

Supplement of

Studying volatility from composition, dilution, and heating measurements of secondary organic aerosols formed during α -pinene ozonolysis

Kei Sato et al.

Correspondence to: Kei Sato (kei@nies.go.jp)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Monomers			Dimers			
Formula	m/z	Carbon oxidation state	Formula	mlz	Carbon oxidation state	
C ₈ H ₁₂ O ₄	195.0628	-0.50	C ₁₆ H ₂₄ O ₆	335.1465	-0.75	
C8H12O5	211.0577	-0.25	C16H24O7	351.1414	-0.63	
C ₈ H ₁₂ O ₆	227.0526	0.00	$C_{16}H_{24}O_8$	367.1363	-0.50	
C8H12O7	243.0475	0.25	C17H26O6	349.1622	-0.82	
C8H14O5	213.0733	-0.50	C17H26O7	365.1571	-0.71	
C8H14O6	229.0683	-0.25	C ₁₇ H ₂₆ O ₈	381.152	-0.59	
C8H14O7	245.0632	0.00	C17H26O9	397.1469	-0.47	
C9H14O3	193.0835	-0.89	C ₁₇ H ₂₆ O ₁₀	413.1418	-0.35	
C9H14O4	209.0784	-0.67	C ₁₇ H ₂₆ O ₁₁	429.1367	-0.24	
C9H14O5	225.0733	-0.44	C17H28O6	351.1778	-0.94	
C9H14O6	241.0683	-0.22	C17H28O7	367.1727	-0.82	
C9H14O7	257.0632	0.00	C17H28O8	383.1676	-0.71	
C9H14O8	273.0581	0.22	C17H28O9	399.1626	-0.59	
C9H16O5	227.089	-0.67	C ₁₇ H ₂₈ O ₁₀	415.1575	-0.47	
C9H16O6	243.0839	-0.44	C17H30O5	337.1985	-1.18	
C9H16O7	259.0788	-0.22	C17H30O6	353.1935	-1.06	
C9H16O8	275.0737	0.00	C17H30O7	369.1884	-0.94	
C10H14O5	237.0733	-0.40	C17H30O8	385.1833	-0.82	
C10H14O6	253.0683	-0.20	C17H32O5	339.2142	-1.29	
C10H14O7	269.0632	0.00	C17H32O6	355.2091	-1.18	
C10H16O3	207.0992	-1.00	C17H32O7	371.204	-1.06	
C10H16O4	223.0941	-0.80	C17H32O8	387.1989	-0.94	
C10H16O5	239.089	-0.60	C17H32O9	403.1939	-0.82	
C10H16O6	255.0839	-0.40	C ₁₈ H ₂₈ O ₅	347.1829	-1.00	
C10H16O7	271.0788	-0.20	C ₁₈ H ₂₈ O ₆	363.1778	-0.89	
C10H16O8	287.0737	0.00	C18H28O7	379.1727	-0.78	
C10H16O9	303.0687	0.20	C ₁₈ H ₂₈ O ₈	395.1676	-0.67	
C10H18O5	241.1046	-0.80	C ₁₈ H ₂₈ O ₉	411.1626	-0.56	
C10H18O6	257.0996	-0.60	C ₁₈ H ₂₈ O ₁₀	427.1575	-0.44	
C10H18O7	273.0945	-0.40	C ₁₈ H ₂₈ O ₁₁	443.1524	-0.33	
$C_{10}H_{18}O_{8}$	289.0894	-0.20	C ₁₈ H ₃₀ O ₈	397.1833	-0.78	
C10H18O9	305.0843	0.00	C ₁₈ H ₃₀ O ₉	413.1782	-0.67	
			C ₁₈ H ₃₂ O ₄	335.2193	-1.33	
			C ₁₈ H ₃₂ O ₅	351.2142	-1.22	
			$C_{18}H_{32}O_6$	367.2091	-1.11	
			C18H34O5	353.2298	-1.33	
			C ₁₈ H ₃₄ O ₆	369.2248	-1.22	
			C ₁₈ H ₃₄ O ₈	401.2146	-1.00	
			C19H28O6	359.1829	-0.84	
			C19H28O7	391.1727	-0.74	
			C19H28O8	407.1676	-0.63	
			C19H28O9	423.1626	-0.53	
			$C_{19}H_{28}O_{10}$	439.1575	-0.42	
			$C_{19}H_{28}O_{12}$	471.1473	-0.21	
			C19H30O5	361.1985	-1.05	
			C19H30O6	377.1935	-0.95	
			C19H30O7	393.1884	-0.84	
			C19H30O8	409.1833	-0.74	
			C19H30O9	425.1782	-0.63	
			$C_{20}H_{30}O_6$	389.1935	-0.90	
			$C_{20}H_{30}O_8$	421.1833	-0.70	
			$C_{20}H_{30}O_9$	437.1782	-0.60	
			$C_{20}H_{30}O_{10}$	453.1731	-0.50	
			$C_{20}H_{32}O_5$	375.2142	-1.10	
			C ₂₀ H ₃₂ O ₇	407.204	-0.90	
			$C_{20}H_{32}O_8$	423.1989	-0.80	
			$C_{20}H_{32}O_{9}$	439.1939	-0.70	

Table S1. Molecules detected as sodium adduct ions during offline positive electrospray ionization analysis of α -pinene ozonolysis SOA samples.

2

Table S2. Saturation concentrations determined for α-pinene oxidation products by SPARC calculations and three parameterization methods.

	log ₁₀ (Saturated concentration / μg m ⁻³)						
Compound	SPARC (Sato et al., 2016)	1D-fit for α-pinene oxidation products (Shiraiwa et al., 2014)	2D-fit for oxygenated organic compounds (Li et al., 2016)	Binary fit for α-pinene oxidation products			
pinonic acid	2.25	3.3	4.3	2.57			
pinic acid	-0.75	3.2	3.81	2.37			
10-hydroxypinonic acid	-0.82	2.44	3.5	1.02			
MBTCA	-0.43	2.24	1.97	0.63			
C ₁₀ H ₁₆ O ₅	-	1.59	2.59	-0.53			
$C_{10}H_{16}O_{6}$	-	0.74	1.58	-2.08			
C ₁₀ H ₁₆ O ₇	-	-0.11	0.5	-3.63			
dimer of MW 348 (isomer 1)	-6.31	-5.45	-0.84	-4.62			
dimer of MW 348 (isomer 2)	-7.4	-5.45	-0.84	-4.62			

Table S3: Average $\log_{10} C^*$ values determined from present volatility distributions; all values are lower than the average $\log_{10} C^*$ determined from yield curves, 2.26.

	LC/MS-1D	LC/MS-2D	LC/MS-binary	LC/MS-1D w/otransmission corr.	TD-AMS	Dilution
Run 1	-2.71	-0.61	-2.76	-3.35	1.03	-
Run 2	-	-	-	-	0.16	-
Run 3	-	-	-	-	0.24	-
Run 4	-	-	-	-	0.14	-
Run 5	-	-	-	-	0.75	-
Run 6	-1.94	-0.25	-2.42	-2.66	1.32	-
Run 7	-1.89	0.10	-2.45	-2.56	1.07	-
Run 8	-1.41	0.87	-2.30	-2.02	0.99	-
Run 9	-0.83	1.44	-2.19	-1.38	0.40	-
Run 11	-	-	-	-	1.27	-
Dilution (RH <1%)	-	-	-	-	-	1.00
Dilution (RH ~40%)	-	-	-	-	-	1.60

Figure S1: Schematic diagram of the chamber system and analytical instruments used for the experiments at RH <1%; a Teflon bag was used instead of the reaction chamber with the pump system for the experiments at RH ~40%. The RH of the EDC was set to ~40% when particles formed at ~40%, whereas it was set to <1% when particles formed at <1%.

Figure S2: Molecular weight (MW) plotted as a function of $\log_{10} C^*$: Results of PTR-MS measurements, SPARC calculations, and EVAPORATION calculations; the black line indicates the regression function fitted to the EVAPORATION data.

Figure S3: Molecular weight (MW) plotted as a function of $\log_{10} C^*$; straight lines are the results of binary parameterization and are fitted to data of m/z \geq 300 and <300 separately.

Figure S4: Mass fraction remaining (MFR) measured for SOA and pinonic acid particles as a function of thermodenuder temperature.

Figure S5: Time series of SOA concentration measured by TD-AMS during the heating measurement in run 1; the TD mode was programmed to be bypass (0-3 min), TD of 50°C (3-18 min), bypass (18-27 min), TD of 100°C (27-42 min), bypass (42-51 min), TD of 150°C (51-66 min), bypass (66-75 min), TD of 200°C (75-90 min), and bypass (90-99 min). The SOA concentration measured through the bypass decreased by 5-9% due to the SOA loss on the chamber wall during each measurement cycle (24 min). MFR was determined by accounting for SOA wall loss.

Figure S6: Normalized SOA yield measured as a function of mass concentration in dry (RH < 1%) and humid experiments (RH ~ 40%); the normalized SOA yields were corrected by accounting for particle wall loss in EDC. A partitioning theory function was used to fit experimental data (see text).

References

- Sato, K., Jia, T., Tanabe, K., Morino, Y., Kajii, Y., and Imamura, T.: Terpenylic acid and nine-carbon multifunctional compounds formed during the aging of b-pinene ozonolysis secondary organic aerosol. Atmos. Environ., 130, 127-135, 2016.
- Shiraiwa, M., Berkemeier, T., Schilling-Fahnestock, K. A., Seinfeld, J. H., and Pöschl, U.: Molecular corridors and kinetic regimes in the multiphase chemical evolution of secondary organic aerosol. Atmos. Chem. Phys., 14, 8323-8341, 2014.
- Li, Y., Pöschl, U., and Shiraiwa, M.: Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols. Atmos. Chem. Phys., 16, 3327-3344, 2016.