

Supplement of

The concentration, source and deposition flux of ammonium and nitrate in atmospheric particles during dust events at a coastal site in northern China

Jianhua Qi et al.

Correspondence to: Jianhua Qi (qjianhua@ouc.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

Sampling	Sampla	Sampling	TSP		Al		Fe		nss-	Ca	NH	4+	NO ₃	
Sampling	Sample	sampling	Concentratio	Increase	Concentrati	Increase								
Monui	category	number	$n (\mu g/m^3)$	ratio (%)	on ($\mu g/m^3$)	ratio (%)	on ($\mu g/m^3$)	ratio (%)	on ($\mu g/m^3$)	ratio (%)	on ($\mu g/m^3$)	ratio (%)	on ($\mu g/m^3$)	ratio (%)
	Dust days	20080301	526.7	134	21.3	136	14.1	117	25.2	76	12.7	51	20.5	63
Mar.,	(DD)	20080315	409.5	82	17.5	94	10.3	58	14.6	2	13.9	65	19.5	55
2008	Reference	20080316	225.1		9.0		6.5		14.3		8.4		12.6	
	sample (RS)													
Apr.,	Dust days (DD)	20080425	622.2	353	33.2	403	10.6	126	63.1	507	2.0	-72	6.8	-69
2008	Reference sample (RS)	20080424	137.5		6.6		4.7		10.4		7.2		21.7	
	Dust days	20080528	2578.7	1151	182.8	1977	96.1	4078	79.2	350	2.7	-84	9.2	-66
May,	(DD)	20080529	2313.8	1023	132.7	1408	70.5	2965	46.8	166	4.8	-71	17.5	-36
2008	Reference sample (RS)	20080522	206.1		8.8		2.3		17.6		16.6		27.4	
Mar.,	Dust days (DD)	20090316	688.4	630	24.2	1244	14.8	679	29.6	323	17.2	473	15.9	835
2009	Reference sample (RS)	20090306	94.3		1.8		1.9		7.0		3.0		1.7	
	Dust dass	20100315	501.1	82	25.6	173	14.8	95	15.2	-13	4.3	79	5.4	-25
Мол	(DD)	20100320	3856.7	1303	205.4	2090	116.3	1430	151.1	768	3.4	42	5.5	-24
Mar.,	(DD)	20100321	518.6	89	25.8	175	15.3	101	19.2	10	9.4	292	16.5	129
2010	Reference sample (RS)	20100324	274.8		9.38		7.6		17.4		2.4		7.2	

Table S1. The concentrations and the increase ratio^a of TSP, Al, Fe, nss-Ca, NH_4^+ and NO_3^- in the aerosols samples collected at the Baguanshan site in the coastal region of the Yellow Sea.

	Dust days	20110319	938.6	384	39.3	602	26.3	498	21.2	71	9.4	-28	12.3	-5
Mar.,	(DD)											-		-
2011	Reference	20110308	10/ 1		5.6		4.4		12.4		13.1		13.0	
	sample (RS)	20110308	174.1		5.0		4.4		12.4		13.1		15.0	
	Dust days	20110418	557 0	121	26.6	144	22.2	260	14.2	51	6.6	22	2.9	22
Apr.,	(DD)	20110418	551.9	121	20.0	144	22.3	200	14.2	51	0.0	22	5.0	-32
2011	Reference	20110416	252.2		10.0		()		0.4		5.4		5.6	
	sample (RS)	20110410	252.5		10.9		0.2		9.4		5.4		5.0	
	Dust days	20110501	501.8	124	27.0	68	16.2	184	12.1	329	5.3	-48	4.5	-70
May,	(DD)	20110502	809.7	261	48.1	199	27.5	382	21.3	656	11.0	8	21.0	38
2011	Reference sample (RS)	20110523	224.2		16.1		5.7		2.8		10.2		15.2	
Mean of	Dust days (DD)		1140.3	403	62.3	615	35.1	777	39.4	228	7.9		12.1	
samples	Reference sample (RS)		201.1		8.5		4.9		11.4		8.3		13.1	

^aIncrease in percentage is calculated by the formula $(C_{DDi}-C_{RSi})/C_{RSi} \times 100\%$, where C_{DDi} and C_{RSi} was the concentration of substance i in each dust day sample and reference sample, respectively, for those samples where the increase in percentage is positive.

		S ^a	Distance over sea	AMLD ^b	Transport altitude	Time in polluted region ^c	T^{d}	RH	NO ₂
NO ₃ ⁻ -N	Correlation Coefficient	.154	317	.148	.088	.619*	044	646*	.352
	Sig.	.616	.292	.629	.775	.024	.887	.017	.239
NH4 ⁺ -N	Correlation Coefficient	.154	137	379	.247	.495	297	322	.159
	Sig.	.616	.654	.201	.415	.085	.325	.284	.603

Table S2. The Spearman correlation coefficients of NO_3^-N and NH_4^+-N with average transport speed, transport distance over the sea, transport altitude, transport time in polluted region, air temperature, RH and NO_2 concentration during the transport of dust days samples (n=13).

^aTransport speed

^bAverage mixed lay depth during transport with the definition in Section 2.4.

^cResidence time of the air mass passing over parts of highly polluted regions according to the trajectories of samples.

^dAverage air temperature.

*Correlation is significant at the 0.05 level (2-tailed).

Case	Sample	Particl	es (TSP)	NC	$0_3^{-} - N$	NE	I_4^+-N	N _{NH4}	4++NO3-	F	Fe	(Cu		Pb		Zn
	number	Flux	Increase	Flux	Increase	Flux	Increase	Flux	Increase	Flux	Increase	Flux	Increase	Flux	Increase	Flux	Increase
			Ratio		Ratio		Ratio		Ratio		Ratio		Ratio		Ratio		Ratio
	20080301	7,680	174	78.42	65	23.79	59	102.21	63	508.54	169	2.06	66	0.13	44	6.83	43
	20080315	5,207	86	62.08	31	47.69	218	109.77	75	295.49	56	1.47	19	0.56	522	5.50	15
C 1	20090316	9,254	230	54.65	15	13.27	-12	67.92	9	482.68	155	1.23	-1	0.52	478	6.52	37
Case 1	20100321	8,049	187	67.73	42	19.15	28	86.89	39	587.59	210	1.24	0	0.09	0	1.94	-59
	20110502	9,887	252	63.81	34	16.88	13	80.70	29	789.13	317	1.64	32	0.06	-33	8.34	75
	Average	8,016	186	65.3	37	24.1	61	89.5	43	532.68	181	1.53	23	0.27	202	5.83	22
	20080425	11,356	305	5.16	-89	5.14	-66	10.30	-84	424.19	124	1.72	39	0.11	22	5.34	12
	20080528	31,391	1019	1.82	-96	4.12	-73	5.94	-91	2,631.33	1290	6.02	385	0.05	-44	5.30	11
C 2	20080529	28,053	900	0.18	-100	7.26	-52	7.44	-88	2,020.40	968	2.02	63	0.13	44	5.61	18
Case 2	20110319	12,682	352	42.47	-11	14.80	-1	57.27	-8	846.58	347	1.08	-13	0.08	-11	2.65	-44
	20110501	6,340	126	14.28	-70	8.48	-43	22.76	-64	453.61	140	2.00	61	0.02	-78	3.34	-30
	Average	17,964	540	12.8	-73	8.0	-47	20.7	-67	1,275.22	574	2.57	107	0.08	-13	4.45	-7
	20100315	12,174	334	32.24	-32	23.56	57	55.80	-11	665.76	252	6.75	444	0.20	122	3.33	-30
C 2	20100320	65,267	2226	24.52	-48	7.91	-47	32.43	-48	4,674.81	2370	4.99	302	0.16	78	9.46	98
Case 3	20110418	10,695	281	19.92	-58	17.94	20	37.86	-40	950.51	402	6.10	392	0.17	89	3.50	-27
	Average	29,379	947	25.6	-46	16.5	10	42.0	-33	2,097.03	1008	5.9	380	0.18	96	5.4	14
	HDT080316	2,840		39.66		13.27		52.93		192.88		0.57		0.03		3.59	
ND	HDT080424	2,851		102.57		17.91		120.48		199.16		0.76		0.36		12.99	
ND	HDT080522	2,705		91.71		27.58		119.29		73.50		0.95		0.05		5.56	
	HDT090306	1,596		13.15		6.85		20.00		110.06		0.93		0.04		3.70	

Table S3. Dry deposition flux and increase in percentage (%)^a of aerosol particles ($mg/m^2/month$), $N_{NH4++NO3-}$ ($mg N/m^2/month$) and some trace metals ($mg/m^2/month$) for each sample on dust and comparison days

_	Avenage	2 806	17 56	15.00	62 50	180.25	1.24	0.00	4 77
1	HDT110523	2,658	44.40	18.69	63.08	155.97	1.19	0.11	4.15
1	HDT110416	3,236	18.09	8.64	26.73	197.93	0.31	0.02	0.08
1	HDT110308	2,573	43.59	22.76	66.35	135.26	0.99	0.04	4.63
]	HDT100324	3,992	27.27	4.60	31.87	449.28	4.24	0.04	3.45

^aIncrease in percentage is calculated using the formula $(F_{Si}-F_{ANi})/F_{ANi} \times 100\%$, where F_{Si} and F_{ANi} is the dry deposition flux of substance i in each dust day sample and average flux of comparison day samples, respectively, for those samples where the increase in percentage is positive.

Figure S1. Dust distribution information for Sample 20080301. (a) The weather information from the MICAPS at 14:00 on Mar.1, 2008 (The symbol *S* in figure representing the dust weather). (b) The weather information from the MICAPS at 8:00 on Mar.2, 2008 (The symbol *S* in figure representing the dust weather). (c) Hourly PM10 concentration modeled by the WRF-CMAQ model at 15:00 on Mar.1, 2008.

Figure S2. The modeled hourly PM_{10} concentration over East Asia by the WRF-CMAQ model from 0:00 to 21:00 on Apr. 18, 2011.

Figure S3. The NOx and NH_3 emission and dust frequency in China in 1980-2011. (N emission during 1980-2010 from Liu et al., 2017. Dust frequency only available for 2000-2011 from CMA, 2011).

CMA: Sand-dust weather almanac 2011, China Meteorological Press, Beijing, 36-53, 2013.

Liu, L., Zhang, X., Xu, W., Liu, X., Li, Y., Lu, X., Zhang, Y., and Zhang, W.: Temporal characteristics of atmospheric ammonia and nitrogen dioxide over China based on emission data, satellite observations and atmospheric transport modeling since 1980, Atmos. Chem. Phys., 17, 9365-9378, 2017.

							Correla	uona								
			VAR00001	VAR00002	VAR00003	VAR00004	VAR00005	VAR00006	VAR00007	VAR00008	VAR00009	VAR00010	VAR00011	VAR00012	VAR00013	VAR00014
Spearman's rho	VAR00001	Correlation Coefficient	1.000	.582*	.308	.077	.225	.225	.341	.044	.654*	.401	495	.182	193	.000
		Sig. (2-tailed)		.037	.306	.803	.459	.459	.255	.887	.015	.174	.085	.553	.528	1.000
		N	13	13	13	13	13	13	13	13	13	13	13	13	13	13
	VAR00002	Correlation Coefficient	.582*	1.000	.154	.209	368	401	242	.286	.495	.027	569*	311	421	487
		Sig. (2-tailed)	.037		.616	.494	.216	.174	.426	.344	.086	.929	.042	.301	.152	.091
		N	13	13	13	13	13	13	13	13	13	13	13	13	13	13
	VAR00003	Correlation Coefficient	.308	.154	1.000	.698**	.533	.588*	.555*	.731**	.527	.209	358	.512	.083	.072
		Sig. (2-tailed)	.306	.616		.008	.061	.035	.049	.005	.064	.494	.230	.074	.789	.816
		N	13	13	13	13	13	13	13	13	13	13	13	13	13	13
	VAR00004	Correlation Coefficient	.077	.209	.698**	1.000	.148	.319	.297	.852**	.264	038	432	.366	311	206
		Sig. (2-tailed)	.803	.494	.008		.629	.289	.325	.000	.384	.901	.141	.219	.301	.499
		N	13	13	13	13	13	13	13	13	13	13	13	13	13	13
	VAR00005	Correlation Coefficient	.225	368	.533	.148	1.000	.775*	.599*	.220	.286	.275	.069	.514	.492	.525
		Sig. (2-tailed)	.459	.216	.061	.629		.002	.031	.471	.344	.364	.823	.072	.087	.065
		N	13	13	13	13	13	13	13	13	13	13	13	13	13	13
	VAR00006	Correlation Coefficient	.225	401	.588*	.319	.775**	1.000	.879**	.159	.440	.319	.047	.751**	.107	.388
		Sig. (2-tailed)	.459	.174	.035	.289	.002	1.	.000	.603	.133	.289	.879	.003	.727	.190
		N	13	13	13	13	13	13	13	13	13	13	13	13	13	13
	VAR00007	Correlation Coefficient	.341	242	.555*	.297	.599*	.879**	1.000	.082	.637*	.577*	050	.798**	.143	.424
		Sig. (2-tailed)	.255	.426	.049	.325	.031	.000		.789	.019	.039	.872	.001	.641	.149
		N	13	13	13	13	13	13	13	13	13	13	13	13	13	13
	VAR00008	Correlation Coefficient	.044	.286	.731**	.852**	.220	.159	.082	1.000	.220	126	314	.204	044	182
		Sig. (2-tailed)	.887	.344	.005	.000	.471	.603	.789		.471	.681	.297	.505	.886	.553
		N	13	13	13	13	13	13	13	13	13	13	13	13	13	13
	VAR00009	Correlation Coefficient	.654*	.495	.527	.264	.286	.440	.637*	.220	1.000	.599*	223	.437	008	.118
		Sig. (2-tailed)	.015	.086	.064	.384	.344	.133	.019	.471		.031	.464	.135	.979	.700
		N	13	13	13	13	13	13	13	13	13	13	13	13	13	13
	VAR00010	Correlation Coefficient	.401	.027	.209	038	.275	.319	.577*	126	.599*	1.000	.228	.558*	.465	.608*
		Sig. (2-tailed)	.174	.929	.494	.901	.364	.289	.039	.681	.031		.453	.047	.109	.027
		N	13	13	13	13	13	13	13	13	13	13	13	13	13	13
	VAR00011	Correlation Coefficient	495	569*	358	432	.069	.047	050	314	223	.228	1.000	025	.438	.267
		Sig. (2-tailed)	.085	.042	.230	.141	.823	.879	.872	.297	.464	.453		.936	.134	.377
		N	13	13	13	13	13	13	13	13	13	13	13	13	13	13
	VAR00012	Correlation Coefficient	.182	311	.512	.366	.514	.751**	.798*	.204	.437	.558*	025	1.000	.322	.675*
		Sig. (2-tailed)	.553	.301	.074	.219	.072	.003	.001	.505	.135	.047	.936		.283	.011
		N	13	13	13	13	13	13	13	13	13	13	13	13	13	13
	VAR00013	Correlation Coefficient	193	421	.083	311	.492	.107	.143	044	008	.465	.438	.322	1.000	.802*
		Sig. (2-tailed)	.528	.152	.789	.301	.087	.727	.641	.886	.979	.109	.134	.283		.001
	10000044	N Occupienting Occupient	13	13	13	13	13	13	13	13	13	13	13	13	13	13
	VAR00014	Correlation Coefficient	.000	487	.072	206	.525	.388	.424	182	.118	.608*	.267	.675*	.802**	1.000
		olg. (2-tailed)	1.000	.091	.816	.499	.065	.190	.149	.553	./00	.027	.3//	.011	.001	

(b)

			VAR00001	VAR00002	VAR00003	VAR00004	VAR00005	VAR00006	VAR00007	VAR00008	VAR00009	VAR00010	VAR00011	VAR00012	VAR00013	VAR00014
Spearman's rho	VAR00001	Correlation Coefficient	1.000	400	900*	600	.300	.000	300	700	400	.300	.900*	300	.100	.400
		Sig. (2-tailed)		.505	.037	.285	.624	1.000	.624	.188	.505	.624	.037	.624	.873	.505
		N	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	VAR00002	Correlation Coefficient	400	1.000	.300	.800	900*	.100	.900*	.500	1.000**	.400	.000	.600	500	300
		Sig. (2-tailed)	.505		.624	.104	.037	.873	.037	.391		.505	1.000	.285	.391	.624
		N	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	VAR00003	Correlation Coefficient	900*	.300	1.000	.700	100	.100	.400	.900*	.300	400	800	100	200	700
		Sig. (2-tailed)	.037	.624		.188	.873	.873	.505	.037	.624	.505	.104	.873	.747	.188
		N	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	VAR00004	Correlation Coefficient	600	.800	.700	1.000	500	.400	.900*	.900*	.800	100	300	.100	700	800
		Sig. (2-tailed)	.285	.104	.188		.391	.505	.037	.037	.104	.873	.624	.873	.188	.104
		N	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	VAR00005	Correlation Coefficient	.300	900*	100	500	1.000	.300	700	200	900*	700	100	800	.100	100
		Sig. (2-tailed)	.624	.037	.873	.391		.624	.188	.747	.037	.188	.873	.104	.873	.873
		N	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	VAR00006	Correlation Coefficient	.000	.100	.100	.400	.300	1.000	.200	.300	.100	700	100	300	900*	600
		Sig. (2-tailed)	1.000	.873	.873	.505	.624	1.	.747	.624	.873	.188	.873	.624	.037	.285
		N	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	VAR00007	Correlation Coefficient	300	.900*	.400	.900*	700	.200	1.000	.700	.900*	.300	.100	.200	600	600
		Sig. (2-tailed)	.624	.037	.505	.037	.188	.747		.188	.037	.624	.873	.747	.285	.285
		N	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	VAR00008	Correlation Coefficient	700	.500	.900*	.900*	200	.300	.700	1.000	.500	300	500	200	500	900*
		Sig. (2-tailed)	.188	.391	.037	.037	.747	.624	.188		.391	.624	.391	.747	.391	.037
		N	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	VAR00009	Correlation Coefficient	400	1.000**	.300	.800	900*	.100	.900*	.500	1.000	.400	.000	.600	500	300
		Sig. (2-tailed)	.505		.624	.104	.037	.873	.037	.391		.505	1.000	.285	.391	.624
		N	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	VAR00010	Correlation Coefficient	.300	.400	400	100	700	700	.300	300	.400	1.000	.600	.500	.400	.500
		Sig. (2-tailed)	.624	.505	.505	.873	.188	.188	.624	.624	.505		.285	.391	.505	.391
		N	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	VAR00011	Correlation Coefficient	.900*	.000	800	300	100	100	.100	500	.000	.600	1.000	100	.000	.300
		Sig. (2-tailed)	.037	1.000	.104	.624	.873	.873	.873	.391	1.000	.285		.873	1.000	.624
		N	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	VAR00012	Correlation Coefficient	300	.600	100	.100	800	300	.200	200	.600	.500	100	1.000	.100	.500
		Sig. (2-tailed)	.624	.285	.873	.873	.104	.624	.747	.747	.285	.391	.873		.873	.391
		N	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	VAR00013	Correlation Coefficient	.100	500	200	700	.100	900*	600	500	500	.400	.000	.100	1.000	.700
		Sig. (2-tailed)	.873	.391	.747	.188	.873	.037	.285	.391	.391	.505	1.000	.873	. I	.188
		N	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	VAR00014	Correlation Coefficient	.400	300	700	800	100	600	600	900*	300	.500	.300	.500	.700	1.000
		Sig. (2-tailed)	.505	.624	.188	.104	.873	.285	.285	.037	.624	.391	.624	.391	.188	
		N	6	-	-	-	6	-		F	6	6	5	-	6	i é

(c)

(a)

			VAR00001	VAD00002	VAD00002	VAR00004	VAD0000E	VARODODE	VAD00007	VAD00009	VARODODO	VAR00040	VAD00011	VAD00012	VAD00012	VAD00014
Spearman's rho	VAR00001	Correlation Coefficient	1,000	200	1 000*	300	700	500	500	700	900*	100	- 300	200	600	700
		Sin (2-tailed)	1.000	747		624	188	301	301	188	037	873	624	747	285	188
		N	5		6	.024	.100			.100	.005	.075	.024		.205	.100
	VAR00002	Correlation Coefficient	200	1 000	200	000	- 200	- 600	- 600	300	- 100	- 400	- 300	- 800	100	- 200
		Sin (2-tailed)	747	1.000	747	1 000	747	285	285	624	873	505	624	104	873	747
		N				1.000		.205	.205			.005			.015	
	VAR00003	Correlation Coefficient	1.000**	200	1 000	300	700	500	500	700	900*	100	- 300	200	600	700
		Sin (2-tailed)	1.000	747	1.000	624	100	201	201	100	027	972	624	747	295	100
		N				.024	.100		.581	.100	.057	.075	.024		.205	.100
	VAR00004	Correlation Coefficient	200	000	200	1 000	200	100	100	700	100	600	700	200	100	200
	11100004	Sig (2-tailed)	.300	1,000		1.000	.200	.100	.100	100	072	000	100	.300	100	.200
		N	.024	1.000	.024			.075	.075	.100		.205	.100	.024	.075	
	VAR00005	Correlation Coefficient	700	200	700	200	1 000	000*	000*	700	000*	600	200	700	000*	1 000**
	1400000	Sig (2-tailed)	100	200	100	.200	1.000	.500	.500	100	.500	.000	.300	100	.500	1.000
		N	.100	./4/	.100	./4/		.037	.037	.100	.037	.205	.024	.100	.037	
	VAP00006	Correlation Coofficient	500	600	500	100	000*	1 000	1 000*	1 400	000	700	400	000*	700	000*
	*********	Sig (2-tailed)	.300	000	201	972	.500	1.000	1.000	.400	104	100	.400	.300	100	027
		N	.351	.205		.013	.037			.505	.104	. 100	.505	.037	. 100	.037
	VAP00007	Correlation Coefficient	500	600	500	100	0008	1 0001	1000	400	000	700	400	0001	700	0001
	VAR00007	Contention Coefficient	.000	000	.500	.100	.900	1.000	1.000	.400	.000	.700	.400	.900	.700	.900
		N	.551	.205		.075	.037			.505	.104	. 100	.505	.037	. 100	.037
	VAP00009	Correlation Coefficient	700	200	700	700	700	400	400	1.000	600	100	200	200	600	700
	14100000	Sig (2 toiled)	.700	.300	.700	.700	.700	.400	.400	1.000	.000	- 100	300	.300	.000	.700
		N	. 100	.024	301.	. 100	. 100	.005	.000		.205	.015	.024	.024	.205	.100
	VAR00000	Correlation Coefficient	000*	100	000*	100	000*	800	800	600	1 000	500	100	500	900	000*
		Sig (2-tailed)	.300	072		.100	.300	104	104	200	1.000	.300	072	201	104	027
		N	.037	.075	.037	.013	.037	.104	.104	.203		.581	.0/3	.591	.104	.037
	VAR00010	Correlation Coefficient	100	- 400	100	- 600	600	700	700	- 100	500	1 000	900*	500	700	600
	111100010	Sin (2-tailed)	973	505	973	295	295	100	100	973	301	1.000	.500	301	199	295
		N	.075	.505	.075	.205	.205	.100	.100	.075			.007		.100	.205
	VAR00011	Correlation Coefficient	200	200	200	700	200	400	400	200	100	000*	1.000	200	500	200
	0.000011	Sin (2-tailed)	624	624	624	188	624	505	505	624	873	.500	1.000	624	301	624
		N	.024	.024	.024	.100	.024		.505	.024	.075	.007		.024		.024
	VAR00012	Correlation Coefficient	200	- 800	200	300	700	900*	900*	300	500	500	300	1 000	400	700
		Sin (2-tailed)	747	104	747	624	100	027	027	624	201	201	624	1.000	505	100
		N	./4/	.104		.024	.100	.037	.037	.024		.581	.024		.505	.100
	VAR00013	Correlation Coefficient	600	100	600	- 100	900*	700	700	600	800	700	500	400	1 000	900*
		Sig (2-tailed)	285	873	285	873	037	188	188	285	104	188	301	505	1.000	037
		N	.205	.075	.205	.075	.037	301.	.100	.205	- 104	. 100				.037
	VAR00014	Correlation Coefficient	700	- 200	700	200	1 000*	900*	900*	700	900*	003	300	700	900*	1 000
		Sig (2-failed)	199	200	1.00	747	1.000	.500	.900	100	027	295	624	120	.900	1.000
		N	.100		5		5	5	.037	5	5	.205	.024	5	.037	5

Figure S4. The Spearman correlation coefficient of nitrate and ammonium with other ions in aerosols samples for all samples (a), Category 1 (b) and Category 2 (c) . (Var00001, VAR00002, VAR00003, VAR00004,..., AR00014 Successively representing $NO_3^{-}N$, $NH_4^{+}-N$, $SO_4^{-2}-S$, CI^{-} , Ca^{2+} , Mg^{2+} , K^+ , Na^+ , Pb, Zn, Cu, Ca, Fe, Al, respectively.)

Figure S5. Hourly PM_{10} concentration over East Asia modeled by the WRF-CMAQ model for each dust sampling day from 2008 to 2011 (the PM_{10} concentration in the middle of each sampling duration only showed).

Figure S6. The comparison between simulated and observed NO_3^- and NH_4^+ in aerosol samples on dust and comparison days in Qingdao in 2008 to 2011.