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Abstract. The impact of air pollution on human health and
the associated external costs in Europe and the United States
(US) for the year 2010 are modeled by a multi-model en-
semble of regional models in the frame of the third phase
of the Air Quality Modelling Evaluation International Initia-
tive (AQMEII3). The modeled surface concentrations of O3,
CO, SO2 and PM2.5 are used as input to the Economic Valua-
tion of Air Pollution (EVA) system to calculate the resulting
health impacts and the associated external costs from each
individual model. Along with a base case simulation, addi-
tional runs were performed introducing 20 % anthropogenic
emission reductions both globally and regionally in Europe,
North America and east Asia, as defined by the second phase
of the Task Force on Hemispheric Transport of Air Pollution
(TF-HTAP2).

Health impacts estimated by using concentration inputs
from different chemistry–transport models (CTMs) to the
EVA system can vary up to a factor of 3 in Europe (12 mod-
els) and the United States (3 models). In Europe, the multi-
model mean total number of premature deaths (acute and
chronic) is calculated to be 414 000, while in the US, it is
estimated to be 160 000, in agreement with previous global
and regional studies. The economic valuation of these health
impacts is calculated to be EUR 300 billion and 145 billion
in Europe and the US, respectively. A subset of models that
produce the smallest error compared to the surface observa-
tions at each time step against an all-model mean ensemble
results in increase of health impacts by up to 30 % in Europe,
while in the US, the optimal ensemble mean led to a decrease
in the calculated health impacts by ∼ 11 %.

A total of 54 000 and 27 500 premature deaths can be
avoided by a 20 % reduction of global anthropogenic emis-
sions in Europe and the US, respectively. A 20 % reduction
of North American anthropogenic emissions avoids a total
of ∼ 1000 premature deaths in Europe and 25 000 total pre-
mature deaths in the US. A 20 % decrease of anthropogenic
emissions within the European source region avoids a total of
47 000 premature deaths in Europe. Reducing the east Asian
anthropogenic emissions by 20 % avoids∼ 2000 total prema-
ture deaths in the US. These results show that the domestic
anthropogenic emissions make the largest impacts on pre-
mature deaths on a continental scale, while foreign sources
make a minor contribution to adverse impacts of air pollu-
tion.

1 Introduction

According to the World Health Organization (WHO), air pol-
lution is now the world’s largest single environmental health
risk (WHO, 2014). Around 7 million people died prema-
turely in 2012 as a result of air pollution exposure from both
outdoor and indoor emission sources (WHO, 2014). WHO
estimates 3.7 million premature deaths in 2012 from expo-

sure to outdoor air pollution from urban and rural sources
worldwide. According to the Global Burden of Disease
(GBD) study, exposure to ambient particulate matter pollu-
tion remains among the 10 leading risk factors. Air pollu-
tion is a transboundary phenomenon with global, regional,
national and local sources, leading to large differences in the
geographical distribution of human exposure. Short-term ex-
posure to ozone (O3) is associated with respiratory morbidity
and mortality (e.g., Bell et al., 2004), while long-term expo-
sure to O3 has been associated with premature respiratory
mortality (Jerrett et al., 2009). Short-term exposure to par-
ticulate matter (PM2.5) has been associated with increases
in daily mortality rates from respiratory and cardiovascular
causes (e.g., Pope and Dockery, 2006), while long-term ex-
posure to PM2.5 can have detrimental chronic health effects,
including premature mortality due to cardiopulmonary dis-
eases and lung cancer (Burnett et al., 2014). The Global Bur-
den of Disease Study 2015 estimated 254 000 O3-related and
4.2 million anthropogenic PM2.5-related premature deaths
per year (Cohen et al., 2017).

Changes in emissions from one region can impact air qual-
ity over others, affecting also air-pollution-related health im-
pacts due to intercontinental transport (Anenberg et al., 2014;
Zhang et al., 2017). In the framework of the Task Force on
Hemispheric Transport of Air Pollution (TF-HTAP), Anen-
berg et al. (2009) found that reduction of foreign ozone pre-
cursor emissions can contribute to more than 50 % of the
deaths avoided by simultaneously reducing both domestic
and foreign precursor emissions. Similarly, they found that
reducing emissions in North America (NA) and Europe (EU)
has the largest impacts on ozone-related premature deaths
in downwind regions than within (Anenberg et al., 2009).
This result agrees with Duncan et al. (2008), who showed
for the first time that emission reductions in NA and EU have
greater impacts on ozone mortality outside the source region
than within. Anenberg et al. (2014) estimates that 93–97 %
of PM2.5-related avoided deaths from reducing emissions oc-
cur within the source region while 3–7 % occur outside the
source region from concentrations transported between con-
tinents. In spite of the shorter lifetime of PM2.5 compared to
O3, it was found to cause more deaths from intercontinental
transport (Anenberg et al., 2009, 2014). In the frame of the
second phase of the Task Force on Hemispheric Transport
of Air Pollution (TF-HTAP2; Galmarini et al., 2017), an en-
semble of global chemistry–transport model simulations cal-
culated that 20 % emission reductions from one region gen-
erally lead to more avoided deaths within the source region
than outside (Liang et al., 2018).

Recently, Lelieveld et al. (2015) used a global chem-
istry model and calculated that outdoor air pollution led to
3.3 million premature deaths globally in 2010. They calcu-
lated that, in Europe and North America, 381 000 and 68 000
premature deaths occurred, respectively. They have also cal-
culated that these numbers are likely to roughly double in
the year 2050 assuming a business-as-usual scenario. Silva
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et al. (2016), using the Atmospheric Chemistry and Climate
Model Intercomparison Project (ACCMIP) model ensemble,
calculated that the global mortality burden of ozone is es-
timated to markedly increase from 382 000 deaths in 2000
to between 1.09 and 2.36 million in 2100. They also calcu-
lated that the global mortality burden of PM2.5 is estimated
to decrease from 1.70 million deaths in 2000 to between 0.95
and 1.55 million deaths in 2100. Silva et al. (2013) esti-
mated that in 2000, 470 000 premature respiratory deaths are
associated globally and annually with anthropogenic ozone
and 2.1 million deaths with anthropogenic PM2.5-related car-
diopulmonary diseases (93 %) and lung cancer (7 %). These
studies employed global chemistry–transport models with
coarse spatial resolution (≥ 0.5◦× 0.5◦); therefore, health
benefits from reducing local emissions were not able to be
adequately captured. Higher resolutions are necessary to cal-
culate more robust estimates of health benefits from local vs.
non-local sources (Fenech et al., 2017). In addition, these
studies calculated the number of premature deaths due to air
pollution; however, none of them address morbidity such as
number of lung cancer or asthma cases, or restricted activity
days. Finally, these studies did not include economic costs ei-
ther. On the other hand, there are a number of regional studies
that calculate health impacts on finer spatial resolutions and
address morbidity. However, they are mostly based on sin-
gle air pollution models or do not evaluate the health benefits
from local vs. non-local emissions. Therefore, a comprehen-
sive study employing a multi-model ensemble of high spa-
tial resolution and focusing on both mortality and morbidity
from local vs. non-local sources is lacking in the literature.

In Europe, recent results show that outdoor air pollution
due to O3, CO, SO2 and PM2.5 causes a total number of
570 000 premature deaths in the year 2011 (Brandt et al.,
2013a, b). The external (or indirect) costs to society re-
lated to health impacts from air pollution are tremendous.
OECD (2014) estimates that outdoor air pollution is costing
its member countries USD 1.57 trillion in 2010. Among the
OECD member countries, the economic valuation of air pol-
lution in the US was calculated to be ∼USD 500 billion, and
∼USD 660 billion in Europe. In all of Europe, the total ex-
ternal costs have been estimated to approximately EUR 800
billion in the year 2011 (Brandt et al., 2013a). These soci-
etal costs have great influence on the general level of wel-
fare and especially on the distribution of welfare both within
the countries, as air pollution levels are vastly heterogeneous
both at regional and local scales, and between the countries,
as air pollution and the related health impacts are subject to
long-range transport. Geels et al. (2015), using two regional
chemistry–transport models, estimated a premature mortality
of 455 000 and 320 000 in the 28 member states of the Eu-
ropean Union (EU-28) for the year 2000, respectively, due
to O3, CO, SO2 and PM2.5. They also estimated that climate
change alone will lead to a small increase (15 %) in the to-
tal number of O3-related acute premature deaths in Europe
towards the 2080s and relatively small changes (< 5 %) for

PM2.5-related mortality. They found that the combined effect
of climate change and emission reductions will reduce the
premature mortality due to air pollution, in agreement with
the results from Schucht et al. (2015).

The US Environmental Protection Agency estimated that
in 2010 there were∼ 160 000 premature deaths in the US due
to air pollution (US EPA, 2011). Fann et al. (2012) calculated
130 000–350 000 premature deaths associated with O3 and
PM2.5 from the anthropogenic sources in the US for the year
2005. Caiazzo et al. (2013) estimated 200 000 cases of pre-
mature deaths in the US due to air pollution from combustion
sources for the year 2005.

The health impacts of air pollution and their economic
valuation are estimated based on observed and/or modeled
air pollutant concentrations. Observations have spatial limi-
tations particularly when assessments are needed for large re-
gions. The impacts of air pollution on health can be estimated
using models, where the level of complexity can vary de-
pending on the geographical scale (global, continental, coun-
try or city), concentration input (observations, model calcu-
lations, emissions) and the pollutants of interest that can vary
from only few (PM2.5 or O3) to a whole set of all regulated
pollutants. The health impact models normally used may dif-
fer in the geographical coverage, spatial resolutions of the air
pollution model applied, complexity of described processes,
the exposure–response functions (ERFs), population distri-
butions and the baseline indices (see Anenberg et al., 2015
for a review).

Air-pollution-related health impacts and associated costs
can be calculated using a chemistry–transport model (CTM)
or with standardized source–receptor relationships charac-
terizing the dependence of ambient concentrations on emis-
sions (e.g., EcoSense model: ExternE, 2005; TM5-FASST:
Van Dingenen et al., 2014). Source–receptor relationships
have the advantage of reducing the computing time signifi-
cantly and have therefore been extensively used in systems
like GAINS (Amann et al., 2011). On the other hand, full
CTM simulations have the advantage of better accounting for
non-linear chemistry–transport processes in the atmosphere.

CTMs are useful tools to calculate the concentrations of
health-related pollutants taking into account non-linearities
in the chemistry and the complex interactions between mete-
orology and chemistry. However, the CTMs include different
chemical and aerosol schemes that introduce differences in
the representation of the atmosphere as well as differences
in the emissions and boundary conditions they use (Im et al.,
2015a, b). These different approaches are present also in the
health impact estimates that use CTM results as the basis for
their calculations. Multi-model (MM) ensembles can be use-
ful to the extent that allows us to take into consideration sev-
eral model results at the same time, define the relative weight
of the various members in determining the mean behavior
and produce also an uncertainty estimate based on the diver-
sity of the results (Potempski et al., 2010; Riccio et al., 2012;
Solazzo et al., 2013).
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The third phase of the Air Quality Modelling Evaluation
International Initiative (AQMEII3) project brought together
14 European and North American modeling groups to sim-
ulate the air pollution levels over the two continental areas
for the year 2010 (Galmarini et al., 2017). Within AQMEII3,
the simulated surface concentrations of health-related air pol-
lutants from each modeling group serve as input to the Eco-
nomic Valuation of Air Pollution (EVA) model (Brandt et al.,
2013a, b). The EVA model is used to calculate the impacts of
health-related pollutants on human health over the two con-
tinents as well as the associated external costs. EVA model
has also been tested and validated for the first time outside
Europe. We adopt a MM ensemble approach, in which the
outputs of the modeling systems are statistically combined
assuming equal contribution from each model and used as in-
put for the EVA model. In addition, the human health impacts
(and the associated costs) of reducing anthropogenic emis-
sions, globally and regionally, have been calculated, allowing
to quantify the trans-boundary benefits of emission reduction
strategies. Finally, following the conclusions of Solazzo and
Galmarini (2015), the health impacts have been calculated
using an optimal ensemble of models, determined by error
minimization. This approach can assess the health impacts
with reduced model bias, which we can then compare with
the classically derived estimates based on model averaging.

2 Material and methods

2.1 AQMEII3

2.1.1 Participating models

In the framework of the AQMEII3 project, 14 groups par-
ticipated in simulating the air pollution levels in Europe and
North America for the year 2010. In the present study, we use
results from the 13 groups that provided all health-related
species (Table 1). As seen in Table 1, six groups have op-
erated the CMAQ model. The main differences among the
CMAQ runs reside in the number of vertical levels and hori-
zontal spacing (Table 1), and in the estimation of biogenic
emissions. UK1, DE1 and US3 calculated biogenic emis-
sions using the BEIS (Biogenic Emission Inventory System
version 3) model, while TR1, UK1 and UK2 calculated bio-
genic emissions through the Model of Emissions of Gases
and Aerosols from Nature (MEGAN) (Guenther et al., 2012).
Moreover, DE1 does not include the dust module, while the
other CMAQ instances use the inline calculation (Appel et
al., 2013), and TR1 uses the dust calculation previously cal-
culated for AQMEII phase 2. Finally, all runs were carried
out using CMAQ version 5.0.2, except for TR1, which is
based on the 4.7.1 version. The gas-phase mechanisms and
the aerosol models used by each group are also presented in
Table 1. More details of the model system are provided in the
Supplement. The differences in the meteorological drivers
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and aerosol modules can lead to substantial differences in
modeled concentrations (Im et al., 2015b).

2.1.2 Emission and boundary conditions

The base case emission inventories that are used in AQMEII
for Europe and North America are extensively described in
Pouliot et al. (2015). For Europe, the 2009 inventory of the
Netherlands Organisation for Applied Scientific Research
Monitoring Atmospheric Composition and Climate (TNO-
MACC) anthropogenic emissions was used. In regions not
covered by the emission inventory, such as north Africa,
five modeling systems have complemented the standard in-
ventory with the HTAPv2.2 datasets (Janssens-Maenhout et
al., 2015). For the North American domain, the 2008 Na-
tional Emission Inventory was used as the basis for the 2010
emissions, providing the inputs and datasets for process-
ing with the SMOKE emissions processing system (Mason
et al., 2007). For both continents, the regional-scale emis-
sion inventories were embedded in the global-scale inventory
(Janssens-Maenhout et al., 2015) used by the global-scale
HTAP2 modeling community so as to guarantee coherence
and harmonization of the information used by the regional-
scale modeling community. The annual totals for European
and North American emissions in the HTAP inventory are
the same as the MACC and SMOKE emissions. However,
there are differences in the temporal distribution, chemical
speciation and the vertical distribution used in the models.
The C-IFS model (Flemming et al., 2015, 2017) provided
chemical boundary conditions. The C-IFS model has been
extensively evaluated in Flemming et al. (2015, 2017) and in
particular for North America (Hogrefe et al., 2018; Huang et
al., 2017). Galmarini et al. (2017) provides more details on
the setup of the AQMEII3 and HTAP2 projects.

2.1.3 Model evaluation

The models’ performance in simulating the surface concen-
trations of the health-related pollutants were evaluated us-
ing Pearson’s correlation (r), normalized mean bias (NMB),
normalized mean gross error (NMGE) and root mean square
error (RMSE) to compare the modeled and observed hourly
pollutant concentrations over surface measurement stations
in the simulation domains. The hourly modeled vs. observed
pairs are averaged and compared on a monthly basis. The
modeled hourly concentrations were first filtered based on
observation availability before the averaging was performed.
The observational data used in this study are the same as
those in the dataset used in the second phase of AQMEII
(Im et al., 2015a, b). Surface observations are provided in
the ENSEMBLE system (http://ensemble.jrc.ec.europa.eu/)
that is hosted at the Joint Research Centre (JRC). Obser-
vational data were originally derived from the surface air
quality monitoring networks operating in EU and NA. In
EU, surface data were provided by the European Monitor-

ing and Evaluation Programme (EMEP; http://www.emep.
int/) and the European Air Quality Database (AirBase; http:
//acm.eionet.europa.eu/databases/airbase/). In NA, observa-
tional data were obtained from the NAtChem (Canadian Na-
tional Atmospheric Chemistry) database and from the Anal-
ysis Facility operated by Environment Canada (http://www.
ec.gc.ca/natchem/).

The model evaluation has been conducted for 491 Euro-
pean and 626 North American stations for O3, 541 European
stations and 37 North American stations for CO, 500 Euro-
pean station and 277 North American stations for SO2, and
568 European stations and 156 North American stations for
PM2.5.

2.1.4 Emission perturbations

In addition to the base case simulations in AQMEII3, a num-
ber of emission perturbation scenarios have been simulated
(Table 1). The perturbation scenarios feature a reduction of
20 % in the global anthropogenic emissions (GLO) as well as
the HTAP2-defined regions of Europe (EUR), North Amer-
ica (NAM) and east Asia (EAS), as explained in detail in
Galmarini et al. (2017) and Im et al. (2018). To prepare these
scenarios, both the regional models and the global C-IFS
model that provides the boundary conditions to the partici-
pating regional models have been operated with the reduced
emissions. The global perturbation scenario (GLO) reduces
the global anthropogenic emissions by 20 %, introducing a
change in the boundary conditions as well as a 20 % decrease
in the anthropogenic emissions used by the regional models.
The North American perturbation scenario (NAM) reduces
the anthropogenic emissions in North America by 20 %, in-
troducing a change in the boundary conditions while anthro-
pogenic emissions remain unchanged for Europe, showing
the impact of long-range transport for North America, while
the scenarios introduce a 20 % reduction of anthropogenic
emissions in the HTAP-defined North American region. The
European perturbation scenario (EUR) reduces the anthro-
pogenic emissions in the HTAP-defined European domain by
20 %, introducing a change in the anthropogenic emissions
while boundary conditions remain unchanged in the regional
models, showing the contribution from the domestic anthro-
pogenic emissions only. Finally, the east Asian perturbation
scenario (EAS) reduces the anthropogenic emissions in east
Asia by 20 %, introducing a change in the boundary con-
ditions while anthropogenic emissions remain unchanged in
the regional models, showing the impact of long-range trans-
port from east Asia on the NA concentrations.

2.2 Health impact assessment

All modeling groups interpolate their model outputs on a
common 0.25◦× 0.25◦ resolution AQMEII grid predefined
for Europe (30◦W–60◦ E, 25–70◦ N) and North America
(130–59.5◦W, 23.5– 58.5◦ N). All the analyses performed in
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Figure 1. Population density (population per 0.25◦× 0.25◦ grid box) over (a) the United States and (b) Europe.

the present study use the pollutant concentrations on these fi-
nal grids. Health impacts are first calculated for each individ-
ual model, and then the ensemble mean, median and standard
deviation are calculated for each health impact. In order to be
able to estimate an uncertainty in the health impact calcula-
tions, none of the models were removed from the ensemble.

Along with the individual health impact estimates from
each model, a multi-model mean dataset (MMm, in which
all the modeling systems are averaged assuming equally
weighted contributions) has been created for each grid cell
and time step, hence creating a new model set of results
that have the same spatial and temporal resolution of the
ensemble-contributing members. In addition to this simple
MMm, an optimal MM ensemble (MMopt) has been gen-
erated. MMopt is created following the criteria extensively
discussed and tested in the previous phases of the AQMEII
activity (Riccio et al., 2012; Kioutsioukis et al., 2016; So-
lazzo and Galmarini, 2016), where it was shown that there
are several ways to combine the ensemble members to ob-
tain a superior model, mostly depending on the feature we
wish to promote (or penalize). For instance, generating an
optimal ensemble that maximizes the accuracy would require
a minimization of the mean error or of the bias, while maxi-
mizing the associativity (variability) would require maximiz-
ing the correlation coefficient (standard deviation). In this
study, the subset of models whose means minimize the mean
squared error (MSE) is selected as optimal (MMopt). MMm
and MMopt have therefore the same spatial resolution with
the individual models. The MSE is chosen for continuity
with previous AQMEII-related works. The MSE is chosen
in light of its property of being composed by bias, variance
and covariance types of error, thus lumping together mea-
sures of accuracy (bias), variability (variance) and associa-
tivity (covariance) (Solazzo and Galmarini, 2016). The min-
imum MSE has been calculated at the monitoring stations,
where observational data are available, and then extended to
the entire continental areas. This approximation might affect
remote regions away from the measurements. However, con-

sidering that for the main pollutants (O3 and PM2.5) the net-
work of measurements is quite dense around densely popu-
lated areas (where the inputs of the MM ensemble are used
for assessing the impact of air pollutants on the health of the
population), errors due to inaccurate model selection in re-
mote regions might be regarded as negligible (Solazzo and
Galmarini, 2015). It should be noted that the selection of the
optimal combinations of models is affected by the model’s
bias that might stem from processes that are common to all
members of the ensemble (e.g., emissions). Therefore, such a
common bias does not cancel out when combining the mod-
els, possibly creating a biased ensemble. Current work is be-
ing devoted to identify the optimal combinations of models
from which the offsetting bias is removed (Solazzo et al.,
2018).

2.2.1 EVA system

The EVA system (Brandt et al., 2013a, b) is based on the
impact-pathway chain (e.g., Friedrich and Bickel, 2001),
consisting of the emissions, transport and chemical trans-
formation of air pollutants, population exposure, health im-
pacts and the associated external costs. The EVA system re-
quires hourly gridded concentration input from a regional-
scale CTM as well as gridded population data, ERFs for
health impacts and economic valuations of the impacts from
air pollution. A detailed description of the integrated EVA
model system along with the ERFs and the economic valua-
tions used are given in Brandt et al. (2013a).

The gridded population density data over Europe and the
US used in this study are presented in Fig. 1. The population
data over Europe are provided on a 1 km spatial resolution
from Eurostat for the year 2011 (http://www.efgs.info). The
US population data have been provided by the US Census
Bureau for the year 2010. The total populations used in this
study are roughly 532 and 307 million in Europe and the US,
respectively. As the health outcomes are age dependent, the
total population data have been broken down to a set of age
intervals as follows: babies (under 9 months); children (un-
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Table 2. Exposure–response functions, the concentrations metrics and economic valuations used in the EVA model. “EU27” are the member
states of the European Union between 2007 and 2013.

Health effects (compounds) Exposure–response coefficient Valuation, EUR2013

(α) (EU27 & NA)

Morbidity

Chronic bronchitis1, CB (PM) 8.2E-5 cases µg−1 m−3 (adults) 38 578 per case
Restricted activity days2, RAD (PM) = 8.4 E-4 days µg−1 m−3 (adults) 98 per day

−3.46E-5 days µg−1 m−3 (adults)
−2.47E-4 days µg−1 m−3(adults> 65)
−8.42E-5 days µg−1 m−3 (adults)

Congestive heart failure3, CHF (PM) 3.09E-5 cases µg−1 m−3 10 998 per case
Congestive heart failure3, CHF (CO) 5.64E-7 cases µg−1 m−3

Lung cancer4, LC (PM) 1.26E-5 cases µg−1 m−3 16 022 per case

Hospital admissions

Respiratory5, RHA (PM) 3.46E-6 cases µg−1 m−3 5315 per case
Respiratory5, RHA (SO2) 2.04E-6 cases µg−1 m−3

Cerebrovascular6, CHA (PM) 8.42E-6 cases µg−1 m−3 6734 per case

Asthma children (7.6 %< 16 years)

Bronchodilator use7, BUC (PM) 1.29E-1 cases µg−1 m−3 16 per case
Cough8, COUC (PM) 4.46E-1 days µg−1 m−3 30 per day
Lower respiratory symptoms7, LRSA (PM) 1.72E-1 days µg−1 m−3 9 per day

Asthma adults (5.9 %> 15 years)

Bronchodilator use9, BUA (PM) 2.72E-1 cases µg−1 m−3 16 per case
Cough9, COUA (PM) 2.8E-1 days µg−1 m−3 30 per day
Lower respiratory symptoms9, LRSA (PM) 1.01E-1 days µg−1 m−3 9 per day

Mortality

Acute mortality10,11 (SO2) 7.85E-6 cases µg−1 m−3 1 532 099 per case
Acute mortality10,11 (O3) 3.27E-6×SOMO35 cases µg−1 m−3

Chronic mortality4,12,, YOLL (PM) 1.138E-3 YOLL µg−1 m−3(> 30 years) 57 510 per YOLL
Infant mortality13, IM (PM) 6.68E-6 cases µg−1 m−3 (> 9 months) 2 298 148 per case

1 Abbey et al. (1995). 2 Ostro (1987). 3 Schwartz and Morris (1995). 4 Pope et al. (2002). 5 Dab et al. (1996). 6 Wordley et al. (1997). 7 Roemer
et al. (1993). 8 Pope and Dockerey (1992). 9 Dusseldorp et al. (1995). 10 Anderson et al. (1996). 11 Touloumi et al. (1996). 12 Pope et al. (1995).
13 Woodruff et al. (1997).

der 15); and adults above 15, above 30 and above 65. The
fractions of population in these intervals for Europe are de-
rived from the Eurostat 2000 database, where the number of
persons of each age at each grid cell was aggregated into the
above clusters (Brandt et al., 2011), while for the US they
are derived from the US Census Bureau for the year 2010 at
5-year intervals.

The EVA system can be used to assess the number of vari-
ous health outcomes including different morbidity outcomes
as well as short-term (acute) and long-term (chronic) mortal-
ity, related to exposure of O3, CO and SO2 (short term) and
PM2.5 (long term). Furthermore, impact on infant mortality
in response to exposure of PM2.5 is calculated. The health

impacts are calculated using an ERF of the following form:

R = α× δc×P,

where R is the response (in cases, days or episodes), c de-
notes the pollutant concentration, P denotes the affected
share of the population, and α is an empirically determined
constant for the particular health outcome. EVA uses ERFs
that are modeled as a linear function, which is a reasonable
approximation as showed in several studies (e.g., Pope, 2000;
the joint World Health Organization/UNECE Task Force on
Health; EU, 2004; Watkiss et al., 2005). Many epidemi-
ological studies have analyzed the concentration–response
relationship between ambient PM and mortality using var-
ious statistical models. In general, the shapes of the esti-
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mated curves did not differ significantly from linear. How-
ever, some studies showed non-linear relationships, being
steeper at lower than at higher concentrations (e.g., Samoli et
al., 2005). Therefore, linear relationships may lead to over-
estimated health impacts over highly polluted concentration
metrics used in each ERF shown in Table 2. The sensitivity of
EVA to the different pollutant concentrations is further eval-
uated in the the Supplement and depicted in Fig. S1. EVA
calculates and uses the annual mean concentrations of CO,
SO2 and PM2.5, while for O3, it uses the SOMO35 metric
that is defined as the yearly sum of the daily maximum of
8 h running average over 35 ppb, following WHO (2013) and
EEA (2017).

The morbidity outcomes include chronic bronchitis, re-
stricted activity days, congestive heart failure, lung cancer,
respiratory and cerebrovascular hospital admissions, asthma
in children (< 15 years) and adults (> 15 years), which
includes bronchodilator use, cough and lower respiratory
symptoms. The exposure–response functions are broadly in
line with estimates derived with detailed analysis in EU-
funded research (Rabl et al., 2014; EEA, 2013). To figure
out the total number of premature deaths from the years of
life lost due to PM2.5, they have been converted into lost
lives according to a “lifetable” method (explained in de-
tail in Andersen, 2017) but using the factor of 10.6, as re-
ported by Watkiss et al. (2005). To these deaths are added
the acute deaths due to O3 and SO2. The ERFs used, along
with their references, in both continents as well as the eco-
nomic valuations for each health outcome in Europe and the
US, respectively, are presented in Table 2. Baseline incidence
rates are not assumed to be dissimilar, which is a coarse ap-
proach for morbidity. The baseline rates are from Statistics
Denmark (http://www.statistikbanken.dk/statbank5a/default.
asp?w=1280, last access: 25 April 2018) and lifetables are
based on Denmark, which is close to the US and Eurozone
average (Andersen, 2017). For a description of the morbid-
ity ERFs, see Andersen et al. (2004, 2008). The economic
valuations are provided by Brandt et al. (2013a); see also
EEA (2013).

ERFs for all-cause chronic mortality due to PM2.5 were
based on the findings of Pope et al. (2002), which is the
most extensive study available, following conclusions from
the scientific review of the Clean Air For Europe (CAFE)
program (Hurley et al., 2005; Krupnick et al., 2005). The
results from Pope et al. (2002) are further supported by
Krewski et al. (2009) and more recently by the latest
HRAPIE project report (WHO, 2013a). Therefore, as recom-
mended by WHO (2013a), EVA uses the ERFs based on the
meta-analysis of 13 cohort studies as described in Hoek et
al. (2013). In EVA, the number of lost life years for a Dan-
ish population cohort with normal age distribution, when ap-
plying the ERF of Pope et al. (2002) for all-cause mortal-
ity (relative risk, RR of 1.062 (1.040–1.083) on a 95 % con-
fidence interval), and the latency period indicated, sums to
1138 years of life lost (YOLL) per 100 000 individuals for an

annual PM2.5 increase of 10 µg m−3 (Andersen et al., 2008).
EVA uses a counterfactual PM2.5 concentration of 0 µg m−3

following the EEA methodology, meaning that the impacts
have been estimated for the full range of modeled concen-
trations from 0 µg m−3 upwards. Applying a low counterfac-
tual concentration can underestimate health impacts at low
concentrations if the relationship is linear or close to lin-
ear (Anenberg et al., 2015). However, it is important to note
that uncertainty in the health impact results may increase at
low concentrations due to sparse epidemiological data. As-
suming linearity at very low concentrations may distort the
true health impacts of air pollution in relatively clean atmo-
spheres (Anenberg et al., 2016).

It has been shown that O3 concentrations above the
level of 35 ppb involve an acute mortality increase, presum-
ably for weaker and elderly individuals. EVA applies the
ERFs selected in CAFE for post-natal deaths (age group 1–
12 months) and acute deaths related to O3 (Hurley et al.,
2005). WHO (2013a) also recommends the use of the daily
maximum of 8 h mean O3 concentrations for the calculation
of the acute mortality due to O3. There are also studies show-
ing that SO2 is associated with acute mortality, and EVA
adopts the ERF identified in the APHENA study – Air Pollu-
tion and Health: A European Approach (Katsouyanni et al.,
1997).

Chronic exposure to PM2.5 is also associated with mor-
bidity, such as lung cancer. EVA employs the specific ERF
(RR of 1.08 per 10 µg m−3 PM2.5 increase) for lung cancer
indicated in Pope et al. (2002). Bronchitis has been shown
to increase with chronic exposure to PM2.5 and we apply
an ERF (RR of 1.007) for new cases of bronchitis based on
the AHSMOG study (involving non-smoking Seventh-Day
Adventists; Abbey et al., 1999), which is the same epidemi-
ological study as in CAFE (Abbey et al., 1995; Hurley et
al., 2005). The ExternE crude incidence rate was chosen as a
background rate (ExternE, 1999), which is in agreement with
a Norwegian study, rather than the pan-European estimates
used in CAFE (Eagan et al., 2002). Restricted activity days
(RADs) comprise two types of responses to exposure: so-
called minor restricted activity days as well as work-loss days
(Ostro, 1987). This distinction enables accounting for the dif-
ferent costs associated with days of reduced well-being and
actual sick days. It is assumed that 40 % of RADs are work-
loss days based on Ostro (1987). The background rate and
incidence are derived from ExternE (1999). Hospital admis-
sions are deducted to avoid any double counting. Hospital ad-
missions and health effects for asthmatics (here correspond-
ing to the responses of bronchodilator use, cough and lower
respiratory symptoms) are also based on ExternE (1999).

Table 2 lists the specific valuation estimates applied in the
modeling of the economic valuation of mortality and mor-
bidity effects. A principal value of EUR 1.5 million was ap-
plied for preventing an acute death, following expert panel
advice (EC, 2001). For the valuation of a life year, the results
from a survey relating specifically to air pollution risk reduc-
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tions were applied (Alberini et al., 2006), implying a value
of EUR 57 500 per year of life lost (YOLL). With the more
conservative metric of estimating lost life years, rather than
“full” statistical lives, there is no adjustment for age. This is
due to the fact that government agencies in Europe, including
the European Commission, apply a methodology for costs of
air pollution that is based on accounting for lost life years,
rather than for entire statistical lives as is customary in USA.
While the average traffic victim, for instance, is middle-aged
and likely to lose about 35–40 years of life expectancy, pollu-
tion victims are believed to suffer significantly smaller losses
of years (EAHEAP, 1999; Friedrich and Bickel, 2001). To
avoid overstating the benefits of air pollution control, these
are treated as proportional to the number of life years lost.
Most of the excess mortality is due to chronic exposure to
air pollution over many years, and the life year metric is
based on the number of lost life years in a statistical cohort.
Following the guidelines of the Organisation for Economic
Co-operation and Development (OECD, 2006), the predicted
acute deaths, mainly from O3, are valuated here with the ad-
justed value for preventing a fatality (VSL, value of a statisti-
cal life). The lifetables are obtained from European data and
are applied to the US as the average life expectancy in the
US is similar to that in Europe and close to the OECD aver-
age (OECD, 2016). The willingness to pay for reductions in
risk obviously differs across income levels. However, in the
case of air pollution costs, adjustment according to per capita
income differences among different states is not regarded as
appropriate, because long-range transport implies that emis-
sions from one state will affect numerous other states and
their citizens. The valuations are thus adjusted with regional
purchasing power parities (PPPs) of EU27 and USA.

Cost–benefit analysis in the US related to air pollution pro-
ceeds from a standard approach, where abatement measures
preventing premature mortality are considered according to
the number of statistical fatalities avoided, which are appre-
ciated according to the VSL (presently USD 7.4 million). In
contrast, and following recommendations from the UK work-
ing group on Economic Appraisal of the Health Effects of
Air Pollution (EAHEAP, 1999), focus in EU has been on the
possible changes in average life expectancy resulting from air
pollution. In EU, the specific number of life years lost as a re-
sult of changes in air pollution exposures is estimated based
on lifetable methodology and monetized with value-of-life-
year (VOLY) unit estimates (Holland et al., 1999; Leksell
and Rabl, 2001). The theoretical basis is a lifetime consump-
tion model according to which the preferences for risk re-
duction will reflect expected utility of consumption for re-
maining life years (Hammitt, 2007; OECD, 2006, p. 204).
The much lower VSL values customary in Europe (presently
EUR 2.2 million) add decisively to the differences, as VOLY
is deducted from this value. By using a common valuation
framework according to the EU approach, we allow for direct
comparisons of the monetary results. It follows from OECD
recommendations (2012) to correct with PPP when doing

such benefit transfer. The unit values have been indexed to
2013 prices as indicated in Table 2.

3 Results

3.1 Model evaluation

Observed and simulated hourly surface O3, CO, SO2 and
daily PM2.5, which are species used in the EVA model to
calculate the health impacts, over Europe and North America
for the entire 2010 were compared in order to evaluate each
model’s performance. The statistical parameters to evaluate
the models and their equations are provided in the Supple-
ment. For a more thorough evaluation of models and species,
see Solazzo et al. (2017). The results of this comparison are
presented in Table S1 for EU and NA, along with the multi-
model mean and median values. The monthly time series
plots of observed and simulated health-related pollutants are
also presented in Figs. 2 and 3. The monthly means are calcu-
lated using the hourly pairs of observed and modeled concen-
trations at each station. The results show that, over Europe,
the temporal variability of all gaseous pollutants is well cap-
tured by all models with correlation coefficients (r) higher
than 0.70 in general. The NMBs in simulated O3 levels are
generally below 10 % with few exceptions up to −35 %. CO
levels are underestimated by up to 45 %, while the major-
ity of the models underestimated SO2 levels by up to 68 %,
while some models overestimated SO2 by up to 49 %. PM2.5
levels are underestimated by 19 to 63 %. Over Europe, the
median of the ensemble performs better than the mean in
terms of model bias (NMB) for O3 (by 52 %), while for CO,
SO2 and PM2.5, the mean performs slightly better than the
median (Table S1).

We have further evaluated the models’ performance in
simulating the annual mean pollutant levels over individual
measurements stations and plotted the geographical distribu-
tion of the bias. Figure 4 presents the multi-model mean geo-
graphical distribution of bias from daily max 8 h (DM8H) av-
erage O3, CO, SO2 and PM2.5 over Europe, while Figs. S2–
S5 show annual mean bias for O3, CO, SO2 and PM2.5 for
each model, respectively. DM8H O3 levels over Europe are
generally underestimated by up to 50 µg m−3, with few over-
estimations up to 50 µg m−3 over southern Europe (Fig. 4a).
The geographical pattern of annual mean O3 bias is similar
among the models with slight differences (±10 µg m−3) in
the bias (Fig. S2). CO levels are underestimated over all sta-
tions by up to 600 µg m−3 except for few stations where CO
levels are overestimated by up to 100 µg m−3 (Fig. 4b). All
models underestimated CO levels over the majority of the
stations (Fig. S3). SO2 levels are slightly overestimated over
central and southern Europe (Fig. 4c). There are also under-
estimations over few stations with no specific geographical
pattern. Similar to CO, all models underestimated SO2 lev-
els over the majority of the stations (Fig. S4). Finally, PM2.5
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Figure 2. Observed and simulated (base case) monthly (a) O3, (b) CO, (c) SO2 and (d) PM2.5 concentrations over Europe.

Figure 3. Observed and simulated (base case) monthly (a) O3, (b) CO, (c) SO2 and (d) PM2.5 concentrations over the US.

levels are underestimated by up to 10 µg m−3 over most of
Europe (Fig. 4d), with larger underestimations over eastern
Europe up to 30 µg m−3.

Over North America, the hourly O3 variation is well cap-
tured by all models (Table S1), with DK1 having slightly
lower r coefficient compared to the other models and largest
NMB (Fig. 3a). The hourly variations of CO and SO2 lev-
els are simulated with relatively lower r values (Fig. 3b, c),
with SO2 levels having the highest underestimations. The
PM2.5 levels are underestimated by ∼ 15 % except for the

DE1 model, having a large underestimation of 63 % (Ta-
ble S1). As DE1 and US3 use the same SMOKE emissions
and CTM, the large difference in PM2.5 concentrations can
be partly due to the differences in horizontal and vertical
resolutions in the model setups, as can also be seen in the
differences in the CO concentrations. There are also dif-
ferences in the aerosol modules and components that each
model simulates. For example, DE1 uses an older version
of the secondary organic aerosol (SOA) module, producing
∼ 3 µg m−3 less SOA, which can explain ∼ 20 % of the bias
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Figure 4. Spatial distribution of annual MM mean bias (µg m−3) for (a) DM8H O3, (b) CO, (c) SO2 and (d) PM2.5 over Europe.

over North America. Over the North American domain, the
median outscores the mean for O3 (by 35 %), CO (by 52 %)
and PM2.5 (by 29 %), while for SO2, the median produces
26 % higher NMB compared to the mean. The DK1 model
simulates a much higher bias for O3 and SO2 compared to
other models in the North American domain, while DE1 has
the largest bias for CO and PM2.5.

DM8H O3 levels are generally underestimated by the MM
mean over the US by up to 20 ppb, while over the eastern
and central US there are also overestimations by up to 10 ppb
(Fig. 5a). As seen in Fig. S6, all three models have very simi-
lar performance over the US, with DK1 simulating a slightly
lower underestimation and a higher overestimation compared
to DE1 and US3. DE1 and DK1 have very similar spatial
pattern in terms of CO bias, in particular over the eastern
coast of the US (Fig. S7). CO levels are underestimated by

∼ 100 ppb over the majority of the stations, especially over
the eastern US, while there are much larger underestimations
over the western US by up to 1000 ppb (Fig. 5b). SO2 levels
are underestimated by up to 5 ppb over the majority of the
stations in the US, with few overestimations of up to 5 ppb
(Fig. 5c). DE1 and DK1 have a very similar spatial distri-
bution of bias, while US3 has slightly more overestimations
(Fig. S8). Finally, PM2.5 levels are underestimated over ma-
jority of the stations by up to 6 µg m−3, with few overestima-
tions by 2–4 µg m−3 (Fig. 5d). DE1 has the largest underes-
timations compared to DK1 and US3 (Fig. S9).

Table S1 shows that the ensemble median performs
slightly better than the ensemble mean for all pollutants over
both continents in terms of the bias and error, while the dif-
ference in r is rather small. Over the European stations, the
median has improved results over the mean by up to 14 % for
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Figure 5. Spatial distribution of annual MM mean bias (ppb for gases and µg m−3 for PM2.5) for (a) DM8H O3, (b) CO, (c) SO2 and
(d) PM2.5 over North America.

r and up to 9 % for the RMSE. The improvements in r over
the US are much smaller compared to Europe (up to ∼ 4 %),
while the RMSE is improved by up to 27 %, except for SO2
where the median has 14 % higher RMSE than the mean.

3.2 Health outcomes and their economic valuation in
Europe

The different health outcomes calculated by each model in
Europe as well as their multi-model mean and median are
presented in Table S2. Table 3 presents the mean of the indi-
vidual model estimates as MMmi. Standard deviations cal-
culated from the individual model estimates are presented
along with the MMmi in the text. The health impact esti-
mates vary significantly between different models. The dif-
ferent estimates obtained are found to vary up to a factor of 3.
Among the different health outcomes, the individual mod-
els simulated the number of congestive heart failure (CHF)
cases to be between 19 000 and 41 000 (mean of all indi-
vidual models, MMmi, 31 000± 6500). The number of lung
cancer cases due to air pollution is calculated to be between
30 000 and 78 000 (mean of all individual models, MMmi,
55 000± 14 000). Finally, the total (acute and chronic) num-

ber of premature deaths due to air pollution is calculated to
be 230 000 to 570 000 (mean of all individual models, MMmi,
414 000± 100 000). The health impacts calculated as the me-
dian of individual models differ slightly (∼±1 %) from those
calculated as the mean of individual models (Table S2) due
to the slight differences in the model bias (NMB) and error
(NMGE and RMSE) between the mean and the median per-
formance statistics of the models.

In addition to averaging the health estimates from individ-
ual models (MMmi), we have also produced a multi-model
mean concentration data (MMm) by taking the average of
concentrations of each species calculated by all models at
each grid cell and hour, and feeding it to the EVA model.
We have calculated the number of premature death cases in
Europe (Table 3) using MMm. The difference in the health
impacts calculated using MMm data from the mean of all in-
dividual model (MMmi) estimates is smaller than 1 %. The
number of premature death cases in Europe as calculated
as the average of all models in the multi-model ensem-
ble, MMmi, due to exposure to O3 is 12 000± 6500, while
the cases due to exposure to PM2.5 are calculated to be
390 000± 100 000 (180 000–550 000). The O3-related mor-
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Table 3. Health impacts calculated by the mean of individual model estimates (denoted as MMmi) and the standard deviation, multi-model
mean ensemble without error reduction (MMm) and the optimal ensemble (MMopt) in Europe and the US. See Table 2 for the definitions
of health impacts. PD stands for premature deaths. All health impacts are in units of number of cases multiplied by 1000, except for infant
mortality (IM), which reports directly the number of cases.

EU NA

MMmi MMm MMopt MMmi MMm MMopt

CB 360± 89 360 468 142± 74 142 125
RAD 368 266± 90 670 368 245 478 073 145 337± 75 250 145 337 127 921
RHA 23± 5 23 28 10± 4 8 7
CHA 46± 11 46 60 19± 10 19 16
CHF 31± 6 31 38 13± 6 9 8
LC 55± 14 55 72 22± 11 22 19
BDUC 10 766± 2650 10 766 13 976 4566± 2383 4566 4019
BDUA 70 492± 17 400 70 489 91 511 27 819± 14 400 27 819 24 485
COUC 37 198± 9160 37 196 48 289 15 776± 8230 15 776 13 886
COUA 72 566± 17 900 72 562 94 203 28 637± 14 830 28 637 25 206
LRSC 14 355± 3530 14 354 18 635 6088± 3180 6088 5359
LRSA 26 175± 6400 26 174 33 980 10 330± 5350 10 330 9092
AYOLL 26± 13 23 20 25± 7 9 9
YOLL 4111± 1010 4111 5337 1481± 762 1481 1304
PD 414± 98 410 524 165± 76 149 133
IM 403± 99 403 524 143± 75 143.3667 126.1

tality well agrees with Liang et al. (2018), who used the
multi-model mean of the HTAP2 global model ensemble,
which calculated an O3-related mortality of 12 800 (600–
28 100). The multi-model mean (MMmi) PM2.5-related mor-
tality in the present study is much higher than that in the
HTAP2 study: 195 500 (4400–454 800). The results also
agree with the most recent EEA findings (EEA, 2015), which
calculated a total of 419 000 premature deaths due to O3 and
PM2.5 in the EU28 countries. There is also agreement with
Geels et al. (2015), who calculated 388 000 premature death
cases in Europe for the year 2000. This difference can be at-
tributed to the number of mortality cases as calculated by the
individual models, where the HTAP2 ensemble calculates a
much lower minimum while the higher ends from the two
ensembles agree well.

The differences between the health outcomes calculated
by the HTAP2 and AQMEII ensembles arise firstly from the
differences in the concentration fields due to the differences
in models, in particular spatial resolutions as well as the gas
and aerosol treatments in different models, but also the dif-
ferences in calculating the health impacts from these concen-
tration fields. EVA calculates the acute premature deaths due
to O3 by using the SOMO35 metric. On the other hand, in
HTAP2, O3-related premature deaths are calculated by us-
ing the 6-month seasonal average of daily 1 h maximum O3
concentrations. Both groups use the annual mean PM2.5 to
calculate the PM2.5-related premature deaths. In addition to
O3 and PM2.5, EVA also takes into account the health im-
pacts from CO and SO2, which are missing in the HTAP2
calculations.

Among all models, the DE1 model calculated the lowest
health impacts for most health outcomes, which can be at-
tributed to the largest underestimation of PM2.5 levels (NMB
of −63 %; Table S2) due to lower spatial resolution of the
model that dilutes the pollution in the urban areas, where
most of the population lives. The number of premature deaths
calculated by this study is in agreement with previous studies
for Europe using the EVA system (Brandt et al., 2013a; Geels
et al., 2015). Recently, EEA (2015) estimated that air pollu-
tion is responsible for more than 430 000 premature deaths in
Europe, which is in good agreement with the present study.

Figure 6a presents the geographical distribution of the
number of premature deaths in Europe in 2010. The figure
shows that the number of cases is strongly correlated with the
population density (Fig. 1a), with the largest numbers seen in
the Benelux and Po Valley regions that are characterized as
the pollution hot spots in Europe as well as in megacities
such as London, Paris, Berlin and Athens.

The economic valuation of the air-pollution-associated
health impacts calculated by the different models, along with
their mean and median, is presented in Table 4. A total
cost of EUR 196 billion to 451 billion (MM mean cost of
EUR 300± 70 billion) was estimated over Europe (EU28).
Results show that 5 % (1–11 %) of the total costs are due to
exposure to O3, while 89 % (80–96 %) are due to exposure to
PM2.5. Brandt et al. (2013a) calculated a total external cost
of EUR 678 billion for the year 2011 for Europe, larger than
the estimates of this study, which can be explained by the dif-
ferences in the simulation year and the emissions used in the
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Figure 6. Spatial distribution of the number of total premature deaths (PD: units in number of cases per 0.25◦× 0.25◦ grid box) in (a) the
United States and (b) Europe, and the relative change (%) in the number of premature deaths in response to the GLO scenario in (c) the
United States and (d) Europe in 2010 as calculated by the multi-model mean ensemble.

models as well as the countries included in the two studies
(the previous study includes, e.g., Russia).

3.3 Health outcomes and their economic valuation in
the US

The different health outcomes calculated by each model for
the US as well as their mean and median are presented in
Table S2. The variability among the models (∼ 3) is simi-
lar to that in Europe. The number of congestive heart failure
cases in the US as calculated as the average of all models
in the ensemble (MMmi) is calculated to be 13 000 (7000–
18 000), while the lung cancer cases due to air pollution are
calculated to be 22 000 (9000–31 000). Finally, the number
of premature deaths due to air pollution is calculated to be
165 000± 75 000, where 25 000± 6000 cases are calculated
due to exposure to O3 and 140 000± 72 000 cases due to ex-
posure to PM2.5. The MMm dataset leads to a total of 149 000
premature deaths that is 6 % smaller than the average esti-
mate from individual models (MMmi). Due to the large re-
duction of NMB by the median compared to the mean of in-
dividual models (Table S1), the multi-model health impacts
calculated as the median of health impacts from individual
models are ∼ 13 % higher than the health impacts calculated
from the MMmi. The O3 and PM2.5 mortality cases as cal-

culated by the AQMEII and HTAP2 model ensembles rea-
sonably agree. Liang et al. (2018) calculated an O3-related
mortality of 14 700 (900–30 400) and a PM2.5-related mortal-
ity of 78 600 (4500–162 600). These results are in very good
agreement with the US EPA (2011) estimates of total num-
ber of 160 000 premature death cases in the year 2010 and
with Caiazzo et al. (2013), who calculated 200 000 prema-
ture death cases from combustion sources in the US. Among
all models, the DE1 model calculated the lowest health im-
pacts for most health outcomes, which can be attributed to
the largest underestimation of PM2.5 levels (NMB of−63 %;
Table S2).

The premature death cases in North America are mostly
concentrated over the New York area, as well as in hot spots
over Chicago, Detroit, Houston, Los Angeles and San Fran-
cisco (Fig. 6b). The figure shows that the number of cases
is following the pattern of the population density. The eco-
nomic valuation of the air-pollution-associated health im-
pacts calculated by the different models in the US is shown in
Table 4. As seen in the table, a total cost of∼EUR 145 billion
is calculated. Results show that ∼ 22 % of the total costs are
due to exposure to O3 while ∼ 78 % are due to exposure to
PM2.5. The major health impacts in terms of their external
costs are slightly different in North America compared to Eu-
rope.
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Table 4. External costs (in million EUR) related to the health im-
pacts of air pollution as calculated by the individual models over
Europe and the United States.

Models CO SO2 O3 PM2.5 Total

Europe

DE1 70 19 000 22 000 155 000 196 000
DK1 80 13 000 24 000 237 000 274 000
ES1 70 8000 6000 339 000 353 000
FI1 90 18 000 5000 335 000 358 000
FRES1 90 15 000 13 000 305 000 333 000
IT1 80 17 000 21 000 413 000 451 000
IT2 70 11 000 6000 253 000 270 000
NL1 70 12 000 18 000 215 000 245 000
TR1 110 30 000 35 000 376 000 441 000
UK1 80 28 000 25 000 280 000 333 000
UK2 80 34 000 27 000 340 000 401 000
UK3 80 47 000 25 000 279 000 351 000

Mean 81 21 000 19 000 294 000 334 000
Median 80 17 500 21 500 292 500 342 000

United States

DE1 30 9000 21 000 46 000 76 000
DK1 55 11 000 39 000 123 000 172 000
US3 60 14 000 22 000 155 000 191 000

Mean 50 11 500 27 000 108 000 146 000
Median 55 11 000 22 000 123 000 172 000

3.4 Health impacts and their economic valuation
through optimal reduced ensemble subset

The effect of pollution concentrations (EVA input) on health
impacts (EVA output) is investigated in order to estimate the
contribution of each air pollutant in the EVA system to health
impacts over different concentration levels. The technical de-
tails are provided in the Supplement.

Results show that for the particular input (gridded air pol-
lutant concentrations from individual model) to output (each
health outcome) configuration, the PM2.5 drives the variabil-
ity of the different health impact and at least 81 % of the vari-
ation of the health impacts are explained by sole variations in
the pollutants (i.e., without interactions; Table S3). Table S1
also shows that the most important contribution to the health
impacts is from PM2.5, followed by CO and O3 (with much
smaller influence though). The impact of perturbing PM2.5
by a fixed fraction of its standard deviation on the health im-
pact is roughly double compared to CO and O3.

We have run the EVA system over an all-model mean
(MMm) dataset and an optimal reduced ensemble dataset
(MMopt) calculated for each of the pollutants in the two do-
mains in order to see how and whether an optimal reduced
ensemble changes the assessment of the health impacts com-
pared to an all-model ensemble mean. Table 5 shows some

sensible error reduction, although the temporal and spatial
averages mask the effective improvement in accuracy from
MMm to MMopt. In Europe, the optimal reduced ensemble
decreases the RMSE by up to 24 %, while in NA, the error
reduction is much larger (4 to 147 %). On a seasonal ba-
sis, MMopt reduces RMSE in PM2.5 over Europe by 23 %
in winter, while smaller decreases are achieved in other sea-
sons (∼ 10 %). Regarding O3, improvement is 16–22 %, with
the largest improvement in spring. In NA, the improvement
in winter RMSE in PM2.5 is smallest (∼ 2 %), while larger
improvements are achieved in other seasons (∼ 7 to ∼ 9 %).
For O3, the largest RMSE reduction in NA is achieved for
the summer period by 14 %.

The analysis of the aggregated health indices’ data for Eu-
rope (Table S1) shows that EVA indices rely principally on
the PM2.5 levels and then on the CO and O3 values. There-
fore, the relative improvement of the indices with the optimal
ensemble should be proportional to the relative improvement
in PM2.5, CO and O3. The proportionality rate for each pol-
lutant is given in Table S3, assuming all pollutants are varied
(from MMm to MMopt) away from their mean by the same
fraction of their variance. As seen in the Table 3, from MMm
to MMopt, the health indices increase by up to 30 % in Eu-
rope. This increase is due to a 27 % increase in the domain-
mean PM2.5 levels when the optimal reduced ensemble is
used, as well a slight increase in O3 by ∼ 1 %. The num-
ber of premature deaths in Europe increase from 410 000 to
524 000 (28 %), resulting in a much higher estimate com-
pared to previous mortality studies. On the contrary, in the
US, the mean PM2.5 and O3 levels decrease from 2.94 to
2.62 µg m−3 (∼ 11 %) and 18.7 to 18.4 ppb (∼ 2 %), respec-
tively. In response, the health indices decrease by ∼ 11 %
(Table 3). The number of premature death cases in NA de-
creases from 149 000 to 133 000.

3.5 Impact of anthropogenic emissions on the health
impacts and their economic valuation

The impacts of emission perturbations on the different health
outcomes over Europe and the US as calculated by the indi-
vidual models are presented in Tables S4–S6. Table 6 shows
the impacts of the different emission perturbations on the pre-
mature death cases in Europe and the US as calculated by a
subset of models that simulated the base case and all three
perturbation scenarios (MMc). Results show that, in Europe,
the 20 % reduction in the global anthropogenic emissions
leads to∼ 17 % domain-mean reduction in all the health out-
comes, with a geographical variability as seen in Fig. 6c. The
figure shows that the larger changes in mortality are calcu-
lated in the central and northern parts of Europe (15–20 %
decreases), while the changes are smaller in the Mediter-
ranean region (5–10 %), highlighting the non-linearity of the
response to emission reductions. However, it should be noted
that global models or coarse-resolution regional models (as
in this study) cannot capture the urban features and pollution

www.atmos-chem-phys.net/18/5967/2018/ Atmos. Chem. Phys., 18, 5967–5989, 2018



5982 U. Im et al.: Assessment and economic valuation of air pollution impacts on human health

Table 5. Annual average RMSEs of the multi-model ensemble mean (MMm) and of the optimal reduced ensemble mean (MMopt) for the
health-impact-related species. Units are in ppb for the gaseous species and µg m−3 for PM2.5.

O3 CO SO2 PM2.5

MMm MMopt MMm MMopt MMm MMopt MMm MMopt

Europe

Winter 10.3 8.6 502.4 490.3 6.3 5.6 22.5 20.7
Spring 12.4 9.6 247.1 239.5 4.6 3.1 9.9 7.8
Summer 13.4 10.7 197.4 188.0 3.9 2.3 8.2 5.7
Autumn 10.7 8.8 314.5 305.5 4.6 3.1 11.0 8.7

Annual 11.7 9.4 315.3 305.8 4.8 3.5 12.9 10.7

North America

Winter 10.9 10.4 356.7 328.1 5.7 5.5 8.3 8.1
Spring 12.0 11.4 288.7 270.2 5.4 5.1 7.2 6.6
Summer 15.1 13.0 258.3 238.7 5.4 5.0 9.7 8.8
Autumn 12.8 11.6 330.6 307.6 5.8 5.3 7.8 7.2

Annual 12.7 11.6 308.6 286.1 5.6 5.2 8.2 7.7

levels, and thus non-linearities should be addressed further
using fine spatial resolutions or urban models. The models
vary slightly, simulating the response to the 20 % reduction
in global emissions, estimating decreases of ∼ 11 to 20 %.
The number of premature deaths decreased on average by
∼ 50 000, ranging from −39 000 (DK1) to −103 000 (IT1).
This number is in good agreement with the ∼ 45 000 prema-
ture deaths calculated by the HTAP2 global models (Liang
et al., 2018). The MMc ensemble calculated 15 and 17 % de-
creases in the O3- and PM2.5-related premature death cases,
respectively, in response to the GLO scenario. This decrease
in the global anthropogenic emissions leads to an estimated
decrease of EUR 56± 18 billion in associated costs in Eu-
rope (Table 6).

As seen in Table 6, a 20 % reduction of anthropogenic
emissions in the EUR region, as defined in HTAP2, avoids
47 000 premature deaths, while a 20 % reduction of the an-
thropogenic emissions in the NAM region leads to a much
smaller decrease of premature deaths in Europe (∼ 1000).
These improvements in the number of premature deaths are
in agreement with a recent HTAP2 global study that calcu-
lated reductions of ∼ 34 000 and ∼ 1000 for the EUR and
NAM scenarios, respectively (Liang et al., 2018), and with
Anenberg et al. (2009, 2014), which amounts to a sum of
avoided premature deaths being ∼ 39 000 and 1800 as calcu-
lated by the MM mean. Both the global and regional models
agree that the largest impacts of reducing emissions with re-
spect to premature deaths come from emissions within the
source region, while foreign sources contribute much less
to improvements in avoiding adverse impacts of air pollu-
tion. The decreases in health impacts in the EUR and NAM
scenarios correspond to decreases in the associated costs by
EUR−47± 16 billion and EUR−1.4± 0.4 billion, respec-

tively. This is consistent with results in Brandt et al. (2012),
where a contribution of∼ 1 % to PM2.5 concentrations in Eu-
rope originates from the NAM region.

The 20 % reduction in global anthropogenic emissions
leads to 18 % reduction in the health outcomes (Table 6)
in the US, with a geographical variability in the response.
Figure 6d shows that the largest decreases in mortality are
calculated for the western coast of the US (∼ 20 %) and
there is a slightly lower response in the central and eastern
parts of the US (15–20 %). The number of premature death
cases, as calculated by the mean of all individual models,
decreases from ∼ 160 000± 70 000 to ∼ 130 000± 60 000,
avoiding EUR 24± 10 billion (Table 6) in external costs, also
in agreement with the ensemble of HTAP2 global models
(∼ 23 000) The O3-related premature death cases decreased
by 42 %, while the PM2.5-related cases decreased by 18 %.

A 20 % reduction of the North American emissions avoids
∼ 25 000± 12 000 premature deaths (−16 %), suggesting
that ∼ 80 % of avoided premature deaths are achieved by re-
ductions within the source region, while 20 % (∼ 5000 pre-
mature deaths) are from foreign sources. This number is also
in good agreement with Liang et al. (2018), who estimated
a reduction of premature deaths of ∼ 20 000 due to O3 and
PM2.5 in the United States due to an emission reduction of
20 % within the region itself, using the ensemble mean of the
HTAP2 global models. These results are much larger than
the number of avoided premature deaths of ∼ 11 000 as cal-
culated by the sum of Anenberg et al. (2009, 2104). The cor-
responding benefit is calculated to be EUR 21± 9 billion in
the NAM scenario. According to results from the EAS sce-
nario, among these 5000 avoided cases that are attributed to
the foreign emission sources, 1900± 2000 premature deaths
can be avoided by a 20 % reduction of the east Asian emis-
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Table 6. Impact of the emission reduction scenarios on avoided premature deaths (1PD) and corresponding change in external cost as
calculated by the multi-model mean over Europe and the United States.

Receptor

Europe United States

Source 1PD 1 Total cost 1PD 1 Total cost
(billion EUR) (billion EUR)

GLO −54 000± 18 000 −56± 18 −27 500± 14 000 −24± 10
NAM −940± 1100 −1.4± 0.4 −25 000± 12 000 −21± 9
EUR −47 000± 24 000 −7± 16 – –
EAS – – −1900± 2200 −2.5± 3

sions, avoiding EUR 2.5± 3 billion. Our number of avoided
premature deaths due to the EAS scenario is much higher
than 580 avoided premature deaths calculated by Liang et
al. (2018) and 380 avoided cases as calculated by Anenberg
et al. (2009 and 2014).

4 Conclusions

The impact of air pollution on human health and its economic
valuation for the society across Europe and the United States
are modeled by a multi-model ensemble of regional models
from the AQMEII3 project. All regional models used bound-
ary conditions from the C-IFS model and emissions from ei-
ther the MACC inventory in Europe or the EPA inventory
for the North America, or the global inventory from HTAP.
Sensitivity analysis on the dependence of models on differ-
ent sets of boundary conditions has not been conducted so
far but large deviations from the current results in terms of
health impacts are not expected. The modeled surface con-
centrations by each individual model are used as input to
the EVA system to calculate the resulting health impacts and
the associated external costs from O3, CO, SO2 and PM2.5.
Along with a base case simulation for the year 2010, some
groups performed additional simulations, introducing 20 %
emission reductions both globally and regionally in Europe,
North America and east Asia.

The base case simulation of each model is evaluated with
available surface observations in Europe and North America.
Results show large variability among models, especially for
PM2.5, where models underestimate by ∼ 20 to ∼ 60 %, in-
troducing a large uncertainty in the health impact estimates
as PM2.5 is the main driver for health impacts. The differ-
ences in the models are largely due to differences in the spa-
tial and vertical resolutions, meteorological inputs, inclusion
of natural emissions, dust (in particular), as well as miss-
ing or underestimated SOA mass, which is critical for the
PM2.5 mass. As shown in the Supplement, the CTMs diverge
a lot on the representation of particles and their size distri-
bution, SOA formation, as well as the inclusion of natural
sources. As the anthropogenic emissions are harmonized in

the models, they represent a minor uncertainty in terms of
model-to-model variation. However, differences in the treat-
ment of the temporal, vertical and chemical distributions of
the particulate and volatile organic species have an influence
in the model calculations and therefore lead to model-to-
model variations.

The variability of health impacts among the models can be
up to a factor of 3 in Europe (12 models) and the US (3 mod-
els) among the different health impacts. The multi-model
mean total number of premature deaths is calculated to be
414 000 in Europe and 160 000 in the US, where PM2.5 con-
tributes by more than 90 %. These numbers agree well with
previous global and regional studies for premature deaths due
to air pollution. In order to reduce the uncertainty coming
from each model, an optimal ensemble set is produced, that
is, the subset of models that produce the smallest error com-
pared to the surface observations at each time step. The op-
timum ensemble results in an increase of health impacts by
up to 30 % in Europe and a decrease by∼ 11 % in the United
States. These differences clearly demonstrate the importance
of the use of optimal reduced multi-model ensembles over
traditional all-model mean ensembles, both in terms of sci-
entific results but also in policy applications.

Finally, the role of domestic vs. foreign emission sources
on the related health impacts is investigated using the emis-
sion perturbation scenarios. A global reduction of anthro-
pogenic emissions by 20 % decreases the health impacts by
17 %, while the reduction of foreign emissions decreases the
health impacts by less than 1 %. The decrease of emissions
within the source region decreases the health impacts by
16 %. These results show that the largest impacts of reducing
emissions with respect to the premature deaths come from
emissions within the source region, while foreign sources
contribute to much less improvement in avoiding adverse im-
pacts of air pollution.
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5 Outlook

Currently, health assessments of airborne particles are car-
ried out under the assumption that all fine-fraction particles
affect health to a similar degree, independent of origin, age
and chemical composition of the particles. A 2013 report
from WHO concludes that the cardiovascular effects of am-
bient PM2.5 are greatly influenced, if not dominated, by their
transition metal contents (WHO, 2013b). It is known that
trace metals and traffic markers are highly associated with
daily mortality (Lippmann, 2014). Even low concentrations
of trace metals can be influential for health-related responses.

Regarding ambient concentrations of PM and the ERFs,
there is a rich set of studies providing information on total
PM mass. However, only few studies focus on individual par-
ticulate species, mainly black carbon and carbonaceous par-
ticles. In addition to PM, studies on human populations have
not been able to isolate potential effects of NO2, because of
its complex link to PM and O3. The WHO REVIHAAP re-
view from 2013 concludes that health assessments based on
PM2.5 ERFs will be most inclusive (WHO, 2013b). In ad-
dition, the ERFs are based on urban background measure-
ments, introducing uncertainties regarding non-urban areas
or high pollution areas, e.g., street canyons. Current state-
of-the-art health impact estimates, in particular on regional
to global scales, assume a correlation with exposure to out-
door air pollution, while in reality, exposure is dynamic and
depends on the behavior of the individual. In addition, differ-
ences in age groups, gender, ethnicity and behavior should
be considered in the future studies. There are also uncertain-
ties originating from the representations of the aerosols in the
atmospheric models used in the calculation of pollutant con-
centrations as well as the emissions. Further developments
in the aerosol modules, such as the representation of organic
aerosols and windblown and suspended dust, are need in or-
der to achieve mass closure of PM to get robust estimates of
health impacts. In addition, new findings show that O3 has
also chronic health impacts in addition to its acute impacts
(WHO, 2013a; Turner, 2016).

Due to above reasons, there is a large knowledge gap re-
garding the health impacts of particles. There are a num-
ber of ongoing projects trying to identify the health im-
pacts from individual particle components and produce in-
dividual ERFs for these components. NordicWelfAir project
(http://projects.au.dk/nordicwelfair/) aims to investigate the
potential causal impact of individual chemical air pollutants
as well as mixtures of air pollutants on health outcomes.
In pursuing this aim, the project uses the unique Nordic
population-based registers, allowing linkage between histor-
ical residential address, air pollutants over decades and later
health outcomes. By linking the exposure to health outcomes,
new exposure–response relationships can be determined on
health effects for different population groups (e.g., age, ed-
ucation, ethnicity, gender, lifestyle and working life vs. re-
tirement conditions) related to air pollution for the individual

chemical air pollutants. In addition, the high-resolution sim-
ulations conducted will enable us to have a better understand-
ing of non-linearities between the emissions, health impacts
and their economic valuation.

Data availability. The modeling and observational data generated
for the AQMEII exercise are accessible through the ENSEMBLE
data platform (http://ensemble3.jrc.it/) upon contact with the man-
aging organizations. References to the repositories of the observa-
tional data used have been also provided in Sect. 2.1.3.

The Supplement related to this article is available online
at https://doi.org/10.5194/acp-18-5967-2018-supplement.

Competing interests. The authors declare that they have no conflict
of interest.

Special issue statement. This article is part of the special issue
“Global and regional assessment of intercontinental transport of air
pollution: results from HTAP, AQMEII and MICS”. It is not associ-
ated with a conference.

Acknowledgements. We gratefully acknowledge the contribution of
various groups to the third phase of the Air Quality Modelling Eval-
uation International Initiative (AQMEII3) activity. The Joint Re-
search Centre – Institute for Environment and Sustainability pro-
vided its ENSEMBLE system for model output harmonization,
analyses and evaluation. Although this work has been reviewed
and approved for publication by the US Environmental Protection
Agency, it does not necessarily reflect the views and policies of the
agency.

Aarhus University gratefully acknowledges the NordicWelfAir
project funded by NordForsk’s Nordic Programme on Health
and Welfare (grant agreement no. 75007), the REEEM project
funded by the H2020-LCE Research and Innovation Action (grant
agreement no. 691739) and the Danish Centre for Environment
and Energy (AU-DCE). The University of L’Aquila thanks the
EuroMediterranean Center for Climate Research (CMCC) for
providing the computational resources. The contribution of Ricerca
sul Sistema Energetico (RSE) S.p.A to this work has been financed
by the research fund for the Italian Electrical System under the
contract agreement between RSE S.p.A. and the Ministry of
Economic Development – General Directorate for Nuclear Energy,
Renewable Energy and Energy Efficiency in compliance with the
decree of 8 March 2006.

Edited by: Tim Butler
Reviewed by: five anonymous referees

Atmos. Chem. Phys., 18, 5967–5989, 2018 www.atmos-chem-phys.net/18/5967/2018/

http://projects.au.dk/nordicwelfair/
http://ensemble3.jrc.it/
https://doi.org/10.5194/acp-18-5967-2018-supplement


U. Im et al.: Assessment and economic valuation of air pollution impacts on human health 5985

References

Abbey, D. E., Lebowitz, M. D., Mills, P. K., Petersen, F. F., Beeson,
W. L., and Burchette, R. J.: Long-term ambient concentrations of
particulates and oxidants and development of chronic disease in
a cohort of non-smoking California residents, Inhal. Toxicol., 7,
19–34, 1995.

Abbey, D. E., Nishino, N., Mcdonnell, W. F., Burchette, R. J., Knut-
sen, S. F., Lawrence Beeson, W., and Yang, J. X.: Long-term
inhalable particles and other air pollutants related to mortality
in nonsmokers, Am. J. Respir. Crit. Care Med., 159, 373–382,
1999.

Alberini, A., Hunt, A., and Markandya, A.: Willingness to pay to
reduce mortality risks: Evidence from a three-country contingent
valuation study, Environ. Resour. Econ., 33, 251–264, 2006.

Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes,
C., Höglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M.,
Rafaj, P., and Sandler, R.: Cost-effective control of air quality
and greenhouse gases in Europe: modeling and policy applica-
tions, Environ. Model. Softw., 26, 1489–1501, 2011.

Andersen, M. S.: Co-benefits of climate mitigation: Counting sta-
tistical lives or life-years?, Ecol. Indic., 79, 11-18, 2017.

Andersen, M. S., Frohn, L. M., Jensen, S. S., Nielsen, J.
S., Sørensen, P. B., Hertel, O., Brandt, J., and Chris-
tensen, J. H.: Sundhedseffekter af luftforurening – bereg-
ningspriser, Faglig rapport fra DMU, nr. 507, available
at: http://www.dmu.dk/1_viden/2_Publikationer/3_fagrapporter/
rapporter/FR507.PDF (last access: 25 April 2018), 2004.

Andersen, M. S., Frohn, L. M., Nielsen, J. S., Nielsen, M., Jensen, S.
S., Christensen, J. H., and Brandt, J.: A Non-linear Eulerian Ap-
proach for Assessment of Health-cost Externalities of Air Pollu-
tion, Proceedings of the European Association of Environmental
and Resource Economists 16th Annual Conference, Gothenburg,
Sweden, 25–28 June 2008, 23 pp., 2008.

Anderson, H. R., Ponce de Leon, A., Bland, J. M., Bower, J. S.,
and Strachan, D. P.: Air Pollution and daily mortality in London:
1987–92, BMJ Brit. Med. J., 312, 665–669, 1996.

Anenberg, S. C., West, J. J., Fiore, A. M., Jaffe, D. A., Prather, M.
J., Bregmann, D., Cuvelier, K., Dentener, F. J., Duncan, B. N.,
Gauss, M., Hess, P., Jonson, J. E., Lupu, A., MacKenzie, I. A.,
Marmer, E., Park, R. J., Sanderson, M. G., Schultz, M., Shindell,
D. T., Szopa, S., Vivanco, M. G., Wild, O., and Zeng, G.: Inter-
continental impacts of ozone air pollution on human mortality,
Environ. Sci. Technol., 43, 6482–6487, 2009.

Anenberg, S. C., West, J. J., Yu, H., Chin, M., Schulz, M.,
Bergmann, D., Bey, I., Bian, H., Diehl, T., Fiore, A., Hess, P.,
Marmer, E., Montanaro, V., Park, R., Shindell, D., Takemura, T.,
and Dentener, F.: Impacts of intercontinental transport of anthro-
pogenic fine particulate matter on human mortality, Air Qual.
Atmos. Hlth., 7, 369–379, https://doi.org/10.1007/s11869-014-
0248-9, 2014.

Anenberg, S. C., Belova, A., Brandt, J., Fann, N., Greco, S., Gut-
tikunda, S., Heroux, M.-E., Hurley, F., Krzyzanowski, M., Med-
ina, S., Miller, B., Pandey, K., Roos, J., Van Dingenen, R.: Survey
of ambient air pollution health risk assessment tools, Risk Anal.,
36, 1718–1736, https://doi.org/10.1111/risa.12540, 2015.

Appel, K. W., Pouliot, G. A., Simon, H., Sarwar, G., Pye, H. O.
T., Napelenok, S. L., Akhtar, F., and Roselle, S. J.: Evaluation of
dust and trace metal estimates from the Community Multiscale

Air Quality (CMAQ) model version 5.0, Geosci. Model Dev., 6,
883–899, https://doi.org/10.5194/gmd-6-883-2013, 2013.

Bell, M. L., McDermott, A., Zeger, S. L., Samet, J. M., and Do-
minici, F.: Ozone and short-term mortality in 95 US urban com-
munities, 1987–2000, JAMA-J. Am. Med. Assoc., 292, 2372–
2378, 2004.

Brandt, J., Silver, J. D., Frohn, L. M., Christensen, J. H., Ander-
sen, M. S., Bønløkke, J. H., Sigsgaard, T., Geels, C., Gross, A.,
Hansen, A. B., Hansen, K. M., Hedegaard, G. B., and Kaas,
E.: Assessment of Health-Cost Externalities of Air Pollution at
the National Level using the EVA Model System, CEEH Sci-
entific Report No. 3, available at: www.ceeh.dk/CEEH_Reports/
Report_3 (last access: 25 April 2018)„ 2011.

Brandt, J., Silver, J. D., Frohn, L. M., Geels, C., Gross, A.,
Hansen, A. B., Hansen, K. M., Hedegaard, G. B., Skjøth,
C. A., Villadsen, H., Zare, A., and Christensen, J. H.:
An integrated model study for Europe and North America
using the Danish Eulerian Hemispheric Model with focus
on intercontinental transport, Atmos. Environ., 53, 156–176,
https://doi.org/10.1016/j.atmosenv.2012.01.011, 2012.

Brandt, J., Silver, J. D., Christensen, J. H., Andersen, M. S., Bøn-
løkke, J. H., Sigsgaard, T., Geels, C., Gross, A., Hansen, A. B.,
Hansen, K. M., Hedegaard, G. B., Kaas, E., and Frohn, L. M.:
Contribution from the ten major emission sectors in Europe and
Denmark to the health-cost externalities of air pollution using
the EVA model system – an integrated modelling approach, At-
mos. Chem. Phys., 13, 7725–7746, https://doi.org/10.5194/acp-
13-7725-2013, 2013a.

Brandt, J., Silver, J. D., Christensen, J. H., Andersen, M. S., Bøn-
løkke, J. H., Sigsgaard, T., Geels, C., Gross, A., Hansen, A.
B., Hansen, K. M., Hedegaard, G. B., Kaas, E., and Frohn, L.
M.: Assessment of past, present and future health-cost external-
ities of air pollution in Europe and the contribution from in-
ternational ship traffic using the EVA model system, Atmos.
Chem. Phys., 13, 7747–7764, https://doi.org/10.5194/acp-13-
7747-2013, 2013b.

Burnett, R. T., Arden Pope, C., Ezzati, M., Olives, C., Lim, S. S.,
Mehta, S., Shin, H. H., Singh, G., Hubbell, B., Brauer, M., Ross
Anderson, H., Smith, K. R., Balmes, J. R., Bruce, N. G., Kan, H.,
Laden, F., Prüss-Ustün, A., Turner, M. C., Gapstur, S. M., Diver,
W. R., and Cohen, A.: An integrated risk function for estimat-
ing the global burden of disease attributable to ambient fine par-
ticulate matter exposure, Environ. Health Persp., 122, 397–403,
https://doi.org/10.1289/ehp.1307049, 2014.

Caiazzo, F., Ashok, A., Waitz, I., Yim, S. H. L., and Bar-
rett, S. R. H.: Air pollution and early deaths in the
United States, Part I: Quantifying the impact of ma-
jor sectors in 2005, Atmos. Environ., 79, 198–208,
https://doi.org/10.1016/j.atmosenv.2013.05.081, 2013.

Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J.,
Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dan-
dona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan,
H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., Pope III, C. A.,
Shin, H., Straif, K., Shaddick, G., Thomas, M., van Dingenen, R.,
van Donkelaar, A., Vos, T., Murray, C. J. L., and Forouzanfar, M.
H.: Estimates and 25-year trends of the global burden of disease
attributable to ambient air pollution: an analysis of data from the
Global Burden of Diseases Study 2015, The Lancet, 389, 1907–
1918, https://doi.org/10.1016/S0140-6736(17)30505-6, 2017.

www.atmos-chem-phys.net/18/5967/2018/ Atmos. Chem. Phys., 18, 5967–5989, 2018

http://www.dmu.dk/1_viden/2_Publikationer/3_fagrapporter/rapporter/FR507.PDF
http://www.dmu.dk/1_viden/2_Publikationer/3_fagrapporter/rapporter/FR507.PDF
https://doi.org/10.1007/s11869-014-0248-9
https://doi.org/10.1007/s11869-014-0248-9
https://doi.org/10.1111/risa.12540
https://doi.org/10.5194/gmd-6-883-2013
www.ceeh.dk/CEEH_Reports/Report_3
www.ceeh.dk/CEEH_Reports/Report_3
https://doi.org/10.1016/j.atmosenv.2012.01.011
https://doi.org/10.5194/acp-13-7725-2013
https://doi.org/10.5194/acp-13-7725-2013
https://doi.org/10.5194/acp-13-7747-2013
https://doi.org/10.5194/acp-13-7747-2013
https://doi.org/10.1289/ehp.1307049
https://doi.org/10.1016/j.atmosenv.2013.05.081
https://doi.org/10.1016/S0140-6736(17)30505-6


5986 U. Im et al.: Assessment and economic valuation of air pollution impacts on human health

Dab, W., Medina, S., Quénel, P., le Moullec, Y., le Tertre, A., Th-
elot, B., Monteil, C., Lameloise, P., Pirard, P., Momas, I., Ferry,
R., and Festy, B.: Short Term Respiratory Health Effects of Am-
bient Air Pollution: Results of the APHEA Project in Paris, J.
Epidemiol. Commun. H., 50, S42–S46, 1996.

Duncan, B. N., West, J. J., Yoshida, Y., Fiore, A. M., and Ziemke,
J. R.: The influence of European pollution on ozone in the Near
East and northern Africa, Atmos. Chem. Phys., 8, 2267–2283,
https://doi.org/10.5194/acp-8-2267-2008, 2008.

Dusseldorp, A., Kruize, H., Brunekreef, B., Hofschreuder, P., de
Meer, G., and van Oudvorst, A. B.: Associations of PM10 and
Airborne Iron with Respiratory Health of Adults Living Near a
Steel Factory, Am. J. Respir. Crit. Care Med., 152, 1932–1939,
1995.

Eagan, T. M. L., Bakke, P. S., Eide, G. E., and Gulsvik, A.: Inci-
dence of asthma and respiratory symptoms by sex, age and smok-
ing in a community study. Eur. Respir. J., 19, 599–605, 2002.

EAHEAP: Economic Appraisal of the Health Effects of Air Pol-
lution, Department of Health Ad-Hoc Group on the Economic
Appraisal of the Health Effects of Air Pollution, The Stationery
Office, London, 1999.

EEA: Road user charges for heavy goods vehicles: Tables with
external costs of air pollution, Technical report 1/2013, Copen-
hagen, European Environment Agency, 2013.

EEA: Air quality in Europe, Technical report 5/2015, Copenhagen,
European Environment Agency, 2015.

EU: Modelling and assessment of the health impact of particulate
matter and ozone, Economic commission for Europe, Executive
body for the convention on long-range transboundary air pollu-
tion, Working group on effects, twenty-third session, Geneva, 1–
3 September 2004.

European Commission (EC): Recommended interim val-
ues for the value of preventing a fatality in DGEn-
vironment Cost Benefit analysis, Bruxelles, available
at: http://ec.europa.eu/environment/enveco/others/pdf/
recommended_interim_values.pdf (last access: 28 Septem-
ber 2016), 2001.

ExternE: Externalities of Energy, Methodology 1998 update, Euro-
pean Commission, Brussels, 1999.

ExternE: Externalities of Energy, Methodology 2005 update, Euro-
pean Commission, Directorate-General for Research Sustainable
Energy Systems, Brussels, 2005.

Fann, N., Lamson, A. D., Anenberg, S. C., Wesson, K., Risley, D.,
and Hubbell, B.: Estimating the national public health Burden as-
sociated with exposure to ambient PM2.5 and ozone, Risk Anal.,
32, 81–95, 2012.

Fenech, S., Doherty, R. M., Heaviside, C., Vardoulakis, S., Macin-
tyre, H. L., and O’Connor, F. M.: The influence of model spatial
resolution on simulated ozone and fine particulate matter: impli-
cations for health impact assessments, Atmos. Chem. Phys. Dis-
cuss., https://doi.org/10.5194/acp-2017-1074, in review, 2017.

Flemming, J., Huijnen, V., Arteta, J., Bechtold, P., Beljaars, A.,
Blechschmidt, A.-M., Diamantakis, M., Engelen, R. J., Gaudel,
A., Inness, A., Jones, L., Josse, B., Katragkou, E., Marecal,
V., Peuch, V.-H., Richter, A., Schultz, M. G., Stein, O., and
Tsikerdekis, A.: Tropospheric chemistry in the Integrated Fore-
casting System of ECMWF, Geosci. Model Dev., 8, 975–1003,
https://doi.org/10.5194/gmd-8-975-2015, 2015.

Flemming, J., Benedetti, A., Inness, A., Engelen, R. J., Jones,
L., Huijnen, V., Remy, S., Parrington, M., Suttie, M., Bozzo,
A., Peuch, V.-H., Akritidis, D., and Katragkou, E.: The
CAMS interim Reanalysis of Carbon Monoxide, Ozone and
Aerosol for 2003–2015, Atmos. Chem. Phys., 17, 1945–1983,
https://doi.org/10.5194/acp-17-1945-2017, 2017.

Friedrich, R. and Bickel, P.: Environmental External Costs of Trans-
port, Springer, München, 2001.

Galmarini, S., Koffi, B., Solazzo, E., Keating, T., Hogrefe,
C., Schulz, M., Benedictow, A., Griesfeller, J. J., Janssens-
Maenhout, G., Carmichael, G., Fu, J., and Dentener, F.: Tech-
nical note: Coordination and harmonization of the multi-scale,
multi-model activities HTAP2, AQMEII3, and MICS-Asia3:
simulations, emission inventories, boundary conditions, and
model output formats, Atmos. Chem. Phys., 17, 1543–1555,
https://doi.org/10.5194/acp-17-1543-2017, 2017.

Geels, C., Andersson, C., Hänninen, O., Lansø, A. S., Schwarze, P.,
and Brandt, J.: Future Premature Mortality due to Air Pollution
in Europe – Sensitivity to Changes in Climate, Anthropogenic
Emissions, Population and Building stock, Int. J. Env. Res. Pub.
He., 12, 2837–2869, 2015.

Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya,
T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of
Emissions of Gases and Aerosols from Nature version 2.1
(MEGAN2.1): an extended and updated framework for mod-
eling biogenic emissions, Geosci. Model Dev., 5, 1471–1492,
https://doi.org/10.5194/gmd-5-1471-2012, 2012.

Hammitt, J. K.: Valuing changes in mortality risk: Lives saved ver-
sus life years saved, Rev. Env. Econ. Policy, 1, 228–240, 2007.

Hoek, G., Krishnan, R. M., Beelen, R., Peters, A., Ostro, B.,
Brunekreef, B., and Kaufman, J. D.: Long-term air pollution
exposure and cardio-respiratory mortality: a review, Environ.
Health, 12, 43, https://doi.org/10.1186/1476-069X-12-43, 2013.

Hogrefe, C., Liu, P., Pouliot, G., Mathur, R., Roselle, S., Flemming,
J., Lin, M., and Park, R. J.: Impacts of different characterizations
of large-scale background on simulated regional-scale ozone
over the continental United States, Atmos. Chem. Phys., 18,
3839–3864, https://doi.org/10.5194/acp-18-3839-2018, 2018.

Holland, M., Berry J., and Forster, D. (Eds.): ExternE External-
ities of Energy, vol. 7, Methodology, European Commission,
Directorate-General XII, Science, Research and Development,
Brussels, 1999.

Huang, M., Carmichael, G. R., Pierce, R. B., Jo, D. S., Park, R.
J., Flemming, J., Emmons, L. K., Bowman, K. W., Henze, D.
K., Davila, Y., Sudo, K., Jonson, J. E., Tronstad Lund, M.,
Janssens-Maenhout, G., Dentener, F. J., Keating, T. J., Oet-
jen, H., and Payne, V. H.: Impact of intercontinental pollu-
tion transport on North American ozone air pollution: an HTAP
phase 2 multi-model study, Atmos. Chem. Phys., 17, 5721–5750,
https://doi.org/10.5194/acp-17-5721-2017, 2017.

Hurley, F., Hunt, A., Cowie, H., Holland, Miller, B., Pye, S., and
Watkiss, P.: Development of Methodology for the CBA of the
Clean Air For Europe (CAFE) Programme, Volume 2: Health
Impact Assessment, Report for European Commission DG Envi-
ronment, 2005.

Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia,
A.,Balzarini, A., Baro, R., Bellasio, R., Brunner, D., Chemel,
C.,Curci, G., Denier van der Gon, H., Flemming, J., Forkel,
R.,Giordano, L., Jimenez-Guerrero, P., Hirtl, M., Hodzic, A.,

Atmos. Chem. Phys., 18, 5967–5989, 2018 www.atmos-chem-phys.net/18/5967/2018/

https://doi.org/10.5194/acp-8-2267-2008
http://ec.europa.eu/environment/enveco/others/pdf/recommended_interim_values.pdf
http://ec.europa.eu/environment/enveco/others/pdf/recommended_interim_values.pdf
https://doi.org/10.5194/acp-2017-1074
https://doi.org/10.5194/gmd-8-975-2015
https://doi.org/10.5194/acp-17-1945-2017
https://doi.org/10.5194/acp-17-1543-2017
https://doi.org/10.5194/gmd-5-1471-2012
https://doi.org/10.1186/1476-069X-12-43
https://doi.org/10.5194/acp-18-3839-2018
https://doi.org/10.5194/acp-17-5721-2017


U. Im et al.: Assessment and economic valuation of air pollution impacts on human health 5987

Honzak,L., Jorba, O., Knote, C., Makar, P. A., Manders-Groot,
A.,Neal, L., Pérez, J. L., Pirovano, G., Pouliot, G., San Jose,
R., Savage,N., Schroder,W., Sokhi, R. S., Syrakov, D., Torian,
A., Tuccella,P., Wang, K., Werhahn, J., Wolke, R., Zabkar, R.,
Zhang,Y., Zhang, J., Hogrefe, C., and Galmarini, S.: Evaluation
of operational online coupled regional air quality models over
Europe and North America in the context of AQMEII phase
2, Part II: particulate matter, Atmos. Environ., 115, 421–441,
2015a.

Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia,
A.,Balzarini, A., Baro, R., Bellasio, R., Brunner, D., Chemel,
C., Curci, G., Flemming, J., Forkel, R., Giordano, L., Jimenez-
Guerrero, P., Hirtl, M., Hodzic, A., Honzak, L., Jorba, O.,
Knote,C., Kuenen, J. J. P., Makar, P. A., Manders-Groot, A.,
Neal, L., Pérez, J. L., Pirovano, G., Pouliot, G., San Jose, R., Sav-
age, N.,Schroder, W., Sokhi, R. S., Syrakov, D., Torian, A., Tuc-
cella, P.,Werhahn, J.,Wolke, R., Yahya, K., Zabkar, R., Zhang,
Y., Zhang,J., Hogrefe, C., and Galmarini, S.: Evaluation of op-
erational online-coupled regional air quality models over Europe
and NorthAmerica in the context of AQMEII phase 2, Part I:
ozone, Atmos. Environ., 115, 404–420, 2015b.

Im, U., Christensen, J. H., Geels, C., Hansen, K. M., Brandt, J., So-
lazzo, E., Alyuz, U., Balzarini, A., Baro, R., Bellasio, R., Bian-
coni, R., Bieser, J., Colette, A., Curci, G., Farrow, A., Flemming,
J., Fraser, A., Jimenez-Guerrero, P., Kitwiroon, N., Liu, P., Nop-
mongcol, U., Palacios-Peña, L., Pirovano, G., Pozzoli, L., Prank,
M., Rose, R., Sokhi, R., Tuccella, P., Unal, A., Vivanco, M. G.,
Yarwood, G., Hogrefe, C., and Galmarini, S.: Influence of an-
thropogenic emissions and boundary conditions on multi-model
simulations of major air pollutants over Europe and North Amer-
ica in the framework of AQMEII3, Atmos. Chem. Phys. Discuss.,
https://doi.org/10.5194/acp-2017-1231, in review, 2018.

Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F.,
Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa,
J., Wankmüller, R., Denier van der Gon, H., Kuenen, J. J.
P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li,
M.: HTAP_v2.2: a mosaic of regional and global emission
grid maps for 2008 and 2010 to study hemispheric trans-
port of air pollution, Atmos. Chem. Phys., 15, 11411–11432,
https://doi.org/10.5194/acp-15-11411-2015, 2015.

Jerrett, M., Burnett, R. T., Pope, C. A., Ito, K., Thurston, G.,
Krewski, D., Shi, Y. L., Calle, E., and Thun, M.: Long-term
ozone exposure and mortality, New Engl. J. Med., 360, 1085–
1095, 2009.

Katsouyanni, K., Touloumi, G., Spix, C., Schwartz, J., Balducci,
F., Medina, S., Rossi, G., Wojtyniak, B., Sunyer, J., Bacharova,
L., Schouten, J. P., Ponka, A., and Anderson, H. R.: Short-term
effects of ambient sulphur dioxide and particulate matter on mor-
tality in 12 European cities: results from time series data from the
APHEA project, Air Pollution and Health: a European Approach,
British Med. J., 314, 1658–1663, 1997.

Kioutsioukis, I., Im, U., Solazzo, E., Bianconi, R., Badia, A.,
Balzarini, A., Baró, R., Bellasio, R., Brunner, D., Chemel, C.,
Curci, G., van der Gon, H. D., Flemming, J., Forkel, R., Gior-
dano, L., Jiménez-Guerrero, P., Hirtl, M., Jorba, O., Manders-
Groot, A., Neal, L., Pérez, J. L., Pirovano, G., San Jose, R., Sav-
age, N., Schroder, W., Sokhi, R. S., Syrakov, D., Tuccella, P.,
Werhahn, J., Wolke, R., Hogrefe, C., and Galmarini, S.: Insights
into the deterministic skill of air quality ensembles from the anal-

ysis of AQMEII data, Atmos. Chem. Phys., 16, 15629–15652,
https://doi.org/10.5194/acp-16-15629-2016, 2016.

Krewski, D., Jerrett, M., Burnett, R. T., Ma, R., Hughes, E., Shi,
Y., Turner, M. C., Arden Pope III, C., Thurston, G., Calle, E.
E., and Thun, M. J.: Extended Follow-Up and Spatial Analysis
of the American Cancer Society Study Linking Particulate Air
Pollution and Mortality, Health Effects Insitute Research Report,
140, 1–154, 2009.

Krupnick, A., Ostro, B., and Bull, K.: Peer review of the method-
ology of cost-benefit analysis of the clean air for Europe pro-
gramme, available at: http://ec.europa.eu/environment/archives/
cafe/activities/pdf/krupnick.pdf (last access: 25 April 2018),
2005.

Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.:
The contribution of outdoor air pollution sources to premature
mortality on a global scale, Nature, 25, 367–371, 2015.

Leksell, I. and Rabl, A.: Pollution and mortality: Quantification and
valuation of years of life lost, Risk Anal., 21, 843–857, 2001.

Liang, C.-K., West, J. J., Silva, R. A., Bian, H., Chin, M., Den-
tener, F. J., Davila, Y., Emmons, L., Folberth, G., Flemming,
J., Henze, D., Im, U., Jonson, J. E., Kucsera, T., Keating, T.
J., Lund, M. T., Lenzen, A., Lin, M., Pierce, R. B., Park, R. J.,
Pan, X., Sekiya, T., Sudo, K., and Takemura, T.: HTAP2 multi-
model estimates of premature human mortality due to intercon-
tinental transport of air pollution, Atmos. Chem. Phys. Discuss.,
https://doi.org/10.5194/acp-2017-1221, in review, 2018.

Lippmann, P.: Toxicological and epidemiological studies of cardio-
vascular effects of ambient air fine particulate matter (PM2.5)
and its chemical components: Coherence and public health im-
plications, CRC Cr. Rev. Toxicol., 44, 299–347, 2014.

Mason, R., Zubrow, A., and Eyth, A.: Technical Support
Document (TSD) Preparation of Emissions Inventories
for the Version 5.0, 2007 Emissions Modeling Platform,
available at: https://www.epa.gov/air-emissions-modeling/
2007-version-50-technical-support-document (last access: 24
May 2017), 2007.

OECD: Cost-benefit analysis and the environment: recent develop-
ments, Organisation for Economic Co-operation and Develop-
ment, OECD Publishing, Paris, 2006.

OECD: The Cost of Air Pollution: Health Im-
pacts of Road Transport, OECD Publishing, Paris,
https://doi.org/10.1787/9789264210448-en, 2014.

Ostro, B. D.: Air Pollution and Morbidity Revisited: A Specification
Test, J. Environ. Econ. Manag., 14, 87–98, 1987.

Pope, C. A.: Particulate matter-mortality exposure-response rela-
tions and threshold, Am. J. Epidemiol., 152, 407–412, 2000.

Pope, C. A. and Dockery, D. W.: Acute Health Effects of PM10 Pol-
lution on Symptomatic and Asymptomatic Children, Am. Rev.
Respir. Dis., 145, 1123–1126, 1992.

Pope, C. A. and Dockery, D. W.: Health effects of fine particulate air
pollution: lines that connect, J. Air Waste Manage., 56, 709–742,
2006.

Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski,
D., Ito, K., and Thurston, G. D.: Lung cancer, cardiopulmonary
mortality and long-term exposure to fine particulate air pollution,
JAMA-J. Am. Med. Assoc., 287, 1132–1141, 2002.

Pope, C. A. Thun, M. J., Namboodiri, M. M., Dockery, D. W.,
Evans, J. S., Speizer, F. E., and Heath Jr., C. W.: Particulate air

www.atmos-chem-phys.net/18/5967/2018/ Atmos. Chem. Phys., 18, 5967–5989, 2018

https://doi.org/10.5194/acp-2017-1231
https://doi.org/10.5194/acp-15-11411-2015
https://doi.org/10.5194/acp-16-15629-2016
http://ec.europa.eu/environment/archives/cafe/activities/pdf/krupnick.pdf
http://ec.europa.eu/environment/archives/cafe/activities/pdf/krupnick.pdf
https://www.epa.gov/air-emissions-modeling/2007-version-50-technical-support-document
https://www.epa.gov/air-emissions-modeling/2007-version-50-technical-support-document
https://doi.org/10.1787/9789264210448-en


5988 U. Im et al.: Assessment and economic valuation of air pollution impacts on human health

pollution as a predictor of mortality in a prospective study of US
adults, Am. J. Resp. Crit. Care, 151, 669–674, 1995.

Potempski, S. and Galmarini, S.: Est modus in rebus: analytical
properties of multi-model ensembles, Atmos. Chem. Phys., 9,
9471–9489, https://doi.org/10.5194/acp-9-9471-2009, 2009.

Pouliot, G., Denier van der Gon, H. A. C., Kuenen, J., Zhang, J.,
Moran, M. D., and Makar, P. A.: Analysis of the emission inven-
tories and model-ready emission datasets of Europe and North
America for phase 2 of the AQMEII project, Atmos. Environ.,
115, 345–360, 2015.

Rabl, A., Spadaro, J. V., and Holland, M.: How Much Is Clean Air
Worth? Calculating the Benefits of Pollution Control, Cambridge
University Press, ISBN: 9781107337831, 2014.

Riccio, A., Ciaramella, A., Giunta, G., Galmarini, S., So-
lazzo, E., and Potempski, S.: On the systematic reduc-
tion of data complexity in multimodel atmospheric disper-
sion ensemble modeling, J. Geophys. Res., 117, D05314,
https://doi.org/10.1029/2011JD016503, 2012.

Roemer, W., Hoek, G., and Brunekreef, B.: Effect of Ambient Win-
ter Air Pollution on Respiratory Health of Children with Chronic
Respiratory Symptoms, Am. Rev. Respir. Dis., 147, 118–124,
1993.

Samoli, E., Analitis, A., Touloumi, G., Schwartz, J., Anderson, H.
R., Sunyer, J., Bisanti, L., Zmirou, D., Vonk, J. M., Pekkanen, J.,
Goodman, P., Paldy, A., Schindler, C., and Kaysouyanni, K.: Es-
timating the Exposure–Response Relationships between Particu-
late Matter and Mortality within the APHEA Multicity Project,
Environ. Health Persp., 113, 88–95, 2005.

Schucht, S., Colette, A., Rao, S., Holland, M., Schopp, W., Kolp,
P., Klimont, Z., Bessagnet, B., Szopa, S., Vautard, P., Brignon,
J.-M., and Rouil, L.: Moving towards ambitious climate policies:
Monetised health benefits from improved air quality could offset
mitigation costs in Europe, Environ. Sci. Policy, 50, 252–269,
2015.

Schwartz, J. and Morris, R.: Air Pollution and Hospital Admis-
sions for Cardiovascular Disease in Detroit, Michigan, Am. J.
Epidemiol., 142, 23–35, 1995.

Silva, R. A., West, J. J., Zhang, Y., Anenberg, S. C., Lamarque, J.-
F., Shindell, D. T., Collins, W. J., Dalsoren, S., Faluvegi, G., Fol-
berth, G., Horowitz, L. W., Nagashima, T., Naik, V., Rumbold,
S., Skeie, R., Sudo, K., Takemura, T., Bergmann, D., Cameron-
Smith, P., Cionni, I., Doherty, R. M., Eyring, V., Josse, B.,
MacKenzie, I. A., Plummer, D., Righi, M., Stevenson, D. S.,
Strode, S., Szopa, S., and Zeng, G.: Global premature mortal-
ity due to anthropogenic outdoor air pollution and the contri-
bution of past climate change, Environ. Res. Lett., 8, 034005,
https://doi.org/10.1088/1748-9326/8/3/034005, 2013.

Silva, R. A., West, J. J., Lamarque, J.-F., Shindell, D. T., Collins, W.
J., Dalsoren, S., Faluvegi, G., Folberth, G., Horowitz, L. W., Na-
gashima, T., Naik, V., Rumbold, S. T., Sudo, K., Takemura, T.,
Bergmann, D., Cameron-Smith, P., Cionni, I., Doherty, R. M.,
Eyring, V., Josse, B., MacKenzie, I. A., Plummer, D., Righi, M.,
Stevenson, D. S., Strode, S., Szopa, S., and Zengast, G.: The ef-
fect of future ambient air pollution on human premature mortal-
ity to 2100 using output from the ACCMIP model ensemble, At-
mos. Chem. Phys., 16, 9847–9862, https://doi.org/10.5194/acp-
16-9847-2016, 2016.

Solazzo, E. and Galmarini, S.: A science-based use of ensem-
bles of opportunities for assessment and scenario studies, At-

mos. Chem. Phys., 15, 2535–2544, https://doi.org/10.5194/acp-
15-2535-2015, 2015.

Solazzo, E. and Galmarini, S.: Error apportionment for at-
mospheric chemistry-transport models – a new approach
to model evaluation, Atmos. Chem. Phys., 16, 6263–6283,
https://doi.org/10.5194/acp-16-6263-2016, 2016.

Solazzo, E., Riccio, A., Kioutsioukis, I., and Galmarini, S.: Pauci ex
tanto numero: reduce redundancy in multi-model ensembles, At-
mos. Chem. Phys., 13, 8315–8333, https://doi.org/10.5194/acp-
13-8315-2013, 2013.

Solazzo, E., Bianconi, R., Hogrefe, C., Curci, G., Tuccella, P.,
Alyuz, U., Balzarini, A., Baró, R., Bellasio, R., Bieser, J., Brandt,
J., Christensen, J. H., Colette, A., Francis, X., Fraser, A., Vi-
vanco, M. G., Jiménez-Guerrero, P., Im, U., Manders, A., Nop-
mongcol, U., Kitwiroon, N., Pirovano, G., Pozzoli, L., Prank, M.,
Sokhi, R. S., Unal, A., Yarwood, G., and Galmarini, S.: Eval-
uation and error apportionment of an ensemble of atmospheric
chemistry transport modeling systems: multivariable temporal
and spatial breakdown, Atmos. Chem. Phys., 17, 3001–3054,
https://doi.org/10.5194/acp-17-3001-2017, 2017.

Solazzo, E., Riccio, A., Van Dingenen, R., and Galmarini, S.: Evalu-
ation and uncertainty estimation of the impact of air quality mod-
elling on crop yields and premature deaths using a multi-model
ensemble, Sci. Total Environ., 663, 1437–1452, 2018.

Touloumi, G., Samoli, E., and Katsuyanni, K.: Daily mortality and
“winter type” air pollution in Athens, Greece – a time series anal-
ysis within the APHEA project, J. Epidemiol. Commun. H., 50,
S47–S51, 1996.

Turner, M.: Long-Term Ozone Exposure and Mortality in a Large
Prospective Study, Am. J. Respir. Crit. Care Med., 193, 1134–
1142, https://doi.org/10.1164/rccm.201508-1633OC, 2016.

US EPA: The Benefits and Costs of the Clean Air Act: 1990 to 2020,
Final Report of US Environmental Protection Agency Office of
Air and Radiation, 5–10, 2011.

Van Dingenen, R., Leitao, J., and Dentener, F.: A multi-metric
global source-receptor model for integrated impact assessment
of climate and air quality policy scenarios, European Geophysi-
cal Union General Assembly, 2014.

Watkiss, P., Pye, S., and Holland, M.: Cafe CBA: Baseline Anal-
ysis 2000 to 2020. Service Contract for Carrying out Cost-
Benefit Analysis of Air Quality Related Issues, in Particu-
lar in the Clean Air for Europe (Cafe) Programme, avail-
able at: http://ec.europa.eu/environment/archives/cafe/activities/
pdf/cba_baseline_results2000_2020.pdf (last access: 24 May
2017), 2005.

WHO: Health risks of air pollution in Europe – HRAPIE:
Recommendations of concentration-response functions for
cost-benefit analysis of particulate matter, ozone and ni-
trogen dioxide, World Health Organization, available at:
http://www.euro.who.int/__data/assets/pdf_file/0006/238956/
Health_risks_air_pollution_HRAPIE_project.pdf?ua=1 (last
access: 25 April 2018), 2013a.

WHO: Review of evidence on health aspects of air pollution (RE-
VIHAAP), World Health Organization, WHO Technical Report,
available at: http://www.euro.who.int/__data/assets/pdf_file/
0004/193108/REVIHAAP-Final-technical-report-final-version.
pdf?ua=1 (last access: 25 April 2018), 2013b.

WHO: 7 million premature deaths annually linked to air pollution,
News release, World Health Organization, available at: http://

Atmos. Chem. Phys., 18, 5967–5989, 2018 www.atmos-chem-phys.net/18/5967/2018/

https://doi.org/10.5194/acp-9-9471-2009
https://doi.org/10.1029/2011JD016503
https://doi.org/10.1088/1748-9326/8/3/034005
https://doi.org/10.5194/acp-16-9847-2016
https://doi.org/10.5194/acp-16-9847-2016
https://doi.org/10.5194/acp-15-2535-2015
https://doi.org/10.5194/acp-15-2535-2015
https://doi.org/10.5194/acp-16-6263-2016
https://doi.org/10.5194/acp-13-8315-2013
https://doi.org/10.5194/acp-13-8315-2013
https://doi.org/10.5194/acp-17-3001-2017
https://doi.org/10.1164/rccm.201508-1633OC
http://ec.europa.eu/environment/archives/cafe/activities/pdf/cba_baseline_results2000_2020.pdf
http://ec.europa.eu/environment/archives/cafe/activities/pdf/cba_baseline_results2000_2020.pdf
http://www.euro.who.int/__data/assets/pdf_file/0006/238956/Health_risks_air_pollution_HRAPIE_project.pdf?ua=1
http://www.euro.who.int/__data/assets/pdf_file/0006/238956/Health_risks_air_pollution_HRAPIE_project.pdf?ua=1
http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report-final-version.pdf?ua=1
http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report-final-version.pdf?ua=1
http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report-final-version.pdf?ua=1
http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/


U. Im et al.: Assessment and economic valuation of air pollution impacts on human health 5989

www.who.int/mediacentre/news/releases/2014/air-pollution/en/
(last access: 25 April 2018), 2014.

Woodruff, T. J., Grillo, J., and Schoendorf, K. C.: The relationship
between selected causes of postneonatal infant mortality and par-
ticulate air pollution in the United States, Environ. Health Persp.,
105, 608–612, 1997.

Wordley, I., Walters, S., and Ayres J. G.: Short term variations in
hospital admissions and mortality and particulate air pollution, J.
Occup. Environ. Med., 54, 108–116, 1997.

Zhang, Q., Jiang, X., Tong, D., Davis, S. J., Zhao, H., Geng,
G., Feng, T., Zheng, B., Lu, Z., Streets, D. G., Ni, R.,
Brauer, M., van Donkelaar, A., Martin, R. V., Huo, H.,
Liu, Z., Pan, D., Kan, H., Yan, Y., Lin, J., He, K., and
Guan, D.: Transboundary health impacts of transported global
air pollution and international trade, Nature, 543, 705–709,
https://doi.org/10.1038/nature21712, 2017.

www.atmos-chem-phys.net/18/5967/2018/ Atmos. Chem. Phys., 18, 5967–5989, 2018

http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/
https://doi.org/10.1038/nature21712

	Abstract
	Introduction
	Material and methods
	AQMEII3
	Participating models
	Emission and boundary conditions
	Model evaluation
	Emission perturbations

	Health impact assessment
	EVA system


	Results
	Model evaluation
	Health outcomes and their economic valuation in Europe
	Health outcomes and their economic valuation in the US
	Health impacts and their economic valuation through optimal reduced ensemble subset
	Impact of anthropogenic emissions on the health impacts and their economic valuation

	Conclusions
	Outlook
	Data availability
	Competing interests
	Special issue statement
	Acknowledgements
	References

