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Abstract. Air pollution sources and their regional trans-
port are important issues for air quality control. The
Global–Regional Assimilation and Prediction System cou-
pled with the China Meteorological Administration Unified
Atmospheric Chemistry Environment (GRAPES–CUACE)
aerosol adjoint model was applied to detect the sensitive pri-
mary emission sources of a haze episode in Beijing occurring
between 19 and 21 November 2012. The high PM2.5 con-
centration peaks occurring at 05:00 and 23:00 LT (GMT+8)
over Beijing on 21 November 2012 were set as the cost func-
tions for the aerosol adjoint model. The critical emission re-
gions of the first PM2.5 concentration peak were tracked to
the west and south of Beijing, with 2 to 3 days of cumula-
tive transport of air pollutants to Beijing. The critical emis-
sion regions of the second peak were mainly located to the
south of Beijing, where southeasterly moist air transport led
to the hygroscopic growth of particles and pollutant conver-
gence in front of the Taihang Mountains during the daytime
on 21 November. The temporal variations in the sensitivity
coefficients for the two PM2.5 concentration peaks revealed
that the response time of the onset of Beijing haze pollu-
tion from the local primary emissions is approximately 1–
2 h and that from the surrounding primary emissions it is ap-
proximately 7–12 h. The upstream Hebei province has the
largest impact on the two PM2.5 concentration peaks, and the

contribution of emissions from Hebei province to the first
PM2.5 concentration peak (43.6 %) is greater than that to
the second PM2.5 concentration peak (41.5 %). The second
most influential province for the 05:00 LT PM2.5 concentra-
tion peak is Beijing (31.2 %), followed by Shanxi (9.8 %),
Tianjin (9.8 %), and Shandong (5.7 %). The second most
influential province for the 23:00 LT PM2.5 concentration
peak is Beijing (35.7 %), followed by Shanxi (8.1 %), Shan-
dong (8.0 %), and Tianjin (6.7 %). The adjoint model results
were compared with the forward sensitivity simulations of
the Models-3/CMAQ system. The two modeling approaches
are highly comparable in their assessments of atmospheric
pollution control schemes for critical emission regions, but
the adjoint method has higher computational efficiency than
the forward sensitivity method. The results also imply that
critical regional emission reduction could be more efficient
than individual peak emission control for improving regional
PM2.5 air quality.

1 Introduction

The application of adjoint theory to atmospheric chemistry
models can enable the efficient calculation of the sensitivi-
ties of a few variables or metrics with respect to a large num-
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ber of input parameters (Marchuk, 1974; Sandu et al., 2005;
Hakami et al., 2007). Classic atmospheric chemistry models
use inputs of emission sources to output the spatiotemporal
variation of pollutants, which is thus is source oriented. By
contrast, adjoint models are receptor-oriented, for they use
the gradients of the cost function to model variables (usu-
ally pollutant concentrations) as inputs and output the spa-
tiotemporal variations of the sensitivities of the cost function
to emissions (Errico, 1997; Carmichael et al., 2008). There-
fore, in concentration–source sensitivity analysis, the adjoint
method is more computationally efficient than others, such
as the traditional finite-difference method, which requires re-
peated input perturbations and result comparisons (Wang et
al., 2015). Moreover, the finite difference approach changes
the state of the modeled atmosphere and inevitably incurs
truncation and cancellation errors (Constantin and Barrett,
2014). When calculating gradients, the adjoint model inte-
grates under particular atmospheric conditions; thus, it can
provide exact sensitivities. Although the adjoint approach is
not strictly a method used for source apportionment because
it provides merely tangent linear derivatives (gradients) that
are likely to be valid over only a limited range of values for
the parameters (emissions), it does provide valuable infor-
mation about the dependence of aerosol concentrations on
emissions (Henze et al., 2007, 2009; L. Zhang et al., 2015).
If we set the cost function as the pollutant concentration over
a region at a point in time (or during a time period), the ad-
joint sensitivity approach can detect critical emission sources
in detail and reveal the changes in concentration due to per-
turbations in emission sources.

Beijing is a rapidly growing economic center and a densely
populated metropolis whose recent PM2.5 pollution problems
have garnered considerable attention (Zhang et al., 2016; Sun
et al., 2014; Guo et al., 2010; Wu et al., 2015). PM2.5 pol-
lution in Beijing is significantly influenced by the regional
transport of pollutants from its environs. As such, the joint
control of effective air pollution emission sources has been
promoted. Research using approaches such as the flux cal-
culation method (An et al., 2007), the back-trajectory model
(Zhai et al., 2016), and observation analysis (Li et al., 2016),
have revealed that southerly winds almost always promote
high PM2.5 conditions in Beijing. Studies have also indi-
cated that more than 50 % of PM2.5 pollutants originate in
surrounding provinces and cities, including southern Hebei,
Tianjin, eastern Shanxi, and Shandong provinces (Jiang et
al., 2015; Gao et al., 2016). Studies have also shown that joint
regional air pollution management control can be more cost-
effective (Wu et al., 2015) and that joint control schemes in
critical source zones (detected by a back-trajectory model)
prior to unfavorable meteorological conditions can help re-
duce costs and improve efficiency (Zhai et al., 2016). The
above studies either determined pollution pathways through
meteorological analysis or analyzed air pollutant concentra-
tion sensitivities for a limited group of emission sources. If
air pollution can be spatially and temporally traced back to

its emission sources, decision-making regarding air pollution
management can be better addressed.

Unlike back-trajectory approaches or statistical factor
analysis, the adjoint approach accounts for chemical and
physical processes combined with transport; thus, it ef-
ficiently estimates the incremental influence of specific
sources on air quality (Henze et al., 2009). Recently, An et
al. (2016) developed the aerosol adjoint module of the atmo-
spheric chemistry modeling system GRAPES–CUACE (the
Global–Regional Assimilation and Prediction System cou-
pled with the China Meteorological Administration Unified
Atmospheric Chemistry Environment) and estimated the av-
erage black carbon (BC) concentrations over Beijing at the
highest concentration time with respect to BC amounts emit-
ted over the Beijing–Tianjin–Hebei region. They also indi-
cated the effectiveness of controlling the most influential re-
gions during critical time intervals, as detected by the ad-
joint sensitivity analysis. Zhang et al. (2015) attributed the
sources of Beijing’s PM2.5 by using the GEOS-Chem ad-
joint model and summarized that residential (49.8 %) and in-
dustrial sources (26.5 %) are the largest contributors. They
further noted that 45–53 % of PM2.5 pollutants in Bei-
jing and Tianjin are from local sources, whereas the Hebei
province sources contribute approximately 26 %. Both Zhang
et al. (2015) and An et al. (2016) demonstrated the high ef-
ficiency and accuracy of the atmospheric chemistry adjoint
model in identifying Beijing air pollution sources.

In this study, we apply the newly developed GRAPES–
CUACE aerosol adjoint model (An et al., 2016) to track the
sensitive primary emission sources of a high PM2.5 episode
that occurred in Beijing in November 2012. The two PM2.5
concentration peaks that occurred were set as the cost func-
tions. By detecting the primary emission sources of these two
hourly PM2.5 peaks, our work advances the understanding
of the impacts of emission sources by providing detailed in-
sights into the spatial and temporal variability of emission
source contributions from each of the surrounding provinces
and from local and environs transports. We then set the aver-
age PM2.5 concentration from 21 November as the cost func-
tion and compared the adjoint model results with the Models-
3/CMAQ assessments (Zhai et al., 2016). Furthermore, we
also compared emission source impacts on the Beijing PM2.5
concentration peak from zones with maximum adjoint sensi-
tivities and emission-intensive zones. This study explores the
capability of the GRAPES–CUACE aerosol adjoint model
to simulate detailed concentration–source relationships and
provide guidance for flexible environmental control policy.

2 Synoptic analysis of the pollution episode

Atmospheric stability and humidity over the mid-eastern re-
gion of China from 19 to 22 November 2012 were ana-
lyzed in combination with the results of the Meteorologi-
cal Information Comprehensive Analysis Processing System,
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Figure 1. (a) Model domain and location of the cities of Beijing (BJ) and Tianjin (TJ) and the provinces of Hebei (HB), Shandong (SD), and
Shanxi (SX); (b) locations of the Chinese Research Academy of Environmental Sciences (CRAES), Guanyuan (GY), the Dingling (DL), and
Nanjiao (NJ) stations, and the districts of Daxing (DX) and Chaoyang (CY).

the sounding stratification and dew point–pressure curves
(temperature–logarithmic pressure diagrams) from Nanjiao
station (Fig. 1a) in Beijing (Fig. 2), and the flow field pattern.
Meanwhile, the formation of two pollution peaks at dawn
and at night on 21 November 2012, was also qualitatively
analyzed. During the period between 19 and 20 November,
Beijing was under the influence of a low-pressure system
situated between two high pressures. During the daytime,
southerly winds prevailed below 925 and 1000 hPa, and the
relative humidity increased during this time period. During
the nighttime, southerly winds shifted to northeasterly and
easterly winds, thus transporting pollutants, together with
water vapor, to Beijing. In this same time period, thermal in-
versions occurred below 850 hPa. The above analysis reveals
that the accumulation of PM2.5 concentrations was tightly
connected with southerly winds during the daytime and east-
erly winds at night.

During the daytime on 21 November, the Beijing–Tianjin–
Hebei area was located at the bottom of a high-pressure sys-
tem, with easterly winds prevailing in the 850 hPa layer. The
thermal inversion remained, and the relative humidity con-
tinued to increase. The south-central part of Hebei province
was influenced by a mass of cold air controlled by northerly
winds, whereas Beijing was mainly under the influence of an
easterly wind that promoted pollutant convergence in front
of the Taihang Mountains and carried abundant water vapor,
which accelerated the hygroscopic growth of local particles.
It can be concluded that the pollution peak on the night of
21 November was not only the result of the accumulation of
pollutants during the previous 2 days but also the result of the
hygroscopic growth of local particles and the convergence of
pollutants caused by daytime easterly winds. According to
prior research (Chen et al., 2016; Li et al., 2016), this event
was typical of a synoptic episode that gradually generates
air pollution over Beijing until a sudden and significant im-
provement in air quality due to strong winds. This is also the

same episode that was analyzed by Zhai et al. (2016), thus
facilitating further comparisons.

3 Methods

3.1 Concepts of the adjoint sensitivity analysis

Sensitivity analysis plays an important role in atmospheric
environmental research. Understanding the impacts of emis-
sions on pollutant concentrations is helpful for the devel-
opment of effective air pollution control strategies. The
adjoint model is efficient in calculating the sensitivity
of a cost function to any model variable at any time
step. Figure 3 shows the schematic diagrams of the for-
ward atmospheric chemistry model and the adjoint model.
The atmospheric chemistry model takes emissions (S: S1,
S2, . . .,Sn, . . .,SN ) as inputs and outputs pollutant concen-
trations (C: C1,C2, . . .,Cm, . . .,CM) through forward inte-
gration. Any emission source (Sn) might have an influence
on the concentration at any receptor site (Cm). A pair of
emission source sensitivity tests using the traditional source-
oriented finite-difference method can determine the contri-
bution of an emission source (or a combined group of emis-
sion sources) to the pollution level at any receptor site. There-
fore, with N emission sources and M receptors in total, the
contribution from each of the N emission sources to each of
the M receptors (an N ×M matrix) can be obtained through
N + 1 iterations of forward integration (one base simulation
included). The receptor-oriented adjoint model is comple-
mentary to the forward model. The sensitivity map of a scalar
function of pollutant concentration (the cost function) to ev-
ery emission source (N × 1 matrix) can be obtained by per-
forming one backward adjoint integration (Sandu, 2005; An
et al., 2016; Zhai, 2015), with the above-mentioned N ×M

matrix requiring M iterations of the adjoint integration. The-
oretically, the N×M matrices resulting from the forward and
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Figure 2. (a–d) Sea-level pressure field; (e–h) temperature–logarithmic pressure diagrams (blue dotted curves indicate dew point–pressure;
red solid curves indicate stratification) at the Nanjiao station from 08:00 LT 20 November 2012 to 20:00 LT 21 November 2012.
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Figure 3. Schematic diagrams of the atmospheric chemistry for-
ward (a) and adjoint (b) models. S1,S2, . . .,Sn, . . .,SN are emission
sources of different sectors, or of different species, at different lo-
cations, etc., and S is the emission vector; C1,C2, . . .,Cm, . . .,CM

are pollutant concentrations at different sites, or of different species,
and C is the concentration vector.

backward methods are the same within a small perturbation
(Marchuk, 1986), considering the nonlinearity of PM2.5 for-
mation.

Adjoint sensitivities are the tangent linear derivatives (gra-
dients) of the cost function to model parameters (emissions)
and are likely to be valid over only a limited range of val-
ues for each parameter (Henze et al., 2007, 2009). In this
study, the GRAPES–CUACE aerosol adjoint model consid-
ered only primary PM2.5 (explained in Sect. 3.2), and the pri-
mary PM2.5 emission sources and PM2.5 concentrations had
an approximately linear relationship (see Fig. S1 in the Sup-
plement). Given the linear relationship between the concen-
tration of PM2.5 and its primary emission sources, the mag-
nitude of perturbations did not influence the representative
of the adjoint sensitivities when comparing the contributing

proportions of emission sources from different regions. How-
ever, if the adjoint sensitivities are used to represent the abso-
lute emission source contributions, errors will increase with
an increase in perturbations. In Fig. S1, we can see that the
adjoint sensitivity results are similar to the finite difference
results, and the difference between the adjoint sensitivity re-
sults and the finite difference results grows with the increase
of emission reduction ratios (the blue line with circular sym-
bols and the red line with triangle symbols are close, particu-
larly when the x axes are within 30 %); therefore, the adjoint
sensitivity coefficients are likely to be representative over
PM2.5 primary emission reduction ratios from 5 to 90 % or at
least over a modest range of emission perturbations commen-
surate with typical emission abatement strategies (10–30 %).
All in all, an atmospheric chemistry model is suitable for
simulating air pollution processes, whereas an adjoint model
is efficient in quantifying receptor–source relationships.

The adjoint model can calculate the sensitivity of the cost
function (J ) to any emission source (Sn), as denoted by
∂J/∂Sn. If we compare a group of uniformly distributed
emission sources, larger ∂J/∂Sn values indicate the greater
influence of Sn on J . However, emission intensities are obvi-
ously not uniform across urban and rural areas, and seasonal
and diurnal changes add even more nonuniformity. Further-
more, the emissions of different species of pollutants may
have different units and may differ in their order of magni-
tude. Under these circumstances, the relative contribution of
each emission source cannot be determined only by calculat-
ing the gradient ∂J/∂Sn. Therefore, we define the sensitiv-
ity coefficients in this study as (∂J/∂Sn) · Sn, which shares
the same unit as the cost function and reflects the absolute
changes in the cost function due to perturbations in emission
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sources; this definition makes the contrast between emission
sources more convenient.

3.2 Model description

The GRAPES–CUACE is an online coupled atmospheric
chemistry modeling system (Wang et al., 2009; Zhou et
al., 2012; Jiang et al., 2015) developed by the China Me-
teorological Administration (CMA). GRAPES-Meso is a
regional meteorological model (Xue et al., 2008) within
GRAPES–CUACE, and CUACE is an atmospheric chem-
istry modeling system independent of meteorological and
climate models. The CUACE system adopted the Canadian
Aerosol Module (CAM; Gong et al., 2003), a size-segregated
multi-component aerosol algorithm, as its aerosol module
and the second-generation Regional Acid Deposition Model
(RADM II; Stockwell et al., 1990) as its gaseous chem-
istry model. CAM contains computations for numerous ma-
jor aerosol processes in the atmosphere: generation, hygro-
scopic growth, coagulation, nucleation, condensation, dry
deposition/sedimentation, below-cloud scavenging, aerosol
activation, and chemical transformation of sulfur species in
clear air and in clouds (Gong et al., 2003), which is co-
herently integrated with the gaseous chemistry component
in CUACE. Given that the nitrates and ammonium formed
through gaseous oxidation are unstable and prone to fur-
ther decomposition back to their precursors, CUACE adopts
ISORROPIA to calculate the thermodynamic equilibrium be-
tween them and their gas precursors (Zhou et al., 2012). The
CUACE system is compatible with various kinds of meteo-
rological models and can be used as a common platform for
atmospheric constituent calculation.

The GRAPES–CUACE aerosol adjoint model was devel-
oped by applying adjoint theory to the GRAPES–CUACE
modeling system. The current version of the adjoint model
includes the adjoint of CAM (Gong et al., 2003), the ad-
joint of the three interface programs that pass meteorolog-
ical variable values from GRAPES-Meso to chemical pro-
cesses in CUACE, and the adjoint of the aerosol transport
processes. Considering that the adjoint of the gaseous chem-
istry (RADM II) and the adjoint of the thermodynamic equi-
librium (ISORROPIA) processes are not included in the
GRAPES–CUACE aerosol adjoint model, the GRAPES–
CUACE aerosol adjoint model is capable of simulating sensi-
tivities of the cost function to primary PM2.5 sources. Hence
Sn defined in Sect. 3.1 refers to primary PM2.5 sources. Af-
ter the tangent linear model (TLM) and the adjoint model
are built (the adjoint model is a concomitant of the TLM),
they are divided into smaller sections and tested separately
before the assembled TLM and the adjoint model are con-
firmed valid. The details of the adjoint verification can be
found in An et al. (2016).

Figure 4 shows the operational processes used in this
study. To ensure that the forward and backward models were
in the same chemical state, the forward GRAPES–CUACE

Adjoint integration

GRAPES-Meso

CUACE

Save state variables 

CUACE-ADJ

Trans-ADJ

Forward integration

Figure 4. Operational processes of the GRAPES–CUACE aerosol
adjoint.

model was first integrated to save the model state variables
(concentrations) in checkpoint files at the beginning of each
external time step (Sandu et al., 2005; Henze et al., 2007).
These saved variables were then inputted at each checkpoint
during the backward adjoint integration. To handle interme-
diate variables, this study adopted both recalculation and
stack storage (PUSH and POP) schemes. Details about the
construction, framework, and operational flowchart of the
GRAPES–CUACE aerosol adjoint model are discussed in
An et al. (2016).

3.3 Model setup, data, and validation

The simulated domain in this study covered northeast China
(105–125◦ E, 32.25–42.25◦ N; Fig. 1), which included 41×
23 simulation grid cells with 31 vertical layers at the res-
olution of 0.5◦× 0.5◦. The model was integrated at a time
step of 300 s. The National Centers for Environmental Pre-
diction Final Analysis dataset was used to define the initial
meteorological field and the meteorological boundary condi-
tions. The initial and boundary values for O3 and OH were
taken from climatic means and zeros for each aerosol species
during the first run; thereafter, the daily initial values of all
chemical species were determined by the 24 h forecast made
by the previous day’s simulation. To eliminate the discrep-
ancy between the idealized initial concentration field and the
real concentration field, the simulation was started at 20:00
Beijing LT (GMT+8) on 10 November 2012, with the anal-
ysis period running from 20:00 LT on 17 November 2012, to
19:00 LT on 22 November2012.

This study used hourly gridded off-line emission sources
processed by the SMOKE module, which is based on sta-
tistical data of anthropogenic emissions reported from gov-
ernment agencies for 2007. Anthropogenic emissions in-
clude primary PM2.5 and pollutant gases (Cao et al., 2011).
Emission source types included biomass combustion, resi-
dences, power generation, industry, transportation, livestock
and poultry breeding, fertilizer use, waste disposal, solvent
use, and light industrial product manufacturing (Cao et al.,
2011). Furthermore, natural sea salt and natural sand/dust
emissions were also calculated in the model.

Figure 5 illustrates the gridded distribution of the overall
primary PM2.5 sources. Figure 6 shows the hourly variability
of the overall PM2.5 sources in Beijing. In Fig. 5, there are
four intensive source zones over Beijing and its surrounding
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Figure 5. Gridded distribution of PM2.5 primary emission sources.

provinces: (1) southern Beijing and Tianjin (TJ), (2) southern
Hebei (HB), (3) middle Shanxi (SX), and (4) north central
Shandong (SD). Meanwhile, a secondary intensive source
zone was observed over northern SX. In Fig. 6, it is noted
that the overall primary PM2.5 source emission intensity de-
creased to its lowest level at 05:00 LT. Thereafter, emission
intensity began to increase and remained high from 11:00 to
19:00 LT, with a minimum at 14:00 LT.

The observation data includes meteorological elements
(2 m temperature and 10 m wind speed) and PM2.5 concen-
trations. The meteorological data were collected from the
Nanjiao (NJ: 116.47◦ E, 39.8◦ N), Haidian (HD: 116.28◦ E,
39.93◦ N), and Shangdianzi (SDZ: 117.12◦ E, 40.65◦ N) sta-
tions. The NJ and HD stations are representative urban obser-
vatory stations and the SDZ station is a typical background
station. These three stations are part of the measurement net-
work run by the Beijing Meteorology Bureau and use stan-
dard measurement equipment and methods. PM2.5 measure-
ments used in this study were obtained from the observa-
tion stations of the Chinese Research Academy of Environ-
mental Sciences (CRAES: 116.39◦ E, 40.03◦ N), as well as
of Guanyuan (GY: 116.34◦ E, 39.93◦ N) and Dingling (DL:
116.22◦ E, 40.29◦ N). The CRAES station is located in the
northwest Chaoyang district at the Chinese Academy of En-
vironmental Sciences, and the GY station is located in Xi-
cheng district. Both the CRAES station and the GY station
are representative urban observation stations in Beijing. The
DL station is located in the relatively clean Changping dis-
trict in northern Beijing and provides background values for
observed PM2.5 concentrations (Fig. 1).

The reliability of the GRAPES–CUACE modeling system
is evaluated in terms of both meteorological and chemical
simulations. Figure 7 shows the hourly variations of the ob-
served and simulated 2 m temperature (T2 m) and 10 m wind

Figure 6. Hourly variation in primary PM2.5 emission sources in
Beijing (monthly averages).

speed (WS10 m), and Table 1 lists the corresponding statis-
tical parameters. The correlation coefficients (R values) be-
tween the observed and simulated hourly T2m are 0.77, 0.75,
and 0.74, passing the 99 % confidence level with root mean
square error (RMSE) values of 1.5, 1.6, and 1.7 ◦C, respec-
tively, at observatory sites NJ, HD, and SDZ. Mean bias
(MB) values for the T2m demonstrate a slight underestima-
tion in NJ (−0.1 ◦C) and HD (−0.3 ◦C), and overestimation
in SDZ (0.8 ◦C). The variations of the WS10m are gener-
ally captured by the model with R values of 0.70, 0.73, and
0.46, and with RMSEs of 1.4, 1.5, and 1.8 m s−1 at NJ, HD,
and SDZ stations, respectively (passed the 99 % confidence
level). Overall, the GRAPES-Meso could reasonably repro-
duce the observed meteorology.

Figure 8a–c shows the observed and simulated hourly
PM2.5 concentration curves from 20:00 LT on 17 November
to 19:00 LT on 22 November at the CRAES, GY, and DL
observational stations, and Table 2 lists the statistical param-
eters. Figure 8a–c reveal that the results of the GRAPES–
CUACE modeling system correspond well with the synop-
tic analysis of the pollution episode. The modeling system
was able to reproduce the PM2.5 accumulation processes ob-
served from 19 to 21 November in Beijing and captured the
two PM2.5 hourly concentration peaks during the dawn and
night of 21 November, as well as the minimum during the
afternoon on 21 November at the CRAES, GY, and DL sta-
tions, with correlation coefficients (R values) of 0.87, 0.91,
and 0.69, respectively (Table 2). However, the model overes-
timated PM2.5 concentration values over the period with nor-
malized mean biases (NMBs) of 57.2, 108.1, and 10.7 % at
the CRAES, GY, and DL stations, respectively. The overesti-
mation was also reflected in the positive mean bias (MB) and
mean fractional bias (MFB) values. For the CRAES, GY, and
DL stations, the MFBs were 53.6, 65.2, and 15.6 %, respec-
tively, and the corresponding mean fractional errors (MFEs)
were 60.1, 68.3, and 39.6 %, respectively. MFEs and MFBs
are all within the criteria proposed by Boylan and Russel
(2006) – model performance criteria are met when the MFE
and MFB are less than or equal to approximately +75 and
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Table 1. Performance statistics between observed and simulated meteorology.

Nanjiao Haidian Shangdianzi

Obs. Mod. MB R RMSE Obs. Mod. MB R RMSE Obs. Mod. MB R RMSE

T (◦C) 4.2 4.1 −0.1 0.77 1.5 3.6 3.3 −0.3 0.75 1.6 1.0 1.8 0.8 0.74 1.7

WS (m s−1) 1.9 2.4 0.5 0.70 1.4 1.5 2.4 0.9 0.73 1.5 1.9 2.6 0.6 0.46 1.8

Figure 7. The temporal variations of observed and simulated hourly 2 m temperature (T2m) (a–c) and 10 m wind speed (WS10m) (d–f) at
Nanjiao, Haidian, and Shangdianzi stations. The observed WS10m are 10 min averaged wind speed for 17–23 November 2012.

±60 %, respectively, except for the MFB at GY, which is a
little high. Secondary aerosol formations are important pro-
cesses in atmospheric physics and chemistry and have large
uncertainties, according to the current understanding of the
atmospheric environment. The lack of heterogeneous chem-
ical reactions (Wang et al., 2016; Cheng et al., 2016; Guo
et al., 2014; Zhang et al., 2015) in the forward GRAPES–
CUACE model could be a factor contributing to the mod-
eling uncertainties in this study. Generally, the three factors
controlling the discrepancies in air quality modeling are as
follows: (1) air pollutant emissions, (2) physical and chem-
ical processes in the atmosphere, and (3) meteorology, par-
ticularly in the boundary layer (An et al., 2013; Cheng et
al., 2016; Wang et al., 2015a, 2016). The overestimation of
PM2.5 in this study might be attributed to the uncertainties
of these three factors in the model. Prior studies (Zhou et al.,
2012; Wang et al., 2015a, b; Jiang et al., 2015) have demon-
strated the stable simulation performance of the GRAPES–
CUACE modeling system in reproducing air pollution lev-
els and variation trends over northeast China. Above all, the
following analysis mainly focuses on the variations and the

contributing proportions of emission sources over different
regions. Therefore, adjoint sensitivity analysis was not sig-
nificantly affected by the overestimation of PM2.5, and these
modeling results can be considered reliable.

4 Results

4.1 Simulated haze episode and cost function

Figure 9 shows the simulated surface PM2.5 concentrations
and the wind field variations from 17:00 LT on 19 November
to 11:00 LT on 22 November. It can be seen that the simula-
tion results are consistent with the qualitative weather anal-
ysis of this time period. From 19 to 20 November, PM2.5
accumulated in Beijing under the influence of a convergent
wind field pattern: a southerly wind field to the south, an
easterly wind field to the east, and a westerly wind field to
the west. From 05:00 to 11:00 LT on 21 November, PM2.5
concentrations exceeded 550 µg m−3 over southern Beijing,
south-central Hebei, and northwest Tianjin. After this peak,
PM2.5 concentrations over Beijing, south-central Hebei, and
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Figure 8. (a–c) Comparisons of the observed (black solid triangles) and simulated (blue dotted line) hourly PM2.5 concentrations at the
CRAES, GY, and DL stations; (d) hourly variations in the average PM2.5 concentrations over Beijing. Please note that the date and time are
given in DD HH:MM format, with all dates in November 2012.

Table 2. Performance statistics of PM2.5 concentrations.

Simulated time Stations Obs. Sim. R MB NMB NME MFB MFE
period (µg m−3) (µg m−3) (µg m−3) (%) (%) (%) (%)

20:00 on 17 Nov. to 19:00 on 22 Nov. 2012 CRAES 121.5 190.9 0.87 69.4 57.2 185.2 53.6 60.1
GY 139.0 289.4 0.91 150.4 108.1 183.3 65.2 68.3
DL 101.4 112.2 0.69 10.8 10.7 85.6 15.6 39.6

Note that mean bias: MB= 1
n

n∑
i=1

(Simi −Obsi ); normalized mean bias: NMB=

N∑
i=1

(Simi−Obsi )

N∑
i=1

Obsi

× 100 %; normalized mean error: NME= 1
n

n∑
i=1

∣∣Simi−Obsi
∣∣

Obsi
× 100 %; mean

fractional bias: MFB= 1
N

N∑
i=1

(Simi−Obsi )
(Obsi+Simi /2)

; mean fractional error: MFE= 1
N

N∑
i=1

∣∣Simi−Obsi
∣∣

(Obsi+Simi /2)
.

Tianjin decreased to a minimum in the afternoon, before ris-
ing again to above 550 µg m−3 at 23:00 LT. The decrease in
PM2.5 concentrations from the morning to the afternoon is
typical for Beijing and resulted mainly from diurnal varia-
tion of the planetary boundary layer, with vertical mixing
after sunrise effectively diluting the pollutants (Zhao et al.,
2009; Liu et al., 2015; Tang et al., 2016). The concentra-
tion peak at 23:00 LT was driven by the influence of the
easterly winds, which caused pollutant convergence against
the Taihang Mountains and carried abundant water vapor
that promoted local hygroscopic growth. Thereafter, during
the daytime on 22 November, a notable northwesterly wind
dispersed pollutants in Beijing, thus ending this pollution
episode.

The municipality of Beijing (covering both rural and ur-
ban Beijing) experienced two hourly PM2.5 concentration
peaks at 05:00 and 23:00 LT on 21 November (Fig. 8d),
similar to those observed at the three observation stations.
These peaks resulted in the observed high daily average
PM2.5 concentration on 21 November, which was analyzed
in previous research (Zhai et al., 2016). To analyze the crit-
ical emission sources of the two hourly PM2.5 concentration
peaks, we took advantage of the adjoint model for simulating
concentration–emission relationships and defined two cost
functions as the hourly mean PM2.5 concentrations over Bei-
jing at (i) 05:00 LT and (ii) 23:00 LT on 21 November. To
demonstrate the reliability and efficiency of the GRAPES–
CUACE aerosol adjoint model to provide guidance toward
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Figure 9. Variations of simulated surface PM2.5 concentrations and wind field distributions.

effective and flexible air quality control designs, a third cost
function was defined as (iii) the average PM2.5 concentra-
tion over Beijing on 21 November. Subsequently, compar-
isons between results from the GRAPES–CUACE aerosol
adjoint model and the Models-3/CMAQ assessments (Zhai
et al., 2016) were made.

4.2 Spatial distribution of primary PM2.5 emission
source sensitivity coefficients

Figure 10 illustrates the distribution of time-integrated sensi-
tivity coefficients to emission sources for the two concentra-
tion peaks in the hourly PM2.5 in Beijing. The sensitivity co-
efficients of the cost function to emission sources connected
pollutants with emissions and revealed the incremental im-
pacts of emissions on peak PM2.5 concentrations. A larger
sensitivity coefficient value corresponds to its greater influ-
ence on the cost function, J . For example, the largest sen-
sitivity coefficient in Fig. 10d was in the cell that includes
Daxing district, with a value of 22.4 µg m−3. This indicates
that emissions stemming from this area had the greatest influ-
ence on the peak concentration when integrated over 72 h. If
emissions were reduced within a small range, the decrease in
PM2.5 concentrations should be linear. For example, if emis-
sions from this cell were reduced by N % from 05:00 LT on
18 November to 05:00 LT on 21 November, the target PM2.5
concentration would decrease by N % · 22.4 µg m−3.

When looking at the accumulation along an inverse time
sequence, as shown in Fig. 10a–h, the more influential re-
gions (regions with relatively larger sensitivity coefficients)
extended from local Beijing (the target region that covers
the entire municipality) to its surrounding provinces. This
phenomenon reflected that the PM2.5 pollution episode in
Beijing was not only the result of local emissions but also

the result of emissions from surrounding regions, includ-
ing Hebei province, Tianjin, and even Shanxi and Shandong
provinces. Emissions from the surrounding areas were con-
tinuously transported to Beijing 2 to 3 days ahead of the peak
pollution day, thus leading to the observed increase in Bei-
jing’s air pollution concentration.

There are differences in the variations in the more sensitive
emission regions of these two PM2.5 concentration peaks.
First, by comparing the 12 h cumulative sensitivity coeffi-
cient distributions in Fig. 10b and f, we can see that emis-
sions to the southwest of Beijing already had a clear in-
fluence on the 05:00 LT, 21 November PM2.5 concentration
peak (Fig. 10b). However, for the 23:00 LT, 21 November
PM2.5 concentration peak, the influential emission sources
were still concentrated over Beijing (Fig. 10f), with only
a small fraction of influential emissions coming from the
east and south of Beijing. This is due to the southwest-
erly airstream positioned to the southwest of Beijing from
23:00 LT on 20 November to 05:00 LT on 21 November,
and the southeasterly water vapor imported during the after-
noon and night of 21 November, which caused the moisture–
absorption growth of local particles and brought pollutants
from Tianjin.

Second, it can be seen from the distributions of the 24
(Fig. 10c and g) and 72 h (Fig. 10d and h) cumulative sen-
sitivity coefficients that sensitivity coefficients both in and
around Beijing had relatively large values, thus indicating
that both of these PM2.5 concentration peaks were influenced
by local and surrounding emissions. However, the most influ-
ential emission regions differed between the two PM2.5 con-
centration peaks. For the first PM2.5 concentration peak, the
key 24 h source regions (Fig. 10c) were distributed over Bei-
jing and to the west and south of Beijing. The key 72 h source
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Figure 10. Time-integrated sensitivity coefficients of surface Beijing PM2.5 concentration peaks to primary PM2.5 sources. (a–d) 1, 12, 24,
and 72 h integrated sensitivity coefficients for the 05:00 LT PM2.5 concentration peak on 21 November; (e–h) 1, 12, 24, and 72 h integrated
sensitivity coefficients for the 23:00 LT PM2.5 concentration peak on 21 November.

regions (Fig. 10d) were to the northeast in Shanxi province.
However, for the second PM2.5 concentration peak, the key
24 h source regions were mainly located to the south of Bei-
jing (Fig. 10g), whereas the key 72 h source regions were to
the west of Beijing (Shanxi province; Fig. 10h) and covered
a smaller area than that for the first PM2.5 concentration peak
(Fig. 10d).

The results of these simulations show that the variation
in the distribution of the sensitivity coefficients, the mete-
orological conditions, and the pollution evolution processes
correspond with each other very well. This indicates that the
GRAPES–CUACE aerosol adjoint model is capable of esti-
mating the sensitivity of concentrations to emission sources
by propagating a perturbation in concentration backward
in time by incorporating meteorological and chemical pro-
cesses.

4.3 Influence of local and surrounding emission
sources on peak PM2.5 concentrations

Figure 11 illustrates the hourly instantaneous sensitivity co-
efficients to local Beijing (the target region that covers the
entire municipality), its surrounding emission sources (emis-
sions from Hebei, the city of Tianjin, and Shandong and
Shanxi provinces; Fig. 11a and b), and their corresponding
time-integrated series (Fig. 11c and d). The magnitudes of
the sensitivity coefficients reflect the incremental influence
of local and surrounding emissions to the objective PM2.5
peaks. It can be seen that the instantaneous sensitivity coef-

ficients of the PM2.5 concentration peaks to local (solid red
squares) and surrounding (red open squares) emissions in-
creased to their maximal points before showing a decreasing
tendency. However, detailed comparisons of the hourly con-
tribution revealed significant differences between the local
and surrounding emissions.

When studying Fig. 11a and b along a reversed time se-
quence, the local emission sensitivity coefficient maximums
(solid red squares) and the PM2.5 concentration peaks (solid
black circles) appeared at almost the same time, with the
latter delayed by 1 to 2 h. This indicates that local emis-
sions released 1 to 2 h ahead of the PM2.5 peak values were
the main contributors to the peak pollution concentrations.
After the sensitivity coefficient reached a maximum, local
emission sensitivity coefficients decreased sharply to mini-
mal values at 14 h (for the 05:00 LT PM2.5 peak) or 19 h (for
the 23:00 LT PM2.5 peak) ahead of the pollution peak and
remained low. This revealed that PM2.5 generated from lo-
cal emissions was transported away from Beijing after about
14–19 h.

By contrast, maximal sensitivity coefficients of the sur-
rounding emissions (red open squares) occurred 7–12 h
ahead of the PM2.5 concentration peaks (Fig. 11a and b), thus
indicating a 7 to 12 h delay in the arrival of emissions from
surrounding areas to Beijing. Along with the backward in-
tegration, sensitivity coefficients showed overall decreasing
trends with periodic fluctuations. For the first PM2.5 concen-
tration peak (05:00 LT on 21 November), three maximal con-
tributions from surrounding areas (Fig. 11a) appeared along
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Figure 11. Hourly variations of surface PM2.5 concentrations in Beijing and sensitivity coefficients of surface PM2.5 concentration peaks
in Beijing to local and surrounding primary PM2.5 sources. The left and right panels correspond to PM2.5 concentration peaks at 05:00
and at 23:00 LT on 21 November 2012, respectively. (a–b) Hourly variations of Beijing PM2.5 concentrations (black solid dotted line) and
hourly instantaneous sensitivity coefficients to local (solid red squares) and surrounding (red open squares) emission sources. (c–d) The
time-integrated sensitivity coefficients to local (solid red squares) and surrounding (red open squares) emission sources. Please note that the
date and time are given in DD HH:MM format, with all dates in November 2012.

the reversed time sequence at 17:00 LT on 20 November
(12 h ahead of the target time), 01:00 LT on 20 November
(28 h ahead of the target time), and 04:00 LT on 19 Novem-
ber (49 h ahead of the target time). The first time-reversed
relative maximal sensitivity coefficient of 7.5 µg m−3 was
noted at 17:00 LT on 20 November, whereas the second
and the third time-reversed relative maximal sensitivity co-
efficients of 5.2 and 1.5 µg m−3 were observed at 01:00 LT
on 20 November and 04:00 LT on 19 November, respec-
tively. For the second PM2.5 concentration peak (23:00 LT
on 21 November; Fig. 11b), the relative maximal contribu-
tions from surrounding areas (red open squares) appeared at
16:00 LT on 21 November (7 h ahead of the objective time),
at 20:00 LT on 20 November (27 h ahead of the objective
time), at 23:00 LT on 19 November (48 h ahead of the ob-
jective time), and at 03:00 LT on 19 November (68 h ahead
of the objective time); their corresponding sensitivity coef-
ficients were 5.3, 5.4, 2.6, and 0.9 µg m−3, respectively. It
is worth noting that sensitivity coefficient maximal points
for the 23:00 LT PM2.5 peak appeared at time points similar
to those of the sensitivity coefficient maximal points for the
05:00 LT PM2.5 peak. The sensitivity coefficients around the
second maximal contribution, approximately from 17:00 LT
on 20 November to 00:00 LT on 21 November, remained at a
relatively large value (about 4.7 to 5.4 µg m−3), even slightly
larger than that of the first maximal sensitivity coefficient.

This is because the second PM2.5 concentration peak was the
result of cumulative increases based on the first high PM2.5
concentration peak; therefore, emissions from the surround-
ing areas from the night of 20 November to early in the morn-
ing on 21 November also had a large influence on the second
PM2.5 concentration peak, almost slightly rivaling the influ-
ence of the later emissions sensitivity peak.

On the basis of Fig. 11, we can also see that for both
PM2.5 concentration peaks, the dominant emission source ar-
eas shifted from the local to the surroundings areas over the
backward time sequence (Fig. 11c and d). For the first PM2.5
concentration peak (05:00 LT on 21 November; Fig. 11c),
the cumulative local emission sensitivity coefficients (solid
red squares) were larger than the surrounding emission sen-
sitivity coefficients (red open squares) between 12:00 LT on
20 November and 05:00 LT on 21 November (lasting for
17 h), thus indicating that local emissions dominated dur-
ing this 17 h time period. For the second PM2.5 concentra-
tion peak (23:00 LT on 21 November; Fig. 11d), local emis-
sions dominated from 21:00 LT on 20 November to 23:00 LT
on 21 November, which lasted for 26 h (9 h longer than that
of the first PM2.5 peak pollution period). This phenomenon
indicates the tiny effect of emission transport processes on
21 November and that the increase in PM2.5 concentrations
on 21 November was mainly due to local source generation.
This reinforces the importance of the impact of emissions
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Figure 12. Sensitivity coefficients of surface PM2.5 concentration peaks in Beijing to primary emission sources from local Beijing and each of
the surrounding provinces. The left and right panels correspond to PM2.5 concentration peaks at 05:00 and at 23:00 LT on 21 November 2012,
respectively. (a–b) Hourly instantaneous sensitivity coefficients to emission sources from local Beijing, Hebei province, Tianjin, and Shanxi
and Shandong provinces. (c–d) The time-integrated sensitivity coefficients to local and surrounding provincial emission sources. (e–f) The
contribution ratios of emission sources from each surrounding province to PM2.5 concentration peaks. Please note that the date and time are
given in DD HH:MM format, with all dates in November 2012.

from surrounding regions on the accumulation seen in the
first PM2.5 concentration peak.

4.4 Impact of emission sources from different
provinces around Beijing to peak PM2.5
concentrations

The emission sensitivity coefficients were then divided into
different provinces around Beijing to investigate their influ-
ence on the PM2.5 concentration peaks over the municipal-
ity. Figure 12 illustrates the hourly instantaneous sensitivity
coefficients to emission sources from the cities of Beijing
(BJ) and Tianjin (TJ), and Hebei (HB), Shanxi (SX), and
Shandong (SD) provinces (Fig. 12a and b), their correspond-
ing time-integrated series (Fig. 12c and d), and the overall

contribution proportions of the emission sources from each
province to the PM2.5 concentration peaks (Fig. 12e and f).
As shown in Fig. 12, the impacts of emission sources from
BJ, HB, TJ, SX, and SD on BJ PM2.5 concentration peaks
are quite different in both variability and magnitude.

For the PM2.5 concentration peak occurring at 05:00 LT
on 21 November, emission sources from HB contributed
the most among surrounding provinces, and the variation in
HB’s hourly sensitivity coefficients showed consistent peri-
odic fluctuations with that of surrounding emissions. Three
maximal points of the HB hourly sensitivity coefficients of
variation occurred at the same time as that of surround-
ing emission sources. Corresponding sensitivity coefficients
were 5.3, 3.2, and 0.8 µg m−3, respectively (Fig. 12a). The
largest influential time period for emissions from TJ ap-
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peared 13 h ahead of the objective time (at 16:00 LT on
20 November), followed by an obvious secondary maxi-
mal point that appeared 24 h ahead of the objective time (at
05:00 LT on 20 November). Sensitivity coefficients from SX
showed a small peak (approximately 0.7 µg m−3) 9 h ahead
of the objective time (at 20:00 LT on 20 November), which
was caused by a secondary intensive emission zone in north-
ern SX that was relatively close to BJ (Fig. 5). As intensive
emission sources in SX and SD are far from BJ (Fig. 5), it
took 33–36 h for SX and SD emissions to reach BJ.

It is worth noting that, except for the maximal sensi-
tivity coefficients of HB and TJ observed at 16:00 LT on
21 November (7 h ahead of 23:00 LT on 21 November), prior
sensitivity coefficient maximal points for the PM2.5 concen-
tration peak observed at 23:00 LT on 21 November appeared
at the same time as the maximal points of sensitivity co-
efficients when the PM2.5 concentration peak observed at
05:00 LT on 21 November was set as the cost function. For
example, for both PM2.5 concentration peaks, sensitivity co-
efficients of TJ emission sources reached a maximal point
at 16:00 LT on 20 November, and SX emission source sen-
sitivity coefficients in turn showed two maximal points at
20:00 LT on 20 November and at 20:00 LT on 19 November.
The situations at HB and SD are similar: even when maximal
points do not appear at the exact same time, high value peri-
ods are consistent for the two cost functions. The above phe-
nomenon again revealed that the PM2.5 concentration peak
observed at 23:00 LT on 21 November was cumulative on the
basis of the PM2.5 concentration peak observed at 05:00 LT
on 21 November and that if the PM2.5 concentration peak
at 05:00 LT on 21 November can be effectively reduced, the
PM2.5 concentration peak at 23:00 LT on 21 November can
be reduced accordingly, thus decreasing the overall PM2.5
concentrations on 21 November. These results also reflected
the advantage of the adjoint model in detecting spatiotempo-
ral sensitive emission sources in detail.

Figure 12c and d show that along the backward time se-
quence, the time-integrated sensitivity coefficients of HB
continuously rose after the time-integrated sensitivity coef-
ficients of other provinces were prone to remain constant.
At around 02:00 to 03:00 LT on 20 November, the time-
cumulated emissions influence from HB exceeded that from
local BJ emissions for both PM2.5 concentration peaks, thus
reflecting that emissions from HB played a leading role in
pollutant accumulation for the first BJ PM2.5 concentration
peak and that the influence of local emissions was dominant
between the two PM2.5 concentration peaks, that is, during
the daytime on 21 November.

The hourly sensitivity coefficients in Fig. 12a and b show
that the impact of emission sources from Beijing and each
surrounding province decreased to negligible values (close
to zero) 72 h ahead of the objective time points. Mean-
while, corresponding time-integrated sensitivity coefficients
in Fig. 12c and d also stopped increasing 72 h prior to the ob-
jective time points. Therefore, by integrating sensitivity co-

efficients 72 h ahead of the two PM2.5 concentration peaks,
we can obtain the overall contributing proportions of emis-
sion sources from each province to the BJ PM2.5 concentra-
tion peaks (Fig. 12e and f). Among all provinces, HB has the
largest impact on the two PM2.5 concentration peaks, and the
contribution of HB emissions to the first PM2.5 concentration
peak (43.6 %) was greater than to the second PM2.5 concen-
tration peak (41.5 %). For the 05:00 LT PM2.5 concentration
peak, the second largest emission source contribution was
from Beijing (31.2 %), followed by SX (9.8 %), TJ (9.8 %),
and SD (5.7 %); for the 23:00 LT PM2.5 concentration peak,
the second largest emission source contribution was from
Beijing (35.7 %), followed by SX (8.1 %), SD (8.0 %), and
TJ (6.7 %).

From all the above analysis, we can conclude that joint
management control of air pollution sources in Hebei
province, the city of Tianjin, and Shandong and Shanxi
provinces 2 to 3 days ahead of the first PM2.5 concentration
peak can effectively reduce PM2.5 concentration accumula-
tion resulting from the transport of pollutants, thus decreas-
ing the BJ PM2.5 concentration peaks.

4.5 Comparisons of the adjoint results with
Models-3/CMAQ assessments

Prior research used a back-trajectory model, namely, FLEX-
PART, to locate sensitive emission regions of Yanqihu, Bei-
jing, on November 2012. The study then used the Models-
3/CMAQ modeling system to quantify the effects of emis-
sion reduction schemes at different ratios, during different
time periods, and over different regions on the reduction of
PM2.5 concentrations on 21 November in Beijing (Zhai et
al., 2016). On the basis of these results, we set the average
PM2.5 concentration over the municipality on 21 November
as the cost function and compared the adjoint results with
the Models-3/CMAQ assessments. Figure 13 illustrates the
time-integrated sensitivity coefficient distributions when the
Beijing average PM2.5 concentration on 21 November was
set as the cost function. The magnitudes of the sensitivity co-
efficients reflect the incremental influence of primary emis-
sion sources on the objective PM2.5 concentrations. Similar
to previous research (Zhai et al., 2016) that advocated the
joint management control of emissions with the surrounding
provinces 2 to 3 days ahead of the most polluted day, adjoint
time-integrated sensitivity was intensified and extended dur-
ing the 48 to 72 h backward time integration.

To assess the effect of the adjoint sensitive source zone on
decreasing PM2.5 concentrations over Beijing and to com-
pare the adjoint results with the Models-3/CMAQ assess-
ments, we looked to the research by Zhai et al. (2016) and
selected four emission regions: the overall Huabei region
(HuaB), the sensitive Huabei region (HuaB-sens), the over-
all Beijing municipality (BJ), and the sensitive Beijing region
(BJ-sens; Fig. 14). Grid cells with 72 h cumulative sensitivity
coefficients larger than 3 µg m−3 were included in the sen-
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Figure 13. The 24 (a), 48 (b), and 72 h (c) integrated sensitivity coefficients of surface PM2.5 concentrations to primary emission sources in
Beijing on 21 November 2012.

Figure 14. Domain definition of Huabei (HuaB, in red dot-dashed
frame), Beijing (BJ, in black solid frame), sensitive Beijing (BJ-
sens, red shaded), sensitive Huabei (HuaB-sens, both red and
blue shaded), and emission-intensive (Emis-intensive, in pink solid
frame) regions.

sitive emission regions (HuaB-sens and BJ-sens), and grid
cells with smaller sensitive values are outside the sensitive
emission regions. Therefore, sensitive emission regions have
relatively larger impact on the PM2.5 peak concentrations
than regions outside them. Here the HuaB-sens accounts for
10.2 % of the area of HuaB and the BJ-sens accounts for
60.0 % of the area of BJ, thus making them analogous to
the regions defined by Zhai et al. (2016). In the work by
Zhai et al. (2016), HuaB-sens accounted for 17.6 % of the
area of HuaB and BJ-sens accounted for 54.2 % of the area
of BJ. Furthermore, on the basis of the emission magnitudes
(Fig. 5), we defined regions with emission intensities larger
than 4.1× 10−7 g s−1 within HuaB as the “Emis-intensive”

regions (Fig. 14). The Emis-intensive region has the same
area as that of the HuaB-sens.

Table 3 lists the ratios of the time cumulative sensitivity
coefficients to peak PM2.5 concentrations (SC / PC) from the
BJ, BJ-sens, HuaB, HuaB-sens, and Emis-intensive regions
at three different time points: d0 (referring to emission con-
tributions from 21 November), d1 (from 20 to 21 Novem-
ber), and d2 (from 19 to 21 November) in advance of the
most polluted day. The SC / PC reflects the reduction ratios
of peak PM2.5 concentrations due to the absence of emissions
from different regions and during different periods, that is,
emission source contribution ratios to peak PM2.5 concen-
trations. From Table 3, we can see that the adjoint model
results are highly consistent with the Models-3/CMAQ sys-
tem results (Zhai et al., 2016). The PM2.5 concentrations
on 21 November reflect an accumulated result from emis-
sions released in the 1 or 2 days prior to the most polluted
day rather than a simple result of emissions on 21 Novem-
ber. For all the BJ, BJ-sens, HuaB, and HuaB-sens regions,
emission contribution ratios grew from d0 to d2, particularly
from d0 to d1. The contribution ratios of emissions from
BJ (and BJ-sens) and HuaB (and HuaB-sens) increased by
6.2 % (5.8 %) and 31.9 % (18.9 %) from d0 to d1, respec-
tively. Thereafter, the contribution ratios again increased by
0.6 % (0.5 %) and 9.6 % (3.6 %), respectively, for emissions
over BJ (or BJ-sens) and HuaB (or HuaB-sens) from d1 to
d2. The above phenomenon also indicates that with the accu-
mulation of time-reversed integration from 48 to 72 h prior
to 21 November, emission source contributions from HuaB
(or HuaB-sens) to peak PM2.5 concentrations increased more
obviously, whereas emission source contributions from BJ
(or BJ-sens) hardly increased at all. This can be explained
by surrounding emissions being continuously transported to
Beijing 2 to 3 days ahead of the most polluted day (Zhai et
al., 2016).

Similar to the work in Models-3/CMAQ assessments, Ta-
ble 4 shows comparisons of sensitive emission, full emis-
sion, and Emis-intensive region source contribution effects
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Table 3. Emission source contribution to the average PM2.5 concentration over Beijing on 21 November.

Factors Time period BJ BJ-sens HuaB HuaB-sens Emis-intensive

SC / PC d0 14.5 % 12.5 % 25.6 % 18.4 % 8.7 %
d1 20.7 % 18.3 % 57.5 % 37.3 % 19.7 %
d2 21.3 % 18.8 % 67.1 % 40.9 % 22.4 %

Note that d0 refers to emission contributions from 21 November; d1, 20 to 21 November; d2, 19 to 21 November.
SC / PC = time cumulative sensitivity coefficient / peak concentration;

Table 4. Contrast of sensitive (or Emis-intensive) and full region emission source contributions.

GRAPES–CUACE aerosol adjoint model results Models-3/CMAQ results
(Zhai et al., 2016)

Time period Factors BJ-sens HuaB-sens Emis-intensive BJ-sens HuaB-sens

d0 S / F (effect) 86.6 % 71.9 % 34.0 %
S / F (efficiency) 1.4 7.0 3.3

d1 S / F (effect) 88.2 % 64.9 % 34.2 % 99.2 % 93.7 %
S / F (efficiency) 1.5 6.3 3.3 1.8 5.3

d2 S / F (effect) 88.2 % 61.0 % 33.4 % 100.8 % 87.2 %
S / F (efficiency) 1.5 6.0 3.3 1.9 5.0

Note that S / F (effect) is the sensitivity coefficient over the sensitive source region / the sensitivity coefficient over the corresponding full
source region; contribution efficiency is the sensitivity coefficient / number simulation grid cells in the region; S / F (efficiency) is the
contribution efficiency of the sensitive region / the contribution efficiency of the corresponding full source region.

and efficiencies to peak PM2.5 concentrations. In Table 4,
S / F (effect) in the BJ-sens column refers to the ratios of sen-
sitivity coefficients from BJ-sens to sensitivity coefficients
from BJ, and S / F (effect) in the HuaB-sens (or the Emis-
intensive) column refers to the ratios of sensitivity coef-
ficients from HuaB-sens (or Emis-intensive) to sensitivity
coefficients from HuaB. Correspondingly, S / F (efficiency)
refers to the ratios of sensitivity coefficients per unit area
from BJ-sens (or from HuaB-sens and Emis-intensive) to
sensitivity coefficients per unit area from BJ (or from HuaB).
Therefore, S / F (effect) and S / F (efficiency) reflect emission
source reduction effects and reduction efficiency from crit-
ical (or emission-intensive) regions. The implication of d0,
d1, and d2 results in Table 4 are the same as they are in Ta-
ble 3. As shown in Table 4, the contribution efficiencies (con-
tribution ratios per unit area) of emissions from the HuaB-
sens and BJ-sens regions are significantly higher than those
from the corresponding entire HuaB and BJ regions, respec-
tively. Although BJ-sens covers only 60 % of the area of the
entire BJ, its contribution to the peak PM2.5 concentrations is
86.6–88.2 % of that of the entire BJ. Its source contribution
efficiency is 1.4 to 1.5 times that of BJ. Similarly, HuaB-sens
covers only 10.2 % of the area of the entire HuaB, but its con-
tribution to the peak PM2.5 concentrations is 61.0–71.9 % of
that of the entire HuaB, and its source contribution efficiency
is 6.0 to 7.0 times that of the entire HuaB (Table 4). Finally,
emissions from HuaB-sens contribute much more than emis-
sions only from BJ-sens, which supports joint management

control. Analogously, in the Models-3/CMAQ assessments,
BJ-sens (or HuaB-sens) covers 54.2 % (or 17.6 %) of the area
of BJ (or HuaB), its emission reduction effect is 99.2–100 %
(or 87.2–93.7 %) of that of the entire BJ (or HuaB), and its
source contribution efficiency is 1.8 to 1.9 times (or 5.0 to
5.3 times) that of BJ (or HuaB).

We then compared emission source contribution ratios, ef-
fects, and efficiencies from the HuaB-sens and the Emis-
intensive regions. As shown in Tables 3 and 4, although
the Emis-intensive region has the same area as HuaB-sens,
its SC / PC, S / F (effect), and S / F (efficiency) values are
all much smaller. The source contribution ratios to PM2.5
concentrations on 21 November (SC / PC) from the Emis-
intensive regions are 9.7, 17.6, and 18.5 % smaller, respec-
tively, than those from HuaB-sens (Table 3), and the source
contribution effect from the Emis-intensive regions (S / F (ef-
fect)) are 37.9, 30.7, and 27.6 % smaller, respectively, than
the S / F (effect) of HuaB-sens, thus indicating that control-
ling air pollution sources from adjoint critical emission re-
gions has better effects and higher efficiency than controlling
emission sources from emission-intensive regions.

The computational loads of the adjoint simulation were
much smaller than the comparable assessments made with
the Models-3/CMAQ modeling (Zhai et al., 2016). For the
adjoint simulation, one forward integration (for model state
variables saving) and one backward adjoint integration can
enable the determination of the influence of emissions from
any source region during any time period to PM2.5 con-
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centration peaks. For the Models-3/CMAQ assessments, to
compare the effects of emission reductions over two differ-
ent time periods at two different ratios and from four dif-
ferent regions, 12 sensitivity tests with a control simulation
are required. Although the deficiency of the adjoint analy-
sis in this study is that we did not include PM2.5 concentra-
tion precursor emission impacts, we find through comparison
that the two modeling approaches are highly comparable in
their assessments of atmospheric pollution control for criti-
cal emission regions. Overall, the adjoint sensitivities of peak
PM2.5 concentrations to primary PM2.5 emissions using the
GRAPES–CUACE aerosol adjoint model can provide a valu-
able reference for evaluating emission impacts on pollutant
concentrations and air quality control.

5 Conclusions

In this research, the GRAPES–CUACE aerosol adjoint
model was applied to detect the pivotal emission sources
of a November 2012 haze episode over Beijing, and the
hourly peak PM2.5 concentrations at 05:00 and 23:00 LT
on 21 November 2012 were set as the cost functions. The
peak PM2.5 concentration contributions from local Beijing
emissions and neighboring provinces were well compared.
The adjoint model results corresponded well with the real
weather analysis for this period and correctly described the
spatial distribution of the most influential emission sources
over time for both PM2.5 concentration peaks. The 05:00 LT
PM2.5 concentration peak was mainly influenced by local
Beijing emissions and the emissions from Hebei, Tianjin,
and Shanxi because of the transmission of pollutants 2 to 3
days ahead of the peak time. The 23:00 LT PM2.5 concen-
tration peak was more sensitive to local Beijing emissions,
and the regions to the south of Beijing in Hebei province,
because of the accumulation from the first PM2.5 concentra-
tion peak, local particle hygroscopic growth, and pollutants
trapped against of the Taihang Mountains on 21 November.
The upstream Hebei province has the largest impact on both
PM2.5 concentration peaks, and the contribution of Hebei
emissions to the first PM2.5 concentration peak (43.6 %) was
greater than that to the second PM2.5 concentration peak
(41.5 %). In Beijing, PM2.5 concentration peaks responded
to local emissions in 1 to 2 h, whereas surrounding emissions
took 7 to 12 h to influence Beijing’s air quality. The rela-
tionship between PM2.5 and their primary emission sources
is complicated by different weather conditions. Aerosol im-
pacts on meteorological fields could be significant, which
might further affect the aerosol pollution condition in the
lower troposphere. Also, aerosol–cloud interactions might
modify temperature and moisture profiles and precipitation
(Wang et al., 2011), leading to potential feedback on the at-
mospheric chemistry. Moreover, climate change also has po-
tential impacts on the pollution conditions in China (Wu et
al., 2016). Further studies are required to investigate the re-

lationship of adjoint sensitivities’ representation of emission
source contribution under different weather conditions.

We compared the adjoint results with Models-3/CMAQ
assessments and found that the adjoint model results can
provide evidence for all the conclusions supported by the
Models-3/CMAQ assessments (Zhai et al., 2016). We then
defined the Emis-intensive region as an emission-intensive
region within the Huabei region that has the same area as
that of sensitive Huabei region (HuaB-sens) and compared its
emission source contributions with those of HuaB-sens and
HuaB. Overall, we concluded that narrowing the emission
sources reduction scope to target critical source zones (zones
detected by an adjoint model or a FLEXPART model), rather
than emission-intensive regions, 2 to 3 days prior to unfa-
vorable meteorological conditions can effectively decrease
PM2.5 concentrations and improve the efficiency of PM2.5
reduction measures. Meanwhile, the adjoint simulation is
far more computationally efficient than the assessments with
Models-3/CMAQ modeling. The adjoint method is a pow-
erful tool for simulating the relationship between emissions
and concentrations, and it can be utilized to help improve
flexible air quality control schemes. As we are now cou-
pling the CB-IV mechanism in the GRAPES–CUACE for-
ward model and embedding the CB-IV adjoint into the ad-
joint of GRAPES–CUACE, we will estimate sensitivities to
both primary and precursor gaseous emission sources after
this development.
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