

Supplement of

Low levels of nitryl chloride at ground level: nocturnal nitrogen oxides in the Lower Fraser Valley of British Columbia

Hans D. Osthoff et al.

Correspondence to: Hans D. Osthoff (hosthoff@ucalgary.ca)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Table of	contents
----------	----------

16	
17	Table S-1 . Volatile organic compounds quantified by GC-MS 3-4
18	Figure S-1. Time series of gas-phase ammonia data reported by Metro Vancouver 5
19	Box model to rationalize O _x loss by dry deposition
20	Table S-2 . Reactions included in box model to estimate dry deposition velocities
21	Figure S-2. Observed and simulated O _x loss in the NBL at Abbotsford
22	Figure S-3. Effect of biogenic VOC emissions on O _x
23	Figure S-4. Comparison of observed and simulated NO mixing ratios
24	Box model to determine the time necessary for NO_3 and N_2O_5 to achieve a steady state with
25	respect to production and loss
26	Table S-3 . Reactions included in box model to estimate the time for NO_3 and N_2O_5 to achieve
27	steady state with respect to their production and loss
28	Figure S-5. Simulated temporal profiles of NO ₃ and N ₂ O ₅ and O ₃ and NO ₂ 11
29	Figure S-6. Equilibrium constants for reaction (2)
30	Figure S-7. Comparison of $\tau(N_2O_5)$ calculated using equation (2) of the main manuscript. with
31	the dashed lines calculated using equation (11) of Brown et al. (2003) 12
32	Estimates of how loss of NO ₃ to VOCs would affect the lifetime of N ₂ O ₅ 13
33	Figure S-8. Same as Figure 8c but including an assumed NO ₃ loss frequency to VOCs of
34	0.11 s ⁻¹
35	References

Butane, 2-methyl-	Cyclohexane, methyl-	Benzene, 1,2,3-
1-Pentene	Pentane, 2,3,4-	trimethyl-
Pentane	trimethyl-	Benzene, 1,3-diethyl-
2-Pentene (Z) (cis)	Heptane, 2-methyl-	Benzene, 1,4-diethyl-
Isoprene (1,3-	Heptane, 3-methyl-	Undecane
Butadiene, 2-methyl-)	Toluene	Dodecane
2-Pentene (E) (trans)	Octane	Ethylene
Butane, 2,2-dimethyl-	Ethylbenzene	Acetylene
Cyclopentane	m & p-Xylene	Ethane
2,3-Dimethylbutane	Nonane	Propane
Pentane, 2-methyl-	Styrene	Propylene
Pentane, 3-methyl-	o-Xylene	Isobutane
1-Hexene	Isopropyl Benzene	1-Butene
Hexane	(Benzene, (1-methyleth	Butane
Cyclopentane, methyl-	Benzene, propyl-	2-Butene (trans)
Pentane, 2,4-dimethyl-	Benzene, 1-ethyl-3-	2-Butene (cis)
Cyclohexane	methyl-	Freon 11
Hexane, 2-methyl-	Benzene, 1-ethyl-4-	(Trichloromonofluorom
Benzene	Benzene 135	ethane)
2,3-Dimethylpentane	trimethyl-	Isopropyl Alcohol
Hexane, 3-methyl-	Decane	Acetone
Pentane 224	Banzana 1 athyl 2	Ethene, 1,1-dichloro-
trimethyl-	methyl-	Methylene Chloride
Heptane	Benzene, 1,2,4- trimethyl-	Freon 113 (Ethane, 1,1,2-trichloro-1,2,2

Table S-1. Volatile organic compounds quantified by GC-MS

Carbon disulfide Ethene, 1,2-dichloro-, (E)-Methyl tertbutylether (Propane, 2-methox Ethane, 1,1-dichloro-Vinyl Acetate (Acetic acid ethenyl ester 2-Butanone Chloroform (Trichloromethane) Ethyl Acetate Furan, tetrahydro-Ethane, 1,2-dichloro-Ethane, 1,1,1-trichloro-Carbon Tetrachloride Trichloroethylene Methane, bromodichloro-1,4-Dioxane

Methyl Methacrylate 1-Propene, 1,3dichloro-, (Z)-Methyl Isobutyl Ketone 1-Propene, 1,3dichloro-, (E)-Ethane, 1,1,2-trichloro-2-Hexanone Methane, dibromochloro-Ethane, 1,2-dibromo-Tetrachloroethylene Benzene, chloro-Bromoform (Methane, tribromo-) Ethane, 1,1,2,2tetrachloro-Ethane, pentachloro-Benzyl Chloride Benzene, 1,3-dichloroBenzene, 1,4-dichloro-Benzene, 1,2-dichloro-Benzene, 1,2,4trichloro-1,3-Butadiene, 1,1,2,3,4,4-hexachloro-Naphthalene Freon 12 Chloromethane Freon 114 Vinyl chloride 1,3 Butadiene Bromomethane Chloroethane Ethanol 1R-alpha-Pinene Camphene beta-Pinene **D-Limonene**

37

- **Figure S-1**. Time series of gas-phase ammonia data reported by Metro Vancouver. Data were
- 42 not quality-assured and are non-quantitative.

44 Box model to rationalize O_x loss by dry deposition

A box model was set up to simulate the median nocturnal decays of O₃ and O_x. These simulations are intended as back-of-the-envelope type estimates of major processes only since an accurate description of the nocturnal boundary layer chemistry would require modeling of horizontal and vertical transport, i.e., altitude-resolved information (Geyer and Stutz, 2004). Such information was not available in this work.

50 The reactions used in this model are summarized in Table S-2. The mechanism consists of O₃

- 51 and NO₂ dry deposition, titration of NO with O_3 (R8) and chemical loss of O_3 to a generic
- 52 biogenic hydrocarbon. For dry deposition, the velocities of $v_d(O_3) = 0.2$ cm s⁻¹ and $v_d(NO_2) =$
- 53 $\alpha \times v_d(O_3)$ with α =0.65 from Lin et al. (2010) were used. The rate constants for reaction with
- 54 the generic biogenic hydrocarbon was set to that of α -pinene with O₃ (5×10⁻¹¹ cm³ molec.⁻¹ s⁻¹,
- 55 (Seinfeld and Pandis, 2006)).

56 Model simulations were carried out using a custom differential equation integrator macro in the

57 software package Igor Pro (Wavemetrics) and were initiated with the campaign median NO₂

- 58 and O₃ concentrations observed at sunset.
- 59

Reaction	Rate constant
$O_3 \rightarrow products$	k _{dep} (O ₃)
$NO_2 \rightarrow products$	k _{dep} (NO ₂)
$O_3 + NO \rightarrow NO_2 + O_2$	4.8×10 ⁻⁴ ppbv ⁻¹ s ⁻¹
$O_3 + VOC \rightarrow products$	1.25 ppbv ⁻¹ s ⁻¹

ī

60 Table S-2. Reactions included in box model to estimate dry deposition velocities

Figure S-2. Observed and simulated O_x loss in the NBL at Abbotsford assuming O_3 dry deposition rates of 2×10^{-4} s⁻¹, 4×10^{-5} s⁻¹, 2×10^{-5} s⁻¹ and 1×10^{-5} s⁻¹, corresponding to approximate mixing heights of 10 m, 50 m, 100 m, and 200 m.

Figure S-3. Effect of biogenic VOC emissions on O_x . The observed and simulated O_x loss in the NBL at Abbotsford assuming an O_3 dry deposition rate of 4×10^{-5} s⁻¹ are shown as green and blue traces, respectively. The red trace shows the effect of adding 1 ppbv of reactive biogenic VOC at sunset and continuous biogenic VOC emissions of 3×10^5 molecules cm⁻³ s⁻¹ throughout the night.

73

75 Figure S-4. Comparison of observed and simulated NO mixing ratios after constant emissions

- 76 of 2.9×10^{-4} ppbv s⁻¹ (~1.05 ppbv hr⁻¹) of NO and 3×10^{-5} ppbv s⁻¹ (~0.05 ppbv hr⁻¹) of NO₂ were
- 77 added.
- 78

79 Box model to determine the time necessary for NO₃ and N₂O₅ to achieve a steady state

80 with respect to production and loss

The validity of the steady state assumption was evaluated in a similar fashion as described by 81 82 Brown et al. (2003) using a simple box model. Reactions and rate coefficients included in these 83 simulations are listed in Table S-3. Model simulations were carried out using a custom 84 differential equation integrator macro in the software package Igor Pro (Wavemetrics). Rate 85 coefficients were calculated for a temperature of 286 K, which is the median nocturnal 86 temperature of this study (Figure 8B). Simulations were initiated with the median nocturnal NO₂ and O₃ mixing ratios of 7.5 ppbv (1.92×10^{11} molecules cm⁻³) and of either 18 ppbv 87 $(4.5 \times 10^{11} \text{ molecules cm}^{-3})$ or 5.0 ppbv $(1.3 \times 10^{11} \text{ molecules cm}^{-3})$, respectively. The simulations 88 assume pseudo-first order N₂O₅ and NO₃ loss with frequencies of 1×10^{-3} s⁻¹ and between 89 1×10^{-2} s⁻¹ and 0 s⁻¹, respectively. 90

91 Simulated temporal profiles of NO₃ and N₂O₅ are show in Figure S-5 (left axis) and those of O₃ and NO2 on the right axis. The subpanels A, B, and C are simulations with $k_{NO3} = 0 \text{ s}^{-1}$, 1×10^{-3} 92 s^{-1} or $1 \times 10^{-2} s^{-1}$, respectively. In each case, the rate of change of [N₂O₅] with respect to time, 93 $d[N_2O_5]/dt$, approaches zero after a period of ~70 min, or less, indicating the time to approach 94 95 steady state. The simulations also show that the amount of O₃ and NO₂ removed through 96 chemical reactions of NO₃ and N₂O₅ are \sim 1 ppbv and between \sim 1.9 and \sim 1.6 ppbv over a period 97 of 4 hours. These are upper limits as in this study much of the NO₃ was titrated by NO. In any 98 case, loss of O_3 through nocturnal gas-phase is predicted to be rather small compared to the 99 total O₃ loss observed (~26 ppbv over 9 hours, see section 3.1.3 and Figure 4C in the main text). 100 Brown et al. (2003) show that in these scenarios, NO₃, N₂O₅, and NO₂ remain in equilibrium 101 almost throughout; for completeness, the corresponding plot for these simulations is shown in 102 Figure S-6.

103 As shown in equation (2) of the manuscript, the steady state lifetime is approximately equal to:

104
$$\frac{[N_2 O_5]}{k_1 [N O_2] [O_3]} \approx \left(k_{N_2 O_5} + \frac{k_{N O_3}}{K_2 [N O_2]} \right)^{-1}$$
(2)

105 A comparison of these two expressions is shown in Figure S-7. The time when these two106 expressions are equal is equal to the time to steady state.

Table S-3. Reactions included in the box model to estimate the time for NO_3 and N_2O_5 to

108 achieve steady state with respect to their production and loss

#	Reaction	Rate coefficient
R 1	$NO_2 + O_3 \rightarrow NO_3 + O_2$	$2.28 \times 10^{-17} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$
$R2_{\rm f}$	$NO_3 + NO_2 \rightarrow N_2O_5$	$1.35 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$
R2 _r	$N_2O_5 \rightarrow NO_3 + NO_2$	0.00923 s ⁻¹
(R7)	$NO_3 \rightarrow products$	$k_x = k_{NO3} = 0 \text{ s}^{-1}, 1 \times 10^{-3} \text{ s}^{-1} \text{ or } 1 \times 10^{-2} \text{ s}^{-1}$
(R5)	$N_2O_5 \rightarrow products$	$k_y = k_{N2O5} = 1 \times 10^{-3} \text{ s}^{-1}$

Figure S-5. Simulated temporal profiles of NO₃ and N₂O₅ (left axis) and O₃ and NO₂ (right axis). The subpanels A, B, and C are simulations with $k_{NO3} = 0 \text{ s}^{-1}$, $1 \times 10^{-3} \text{ s}^{-1}$ or $1 \times 10^{-2} \text{ s}^{-1}$, respectively.

Figure S-6. Equilibrium constants for reaction (2) calculated for the three scenarios shown in

117 Figure S-5.

118

115

119

Figure S-7. Comparison of $\tau(N_2O_5)$ calculated using equation (2) of the main manuscript. with the dashed lines calculated using equation (11) of Brown et al. (2003).

123 Estimates of how loss of NO₃ to VOCs would affect the lifetime of N₂O₅

124 The steady state lifetime calculation presented in Figure 8C of the main manuscript neglects 125 losses of NO₃ to VOCs due to poor data coverage, i.e., presents a scenario where 126 $\Sigma k_{NO3+VOC,i}[VOC]_i$ is assumed to be zero, which is, of course, unrealistic.

- 127 We used all available VOC data and calculated a time series of $\Sigma k_{NO3+VOC,i}[VOC]_i$. The average
- 128 $(\pm 1 \sigma)$ value at night is (0.038 ± 0.026) s⁻¹. The N₂O₅ loss frequency, calculated by dividing this
- 129 value with the N₂O₅:NO₃ ratio, is $(1.1\pm0.9)\times10^{-5}$ s⁻¹, corresponding to a lifetime of ~2.5 hours,
- 130 which is negligible.

140

131 However, as stated in the main manuscript, the VOC data coverage is sparse and did not include 132 measurements of all hydrocarbons towards which NO₃ is reactive. Recently, Liebmann et al. (2018) reported an average of nocturnal NO₃ loss frequency of 0.11 s⁻¹ in the boreal forest of 133 Finland. This value likely included loss of NO₃ to NO and a variety of hydrocarbons such as 134 135 sesqui- and diterpenes, which are likely present in higher concentration in a boreal forest than 136 at Abbotsford and hence represents an upper limit Taking this value and dividing it by the 137 N₂O₅:NO₃ ratio, the average nocturnal N₂O₅ loss frequency via NO₃-VOC reactions is calculated to $(5.6\pm1.3)\times10^{-3}$ s⁻¹. Figure S-8 shows the result of including this value in the 138 calculation of N₂O₅ lifetime. 139

141Figure S-8. Same as Figure 8c but including an assumed NO3 loss frequency to VOCs of 0.11142 s^{-1} .

143 **References**

- Brown, S. S., Stark, H., and Ravishankara, A. R.: Applicability of the steady state
 approximation to the interpretation of atmospheric observations of NO₃ and N₂O₅, J. Geophys.
- 146 Res., 108, 4539, 10.1029/2003JD003407, 2003.
- 147 Geyer, A., and Stutz, J.: Vertical profiles of NO₃, N₂O₅, O₃, and NO_x in the nocturnal boundary
- 148 layer: 2. Model studies on the altitude dependence of composition and chemistry, J. Geophys.
- 149 Res., 109, D12307, doi:12310.11029/12003JD004211, 2004.
- 150 Liebmann, J., Karu, E., Sobanski, N., Schuladen, J., Ehn, M., Schallhart, S., Quéléver, L.,
- 151 Hellen, H., Hakola, H., Hoffmann, T., Williams, J., Fischer, H., Lelieveld, J., and Crowley, J.
- 152 N.: Direct measurement of NO₃ radical reactivity in a boreal forest, Atmos. Chem. Phys., 18,
- 153 3799-3815, 10.5194/acp-18-3799-2018, 2018.
- 154 Lin, C. H., Lai, C. H., Wu, Y. L., and Chen, M. J.: Simple model for estimating dry deposition
- 155 velocity of ozone and its destruction in a polluted nocturnal boundary layer, Atmos. Environm.,
- 156 44, 4364-4371, 10.1016/j.atmosenv.2010.07.053, 2010.
- Seinfeld, J. H., and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to
 climate change, 2nd ed., Wiley, Hoboken, N.J., 2006.
- 159
- 160