P., Thompson, A. M., Wennberg, P. O., Crounse, J. D., St. Clair,
J. M., Cohen, R. C., Laughner, J. L., Dibb, J. E., Hall, S. R,
Ullmann, K., Wolfe, G. M., Pollack, I. B., Peischl, J., Neuman, J.
A., and Zhou, X.: Why do models overestimate surface ozone in
the Southeast United States?, Atmos. Chem. Phys., 16, 13561—
13577, https://doi.org/10.5194/acp-16-13561-2016, 2016.

Turner, A.J. and Jacob, D. J.: Balancing aggregation and smoothing
errors in inverse models, Atmos. Chem. Phys., 15, 7039-7048,
https://doi.org/10.5194/acp-15-7039-2015, 2015.

Turner, A. J., Jacob, D. J., Wecht, K. J., Maasakkers, J. D., Lund-
gren, E., Andrews, A. E., Biraud, S. C., Boesch, H., Bowman, K.
W., Deutscher, N. M., Dubey, M. K., Griffith, D. W. T., Hase,
F., Kuze, A., Notholt, J., Ohyama, H., Parker, R., Payne, V.
H., Sussmann, R., Sweeney, C., Velazco, V. A., Warneke, T.,
Wennberg, P. O., and Wunch, D.: Estimating global and North
American methane emissions with high spatial resolution us-
ing GOSAT satellite data, Atmos. Chem. Phys., 15, 7049-7069,
https://doi.org/10.5194/acp-15-7049-2015, 2015.

Turner, A. J., Frankenberg, C., Wennberg, P. O., and Jacob, D. J.:
Ambiguity in the causes for decadal trends in atmospheric
methane and hydroxyl, P. Natl. Acad. Sci. USA, 114, 5367-5372,
https://doi.org/10.1073/pnas.1616020114, 2017.

United Nation: United Nations Framework Convention on Climate
Change, Article 4(1)(a), available at: https://unfccc.int/resource/
docs/convkp/conveng.pdf (last access: November 2017), 1992.

www.atmos-chem-phys.net/18/6483/2018/


https://doi.org/10.5194/acp-15-10411-2015
https://doi.org/10.5194/acp-15-10411-2015
https://doi.org/10.1016/j.jhydrol.2004.03.028
https://doi.org/10.1021/es506359c
https://doi.org/10.1021/acs.est.6b02878
https://doi.org/10.5194/acp-16-1603-2016
https://doi.org/10.5194/acp-16-1603-2016
https://doi.org/10.5194/bg-10-753-2013
https://doi.org/10.1073/pnas.1314392110
https://doi.org/10.1029/2003JD004473
https://doi.org/10.1029/2012GL051440
https://doi.org/10.1016/j.atmosenv.2017.02.036
https://doi.org/10.1029/2001GL014521
https://doi.org/10.1002/2015JD024297
https://doi.org/10.5194/acp-16-13561-2016
https://doi.org/10.5194/acp-15-7039-2015
https://doi.org/10.5194/acp-15-7049-2015
https://doi.org/10.1073/pnas.1616020114
https://unfccc.int/resource/docs/convkp/conveng.pdf
https://unfccc.int/resource/docs/convkp/conveng.pdf

J.-X. Sheng et al.: Methane emissions in the Southeast US using SEAC*RS aircraft observations 6491

Wecht, K. J., Jacob, D. J., Sulprizio, M. P., Santoni, G. W., Wofsy,
S. C., Parker, R., Bosch, H., and Worden, J.: Spatially resolv-
ing methane emissions in California: constraints from the Cal-
Nex aircraft campaign and from present (GOSAT, TES) and fu-
ture (TROPOMI, geostationary) satellite observations, Atmos.
Chem. Phys., 14, 8173-8184, https://doi.org/10.5194/acp-14-
8173-2014, 2014.

Wennberg, P. O., Wunch, D., Roehl, C., Blavier, J. F.,, Toon, G. C.,
Allen, N., Dowell, P., Teske, K., Martin, C., and Martin, J.:
TCCON data from Lamont, Oklahoma, USA, Release
GGG2014r1, TCCON data archive, hosted by Caltech-
DATA, California Institute of Technology, Pasadena, CA, USA,
https://doi.org/10.14291/tccon.ggg2014.lamont01.R1/1255070,
2017.

Wolf, J., Asrar, G. R., and West, T. O.: Revised methane emis-
sions factors and spatially distributed annual carbon fluxes for
global livestock, Carbon Balance and Management, 12, 16,
https://doi.org/10.1186/s13021-017-0084-y, 2017.

Wunch, D., Toon, G. C., Blavier, J.-F. L., Washenfelder, R. A.,
Notholt, J., Connor, B. J., Griffith, D. W. T., Sherlock, V.,
and Wennberg, P. O.: The Total Carbon Column Ob-
serving Network, Philos. T. R. Soc. A, 369, 2087-2112,
https://doi.org/10.1098/rsta.2010.0240, 2011.

www.atmos-chem-phys.net/18/6483/2018/

Yu, K., Jacob, D. J., Fisher, J. A., Kim, P. S., Marais, E. A., Miller,

C. C,, Travis, K. R., Zhu, L., Yantosca, R. M., Sulprizio, M. P,,
Cohen, R. C., Dibb, J. E., Fried, A., Mikoviny, T., Ryerson, T.
B., Wennberg, P. O., and Wisthaler, A.: Sensitivity to grid res-
olution in the ability of a chemical transport model to simulate
observed oxidant chemistry under high-isoprene conditions, At-
mos. Chem. Phys., 16, 4369-4378, https://doi.org/10.5194/acp-
16-4369-2016, 2016.

Zhu, L., Jacob, D. J., Kim, P. S., Fisher, J. A., Yu, K., Travis,

K. R., Mickley, L. J., Yantosca, R. M., Sulprizio, M. P., De
Smedt, 1., Gonzéalez Abad, G., Chance, K., Li, C., Ferrare, R.,
Fried, A., Hair, J. W., Hanisco, T. E., Richter, D., Jo Scarino,
A., Walega, J., Weibring, P., and Wolfe, G. M.: Observing at-
mospheric formaldehyde (HCHO) from space: validation and
intercomparison of six retrievals from four satellites (OMI,
GOME2A, GOME2B, OMPS) with SEAC4RS aircraft observa-
tions over the southeast US, Atmos. Chem. Phys., 16, 13477-
13490, https://doi.org/10.5194/acp-16-13477-2016, 2016.

Atmos. Chem. Phys., 18, 6483-6491, 2018


https://doi.org/10.5194/acp-14-8173-2014
https://doi.org/10.5194/acp-14-8173-2014
https://doi.org/10.14291/tccon.ggg2014.lamont01.R1/1255070
https://doi.org/10.1186/s13021-017-0084-y
https://doi.org/10.1098/rsta.2010.0240
https://doi.org/10.5194/acp-16-4369-2016
https://doi.org/10.5194/acp-16-4369-2016
https://doi.org/10.5194/acp-16-13477-2016

	Abstract
	Introduction
	Methods
	Results and discussion
	Conclusions
	Data availability
	Competing interests
	Acknowledgements
	References

