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Abstract. Topic 3 of the Model Inter-Comparison Study for
Asia (MICS-Asia) Phase III examines how online coupled
air quality models perform in simulating high aerosol pol-
lution in the North China Plain region during wintertime
haze events and evaluates the importance of aerosol radiative
and microphysical feedbacks. A comprehensive overview of
the MICS-Asia III Topic 3 study design, including descrip-
tions of participating models and model inputs, the exper-
imental designs, and results of model evaluation, are pre-
sented. Six modeling groups from China, Korea and the
United States submitted results from seven applications of
online coupled chemistry–meteorology models. Results are

compared to meteorology and air quality measurements, in-
cluding data from the Campaign on Atmospheric Aerosol
Research Network of China (CARE-China) and the Acid De-
position Monitoring Network in East Asia (EANET). The
correlation coefficients between the multi-model ensemble
mean and the CARE-China observed near-surface air pollu-
tants range from 0.51 to 0.94 (0.51 for ozone and 0.94 for
PM2.5) for January 2010. However, large discrepancies ex-
ist between simulated aerosol chemical compositions from
different models. The coefficient of variation (SD divided
by the mean) can reach above 1.3 for sulfate in Beijing
and above 1.6 for nitrate and organic aerosols in coastal
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regions, indicating that these compositions are less consis-
tent from different models. During clean periods, simulated
aerosol optical depths (AODs) from different models are sim-
ilar, but peak values differ during severe haze events, which
can be explained by the differences in simulated inorganic
aerosol concentrations and the hygroscopic growth efficiency
(affected by varied relative humidity). These differences in
composition and AOD suggest that future models can be im-
proved by including new heterogeneous or aqueous pathways
for sulfate and nitrate formation under hazy conditions, a sec-
ondary organic aerosol (SOA) formation chemical mecha-
nism with new volatile organic compound (VOCs) precur-
sors, yield data and approaches, and a more detailed evalua-
tion of the dependence of aerosol optical properties on size
distribution and mixing state. It was also found that using
the ensemble mean of the models produced the best predic-
tion skill. While this has been shown for other conditions (for
example, the prediction of high-ozone events in the US (Mc-
Keen et al., 2005)), this is to our knowledge the first time it
has been shown for heavy haze events.

1 Introduction

Air pollution in Asia, particularly in China and India, has
been an increasingly important research topic and has at-
tracted enormous media coverage since about 60 % of the
world population live and are exposed to extremely un-
healthy air in this region. It is estimated that outdoor air
pollution brings about 3.3 million premature deaths per
year worldwide, with most deaths occurring primarily in
Asia (Lelieveld et al., 2015). In addition, the impacts of
regional and intercontinental transport of Asian pollutants
on air quality and climate change have been frequently re-
ported (Akimoto, 2003; Menon et al., 2002; Ramanathan and
Carmichael, 2008). Chemical transport models have been
developed and applied to study various air pollution issues
in Asia. For example, an Eulerian regional-scale acid depo-
sition and photochemical oxidant model was developed in
the United States (Carmichael and Peters, 1984; Carmichael
et al., 1986, 1991) and applied to study long-range transport
of sulfur oxides (SOx), dust and ozone production in East
Asia (Carmichael et al., 1998; Xiao et al., 1997). A nested
urban and regional-scale air quality prediction modeling sys-
tem was developed and applied to investigate ozone pollu-
tion in Taiwan (Wang et al., 2001). Although important ad-
vances have taken place in air quality modeling, large uncer-
tainties still remain, which are related to inaccurate and/or in-
complete emission inventories, poorly represented initial and
boundary conditions, and missing or poorly parameterized
physical and chemical processes (Carmichael et al., 2008a).

Furthermore, many models used to study air quality in
Asia were developed in other regions (e.g., the USA and Eu-
rope), and the assumptions and parameterizations included

in these models may not be applicable to the Asian environ-
ment. In order to develop a common understanding of model
performance and uncertainties in Asia, and to further develop
the models for Asian applications, a model intercomparison
study was initiated, i.e., the Model Inter-Comparison Study
for Asia Phase I (MICS-Asia I), in 1998 during the Work-
shop on the Transport of Air Pollutants in Asia held in Aus-
tria. The focus of MICS-Asia Phase I was to study long-range
transport and the deposition of sulfur within Asia in support
of ongoing acid deposition studies. Eight long-range trans-
port models from six institutes in Korea, Japan, Denmark, the
USA and Sweden participated in MICS-Asia I. Multi-model
results of sulfur dioxide (SO2) and sulfate concentrations and
wet-deposition amounts in January and May 1993 were com-
pared with surface observations in East Asia (Carmichael
et al., 2002). Source–receptor relationships and how model
structure and parameters affect model performance were also
discussed during this phase (Carmichael et al., 2002). In
2003, MICS-Asia Phase II was initiated to include more
species, including nitrogen compounds, ozone and aerosols.
The study period was expanded to cover two different years
and three different seasons, and global inflow to the study
domain was also considered (Carmichael et al., 2008b). Nine
modeling groups from Korea, Hong Kong, Japan, the USA,
Sweden and France participated in this phase. Seven topics
(i.e., ozone and related precursors, aerosols, acid deposition,
global inflow of pollutants and precursors to Asia, model
sensitivities to aerosol parameterization, analysis of emission
fields, and detailed analyses of individual models) were dis-
cussed and published in a special issue of Atmospheric Envi-
ronment (Carmichael et al., 2008b).

In 2010, MICS-Asia Phase III was launched, and three
topics for this phase were decided during the first and sec-
ond Workshop on Atmospheric Modeling in East Asia. Phase
III aims to evaluate strengths and weaknesses of current air
quality models and provide techniques to reduce uncertainty
in Asia (Topic 1), to develop a reliable anthropogenic emis-
sion inventory in Asia (Topic 2), and to evaluate aerosol–
weather–climate interactions (Topic 3). Various multi-scale
models participated in this phase, and the study periods range
from year to month depending on study topics. This phase
benefits from the Acid Deposition Monitoring Network in
East Asia (EANET) measurements, in addition to new obser-
vations related to atmospheric chemistry in this region. A de-
tailed overview of the MICS-Asia Phase III, including the de-
scriptions of different research topics and participating mod-
els, will be published in a companion paper. An important
advance to this phase is the inclusion of multiple online cou-
pled chemistry–meteorology models to investigate aerosol–
weather–climate interactions, which is the target of topic 3.
Online coupled models play important roles in air quality,
meteorology and climate applications, but many important
research questions remain (Baklanov et al., 2017).

The influences of aerosols on meteorology, e.g., radiation,
temperature, boundary layer heights, winds and PM2.5, con-
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centrations have been examined in previous studies using dif-
ferent online coupled models (Forkel et al., 2015; Gao et al.,
2016a, b, 2017a, b; Han et al., 2012, 2013; Makar et al.,
2015a, b; San Jose et al., 2015; Tao et al., 2015, 2016; Wang
et al., 2014; Zhang et al., 2010). In general, there are two
ways of online coupling: online integrated coupling (mete-
orology and chemistry are simulated using the same model
grid, and one main time step is used to integrate) and online
access coupling (meteorology and chemistry are indepen-
dent, but data are exchanged on a regular basis) (Baklanov
et al., 2014). These two different coupling methods can lead
to uncertainties in the results of aerosol–weather–climate in-
teractions. Even using the same coupling method, different
parameterizations in different online models cause uncertain-
ties as well. Thus, it is important to intercompare how dif-
ferent online models simulate aerosol–weather–climate in-
teractions, particularly in the heavily polluted Asian region.
Other ongoing related modeling frameworks include the Task
Force on Hemispheric Transport of Air Pollution (TF HTAP)
and the Air Quality Model Evaluation International Initiative
(AQMEII). The TF HTAP was initiated to improve knowl-
edge of the intercontinental or hemispheric transport and for-
mation of air pollution and its impacts on climate, ecosys-
tems and human health (Galmarini et al., 2017; Huang et al.,
2017). The AQMEII project specifically focuses on regional
modeling domains over Europe and North America (Gal-
marini et al., 2017), within which aerosol meteorology inter-
actions were studied (Forkel et al., 2015; Makar et al., 2015a,
b; San Jose et al., 2015).

This paper overviews the MICS-Asia III Topic 3, serving
as the main repository of the information linked to Topic 3
simulations and comparisons. Specifically, this paper aims to
archive the information of the participating models, how the
experiments are designed, and the results of model evalua-
tion. The results of the MICS-Asia Topic 3 experiments look-
ing at the direct and indirect effects during heavy haze events
will be published in a companion paper, part II. In Sect. 2,
we provide the intercomparison framework of Topic 3, in-
cluding the participating models, emissions, boundary con-
ditions, observational data and analysis methodology. Sec-
tion 3 presents comparisons and discussions focused on the
results related to the meteorological and air pollution condi-
tions during the January 2010 heavy haze episode.

2 Intercomparison framework

In northern China, severe aerosol pollution frequently hap-
pens and attracts enormous interest from both the public and
the scientific community (Cheng et al., 2016; Gao et al.,
2015, 2016a–c). Two winter months in which severe haze
episodes happened in northern China were selected as the
study periods for Topic 3. During these two months, the max-
imum hourly PM2.5 concentration in urban Beijing reached
∼ 500 µgm−3 and 1000 µgm−3. Compared to the China

Figure 1. MICS-Asia III Topic 3 modeling domains (descrip-
tions of each model are documented in Table 1). M1: WRF-Chem
45 km; M2: WRF-Chem 50 km; M3: NU-WRF 45 km; M4: NU-
WRF 15 km; M5: RIEMS-Chem 60 km; M6: RegCCMS 50 km;
M7: WRF-CMAQ 45 km.

Grade 1 24 h PM2.5 standard (35 µgm−3), daily mean PM2.5
concentrations in urban Beijing exceeded this standard on
20 days and 27 days within these two months. The dramat-
ically high aerosol loadings during these two hazy months
substantially affected radiation transfer and provide a good
opportunity to study the aerosol effects on weather, air qual-
ity and climate. In this study, the participants were required
to use common emissions to simulate air quality during these
two months and submit requested model variables. The emis-
sions were placed on a publicly accessible website. Six mod-
eling groups submitted results for Topic 3. In this section,
we briefly describe these models and their configurations, in-
troduce the emission inventories (including anthropogenic,
biogenic, biomass burning, air and ship, and volcano emis-
sions) and the observational datasets, and present the analysis
methodology.

2.1 Participating models

Table 1 summarizes the characteristics of the participating
models. These models include one application of the Weather
Research Forecasting model coupled with Chemistry (WRF-
Chem; Fast et al., 2006; Grell et al., 2005) by Pusan National
University (PNU) (M1); one application of the WRF-Chem
model by the University of Iowa (UIOWA) (M2); two ap-
plications (two domains: 45 and 15 km horizontal resolu-
tions) of the National Aeronautics and Space Administra-
tion (NASA) Unified WRF (NU-WRF; Peters-Lidard et al.,
2015; Tao et al., 2013) model by the Universities Space
Research Association (USRA) and NASA’s Goddard Space
Flight Center (M3 and M4); one application of the Regional
Integrated Environment Modeling System with Chemistry
(RIEMS-Chem; Han et al., 2010) by the Institute of Atmo-
spheric Physics (IAP), Chinese Academy of Sciences (M5);
one application of the coupled Regional Climate Chemistry
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Table 1. Participating models in Topic 3.

Models M1: WRF-Chem M2: WRF-Chem M3: NU-WRF M4: NU-WRF M5: RIEMS-Chem M6: RegCCMS M7: WRF-CMAQ

Modeling group Pusan National
University

University of Iowa USRA/NASA USRA/NASA Institute of Atmo-
spheric Physics

Nanjing University University
of Tennessee

Grid resolution 45 km 50 km 45 km 15 km 60 km 50 km 45 km

Vertical layers 40 layers to 50 mb 27 layers to 50 mb 60 layers to 20 mb 60 layers to 20 mb 16 layers to 100 mb 18 layers to 50 mb 34 layers to 50 mb

Gas phase
chemistry

RACM-ESRL CBMZ RADM2 RADM2 CBM4 CBM4 SAPRC99

Aerosols MADE/SORGAM;
bulk scheme

MOSAIC eight bin;
sectional scheme

GOCART; bulk
scheme

GOCART; bulk
scheme

Sulfate, nitrate,
ammonium, BC,
OC, SOA, five bins
of soil dust, and
five bins of sea salt
modal scheme

Sulfate, nitrate, am-
monium, BC and
POC; bulk scheme

AE6 modal
scheme

Chemical boundary
conditions

Climatological data
from NALROM

MOZART MOZART GO-
CART

MOZART GO-
CART

GEOS-Chem Climatological data GEOS-Chem

Meteorological
boundary
conditions

NCEP FNL NCEP FNL NASA MERRA NASA MERRA NCEP FNL NCEP–NCAR NCEP FNL

BVOC emissions Prescribed Internal calculation Internal calculation Internal calculation Prescribed NA Internal calculation

Dust NA GOCART AFWA GOCART dust GOCART dust Han et al. (2004) NA NA

Microphysics Lin scheme (Lin
et al., 1983)

Morrison double-
moment (Morrison
et al., 2005)

GCE (Goddard Cu-
mulus Ensemble)

GCE (Tao et al.,
2003)

Reisner et al.
(1998)

Nogherotto
et al. (2016)

Lin scheme

Longwave
radiation

The Rapid Ra-
diative Transfer
Model for GCMs
(RRTMG) (Iacono
et al., 2008)

RRTMG Goddard (Chou
et al., 1994)

Goddard CCM3 (Commu-
nity Climate Model
3) (Maloney
et al., 2001)

CCM3 The Rapid Radia-
tive Transfer Model
(RRTM) (Mlawer
et al., 1997)

Shortwave
radiation

RRTMG RRTMG Goddard Goddard Revised CCM3 CCM3 Goddard

Boundary layer Yonsei University Yonsei University YSU (Yonsei Uni-
versity)

YSU MRF (Medium-
Range Forecast
Model) (Hong and
Pan, 1996)

Holtslag et al.
(1993)

Yonsei University

Cu physics Grell 3-D
(Grell, 1993)

Grell 3-D Grell 3-D Grell 3-D Grell 3-D Anthes et al. (1977) Grell 3-D

Surface physics Thermal diffusion Unified Noah
(Ek et al., 2003)

Unified Noah Unified Noah BATS (Biosphere-
Atmosphere Trans-
fer Scheme)
(Henderson-
Sellers, 1993)

BATS Unified Noah

Aerosol radiation Yes Yes Yes Yes Yes Yes Yes∗

Aerosol micro-
physics

Yes Yes Yes Yes Yes Yes No

Mixing state Internal mixing Internal mixing Internal mixing Internal mixing Internal mixing
among inorganic
aerosols and BC
and OC, and exter-
nal mixing between
dust, sea salt and
other aerosols

External mixing Internal mixing

∗ NA represents not considered in the simulation; M1: WRF-Chem v3.7.1; M2: WRF-Chem v3.5.1; M3 and M4: NU-WRF v7lis7-3.5.1-p3; M5: RIEMS-Chem; M6: RegCCMS; M7: WRFv3.4.1 and CMAQv5.0.2. Online coupled
WRF-CMAQ only considers aerosol–radiation interactions but no aerosol indirect effects. The WRF-CMAQ results shown in this paper are from an offline simulation (aerosol–radiation interaction was turned off).

Modeling System (RegCCMS; Wang et al., 2010) from Nan-
jing University (M6); and one application of the coupled
WRF-CMAQ (Community Multiscale Air Quality) model
by the University of Tennessee at Knoxville (UTK) (M7).
These models are all online coupled, which enables aerosol–
weather–climate interactions. The domain setting of each
model application is shown in Fig. 1. The domains of M2,

M5 and M6 (UIOWA, IAP and NJU (Nanjing University) in
Fig. 1) cover most areas of East Asia, including China, North
Korea, South Korea, Japan, Mongolia and the northern re-
gion of Southeast Asia. The M1, M3 and M7 domains (PNU,
NASA D01 and UTK) include more countries in Southeast
and South Asia. M4 (NASA D02) covers east China, Korea
and Japan. The descriptions of major model settings are listed
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below. More descriptions, including microphysics, radiation
and boundary layer, are listed in Table 1.

1. Model grids: the horizontal model resolutions of these
applications range from 15 to 60 km (Table 1). Model
vertical resolutions vary from 16 to 60 layers (Table 1)
and the set model top pressures range from 100 to 20 mb
(Table 1).

2. Gas phase chemistry: at PNU (M1), the RACM-ESRL
(Regional Atmospheric Chemistry Mechanism – Stock-
well et al., 1997; Earth System Research Laboratory –
Kim et al., 2009) gas phase chemistry was used. RACM
was developed based on the Regional Acid Deposi-
tion Model (RADM2) to simulate regional atmospheric
chemistry (Stockwell et al., 1990) (including 237 re-
actions) and the rate coefficients were updated in the
RACM ESRL version (Kim et al., 2009). At the Univer-
sity of Iowa (M2), CBMZ (Carbon-Bond Mechanism
version Z) gas phase chemistry was used. CBMZ (Za-
veri and Peters, 1999) extends the original CBM4 (Car-
bon Bond Mechanism 4) to function properly at larger
spatial and longer timescales. The augmented CBMZ
scheme includes 67 species and 164 reactions. The NU-
WRF model (M3 and M4) used RADM2 for gas phase
chemistry. Both the RIEMS-Chem model from IAP
(M5) and the RegCCMS model from NJU (M6) used
CBM4 to calculate gas phase chemistry (Gery et al.,
1989). The CBM4 version incorporated into RIEMS-
Chem (M5) includes 37 species and 91 reactions. The
version of CBM4 implemented in RegCCMS (M6) con-
sists of 36 reactions (four photolysis reactions) and 20
species (Wang et al., 2010). M7 applied the SAPRC99
(Statewide Air Pollution Research Center 99) mecha-
nism to simulate gas phase chemistry. The SAPRC99
mechanism implanted within the CMAQ model has 88
species and 213 chemical reactions (Carter, 2000a, b).

3. Aerosol modules: MADE/SORGAM (Modal Aerosol
Dynamics Model for Europe/Secondary Organic
Aerosol Model; Ackermann et al., 1998) aerosol
module coupled by Schell et al. (2001) was used in
M1. MADE uses three lognormal modes (Aitken,
accumulation, coarse) and simulates major aerosol
compositions, including sulfate, ammonium, nitrate,
sea salt, black carbon (BC) and organic carbon (OC).
M2 used an eight-bin MOSAIC (Model for Simulating
Aerosol Interactions and Chemistry) aerosol module.
MOSAIC considers major aerosol species at urban,
regional and global scales, including sulfate, nitrate,
ammonium, sodium, chloride, BC and other unspec-
ified inorganic species (such as inert minerals, trace
metals and silica) (Zaveri et al., 2008). The MOSAIC
version used in M2 includes some aqueous reactions
but no secondary organic aerosol (SOA) formation. At
NASA, the GOCART (Goddard Chemistry Aerosol

Radiation Transport) aerosol model (Chin et al., 2002)
was coupled to RADM2 gas phase chemistry, and
incorporated into the NU-WRF model (M3 and M4) to
simulate major tropospheric aerosol species, including
sulfate, BC, OC, dust and sea salt. In this aerosol model,
10 % of organic compounds from the volatile organic
compound (VOC) emission inventory were assumed
to be converted to SOA (Chin et al., 2002). Aerosols
in RIEMS-Chem include sulfate, nitrate, ammonium,
BC, OC, SOA, five bins of soil dust and five bins of sea
salt (Han et al., 2012; Li and Han, 2016). ISORROPIA
(Nenes et al., 1998) was coupled to RIEMS-Chem
to treat thermodynamic equilibrium process and to
simulate inorganic aerosols. SOA production from pri-
mary anthropogenic and biogenic VOCs is calculated
using a bulk aerosol yield method according to Lack
et al. (2004). RegCCMS also used ISORROPIA to
calculate inorganic aerosols (Wang et al., 2010). For
the implementation of aerosol effects, sulfate radiative
properties were treated following Kiehl and Briegleb
(1993), OC aerosols are assumed to have the same
properties as sulfate, and the wavelength-dependent
radiative properties of BC follow Jacobson (2001). The
AE6 aerosol (the sixth-generation CMAQ aerosol mod-
ule; Carlton et al., 2010) mechanism was coupled with
WRF. Compared to previous version of CMAQ aerosol
modules, AE6 improves SOA treatments, adds a new
heterogeneous N2O5 hydrolysis parameterization and
adds a new gas-to-particle mass transfer for coarse
aerosols in sea-salt emissions (Yu et al., 2014). There
are seven components, including water-soluble mass,
water-insoluble mass, elemental carbon, sea salt, water,
diameters and SDs, passed to WRF to directly change
radiation calculations.

4. Meteorological boundary and initial conditions: M1,
M2, M5 and M7 used the National Centers for Environ-
mental Prediction (NCEP) final analysis (FNL) data to
drive the model; M3 and M4 used NASA MERRA (The
Modern-Era Retrospective Analysis for Research and
Applications) reanalysis data and M6 used the NCEP–
NCAR reanalysis 1 dataset (Kalnay et al., 1996).

5. Soil dust: M1, M6 and M7 did not include soil dust cal-
culation. M3 and M4 used the GOCART dust module
(Ginoux et al., 2001), and M2 used a GOCART ver-
sion that was modified by AFWA (Air Force Weather
Agency). M5 used a dust module that is described in
Han et al. (2004).

6. Mixing state: M6 assumes external mixing, while other
models use internal mixing treatments for major aerosol
compositions.

Many previous studies have underscored that the choice of
gas phase mechanism and aerosol models is of great impor-
tance for simulating air pollutants (Knote et al., 2015). The
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different gas phase chemistry and aerosol modules used in
the participating models are expected to yield notable differ-
ences in performances, which are shown later in Sect. 3.

2.2 Emissions

The accuracy of air quality modeling results greatly depends
on the quality and reliability of the emission inventory. Ac-
cordingly, a new Asian emission inventory was developed for
MICS-III by integrating state-of-the-art national or regional
inventories to support this model intercomparison study (Li
et al., 2017). This is the major theme of MICS-Asia III Topic
2. These emissions, along with biogenic emissions, biomass
burning emissions, emissions from air and ship transport,
volcano emissions, and dust emissions, were used. This sec-
tion provides some basic descriptions of these emissions.

2.2.1 Anthropogenic emissions

The state-of-the-art anthropogenic emission inventory for
Asia (MIX) was developed by incorporating five inventories,
including the REAS (Regional Emission inventory in ASia)
inventory for Asia developed at the Japan National Insti-
tute for Environmental Studies (NIES), the Multi-resolution
Emission Inventory for China (MEIC) developed at Tsinghua
University, the high-resolution ammonia (NH3) emission in-
ventory in China developed at Peking University, the Indian
emission inventory developed at Argonne National Labora-
tory in the United States and the CAPSS (Clean Air Pol-
icy Support System) Korean emission inventory developed
at Konkuk University (Li et al., 2017). This MIX inventory
includes emissions for 10 species, namely SO2, nitrogen ox-
ides (NOx), carbon monoxide (CO), non-methane volatile or-
ganic compounds (NMVOCs), NH3, PM10, PM2.5, BC, OC
and carbon dioxide (CO2). NMVOC were provided with CB-
05 (Carbon Bond chemical mechanism 05) and SAPRC99
speciation datasets. Speciation mapping of NMVOC emis-
sions for groups using other gas phase chemical mecha-
nisms, such as CBMZ, RADM2 and CBM4, used the spe-
ciation framework documented in Li et al. (2014). Emissions
of these species were prepared for the years 2008 and 2010
with a monthly temporal resolution and 0.25◦ spatial reso-
lution. Weekly or diurnal profiles were also provided. Five
sectors were considered, namely industry, power generation,
residential sources, transportation and agriculture. Figure 2
shows the spatial maps of these 10 species for January 2010.
Emissions of most of these species exhibit similar spatial pat-
terns, with enhanced values in east China and lower values
in north and south India. Emissions of NH3 display a dif-
ferent spatial distribution, with pronounced values in India
and lower values in northern China (Fig. 2). A more de-
tailed description of this emission inventory is founds in Li
et al. (2017).

2.2.2 Biogenic emissions

Terrestrial ecosystems generate various chemical species, in-
cluding volatile and semi-volatile compounds, which play
important roles in atmospheric chemistry and are the largest
contributor to the global annual flux of reactive VOCs (Guen-
ther et al., 2006). For MICS-Asia III, hourly biogenic emis-
sions were provided for the entire year of 2010 using the
Model of Emissions of Gases and Aerosols from Nature
(MEGAN) version 2.04 (Guenther et al., 2006). The vari-
ables that drive MEGAN include land cover information
(plant function type, leaf area index) and weather conditions,
which include solar transmission, air temperature, humidity,
wind speed and soil moisture. In the preparation of MEGAN
biogenic emissions, land cover information was taken from
the NASA MODIS (Moderate Resolution Imaging Spectro-
radiometer) products, and weather conditions were calcu-
lated using the WRF simulations. Figure S1 in the Supple-
ment shows biogenic emissions of some selected species
(isoprene and HCHO) for January 2010. High biogenic emis-
sions are found in South Asia during winter, including India,
southern China and Southeast Asia, where solar radiation, air
temperature and vegetation cover are higher than in northern
regions. As shown in Table 1, M1 and M5 used prescribed
biogenic VOCs emissions; other models except M6 used in-
ternal calculation.

2.2.3 Biomass burning emissions

Biomass burning is a strong contributor to air pollutants,
and extensive biomass burning in Asia, particularly South-
east Asia, exerts a great influence on air quality (Streets
et al., 2003). For MICS-Asia III, biomass burning emissions
were processed by re-gridding the Global Fire Emissions
Database version 3 (GFEDv3; Randerson et al., 2015) (0.5 by
0.5◦). GFED fire emissions are estimated through combining
satellite-detected fire activity and vegetation productivity in-
formation. Carbon, dry matter, CO2, CO, CH4, hydrogen, ni-
trous oxide, NOx, NMHC (non-methane hydrocarbon), OC,
BC, PM2.5, total particulate matter and SO2 emissions are es-
timated with monthly temporal resolution. Figure S2 shows
the gridded biomass burning emissions for January 2010.
Biomass burning activity was highest in Cambodia and some
areas of Myanmar and north of Thailand (Fig. S2), and the
peak emission season is spring. Although it has been con-
cluded that biomass burning could significantly contribute to
aerosol concentrations in China, the contribution is limited
for the Topic 3 study since the region on which it focuses is
northern China, where biomass burning emissions are negli-
gible during winter (Gao et al., 2016a).

2.2.4 Volcanic SO2 emissions

Volcanoes are important sources of various sulfur and halo-
gen compounds, which play crucial roles in tropospheric
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Figure 2. MIX emission inventory for January 2010 (Mg month−1 grid−1).

and stratospheric chemistry. It is estimated that SO2 emitted
from volcanoes accounts for about 9 % of the total world-
wide annual SO2 flux (Stoiber et al., 1987). The Asia–
Pacific region is one of the most geologically unstable re-
gions in the world, where many active volcanoes are lo-
cated. During MICS-Asia Phase II, the volcano SO2 emis-
sions had already been provided for chemical transport
models (Carmichael et al., 2008b). Volcano SO2 emissions
were provided, with a daily temporal resolution. In Jan-
uary, some volcanoes in Japan are very active, such as
Miyake-jima (139.53◦ E, 34.08◦ N; 775 ma.s.l.) and Sakura-
jima (130.65◦ E, 31.59◦ N; 1117 ma.s.l.).

2.2.5 Air and ship emissions

Fuel burning in aircraft and ship engines produces green-
house gases and air pollutants. The shipping and aircraft
emissions used are based on the HTAPv2 emission inventory
(0.1 by 0.1◦) for the year 2010 (Janssens-Maenhout et al.,
2015), provided on an annual basis. Aircraft emissions in-
clude three parts: landing and takeoff (LTO), climbing and
descent (CDS), and cruise (CRS). Aircraft emission hot spots
are mostly located in Japan and in Beijing, the Yangtze River
Delta (YRD) and the Pearl River Delta (PRD) in China
(Fig. S3). The East China Sea, around Japan and Singapore,
exhibits high shipping emissions due to active shipping trans-
portation (Fig. S3). It is estimated that international shipping
contributed about 10 % to the global SO2 emissions and to-
gether with aviation contributes more than 10 % to global
NOx emissions (Janssens-Maenhout et al., 2015).

2.2.6 Dust emissions

In M2, the AFWA version of the GOCART dust model was
used. It calculates the saltation flux as a function of friction

velocity (u∗) and threshold friction velocity (u∗t ):

Q= C
ρ0

g
u3
∗

(
1+

u∗t

u∗

)(
1−

u2
∗t

u2
∗

)
when u∗ ≥ u∗t ,

where C is a tunable empirical constant, ρ0 is air density and
g is gravitational acceleration. The bulk vertical dust flux is
estimated by F = αQE (Marticorena and Bergametti, 1995),
in which α is the sandblasting efficiency and E is the dust
erodibility factor. The erodibility factor data are included in
the model geography dataset.

In M3 and M4, the dust emissions are estimated using the
GOCART dust model (Ginoux et al., 2001) and are deter-
mined by soil texture, moisture and surface wind speed. The
drier the soil and the stronger the wind, the higher the dust
emissions over the regions where the erodibility factor is not
0. In M5, soil dust emissions were estimated by the approach
from Han et al. (2004):

F = C0u
4
∗

(
1−

u∗t

u∗

)
(1− fiRi) when u∗ ≥ u∗t , RH≤ RHt .

C0 is a constant (1.4× 10−15), Ri is the reduction factor and
fi is the factional coverage of i type of vegetation in a model
grid (considering that vegetation cover can reduce dust emis-
sions). u∗ and u∗t are the friction and threshold friction ve-
locities. RH and RHt are the relative humidity and threshold
relative humidity near the surface. The total dust emission
flux is apportioned to each size bin based on field measure-
ments of the vertical dust flux size distributions in Chinese
deserts.

2.3 Boundary conditions

To predict more realistic spatial and temporal variations in air
pollutants, boundary conditions from global chemical trans-
port models are necessary to drive regional chemical trans-
port models (Carmichael et al., 2008b). Simulations of two
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global chemical transport models (e.g., GEOS-Chem (The
Goddard Earth Observing System Model-Chemistry) and
MOZART (Model for OZone And Related chemical Trac-
ers)) were used as boundary conditions for MICS-Asia III.
GEOS-Chem was developed in the USA to simulate tropo-
spheric chemistry driven by assimilated meteorology (Bey
et al., 2001). The National Center for Atmospheric Research
(NCAR) also provides global simulations of atmospheric
chemistry (MOZART model) and an interface to convert
them to WRF-Chem boundary conditions (Emmons et al.,
2010), and NASA provides global aerosol distributions us-
ing the global GOCART chemistry model (Chin et al., 2002).
GEOS-Chem was run with a 2.5◦×2◦ resolution and 47 ver-
tical layers. The MOZART-4 simulations were configured at
the horizontal resolution of 2.8◦× 2.8◦ and with 28 vertical
levels. NASA GOCART was configured at the same resolu-
tion as GEOS-5 meteorology (1.25◦× 1◦). As listed in Ta-
ble 1, M1 used climatological data from the NOAA Aeron-
omy Lab Regional Oxidant Model (NALROM), while M2
used boundary conditions from the MOZART-4 (provided
from the NCAR website). M3 and M4 used MOZART-4 as
boundary conditions for gases and used GOCART as bound-
ary conditions for aerosols. M6 also used fixed climatology
boundary conditions, and M5 and M7 used GEOS-Chem out-
puts as boundary conditions. The spatial distribution of near-
surface concentrations of major gases and aerosols from both
GEOS-Chem and MOZART are shown in Fig. S4. Even if
the same global chemistry model is used as boundary condi-
tions, the treatments of inputs might differ in detail, which
might lead to dissimilarities. In MICS-Asia II, Holloway
et al. (2008) discussed the impacts of uncertainties in global
models on regional air quality simulations.

2.4 Observation data

Historically, the lack of reliable air quality measurements in
Asia has been an obstacle in understanding air quality and
constraining air quality modeling in Asia. Beginning with
MICS-Asia II, observational data from EANET have been
used to evaluate model performance. EANET was launched
in 1998 to address acid deposition problems in East Asia,
following the model of the Cooperative Program for Mon-
itoring and Evaluation of the Long-range Transmission of
Air pollutants in Europe (EMEP). As of 2010, there were
54 wet-deposition sites and 46 dry-deposition sites in the 13
participating countries. Quality assurance and quality con-
trol measures were implemented at the national levels and in
the Inter-laboratory Comparison Project schemes to guaran-
tee a high-quality dataset. EANET supported the current ac-
tivities of MICS-Asia III and provided measurements in 2010
to all modeling groups. More information about the EANET
dataset can be found at http://www.eanet.asia/.

In addition to the EANET data, measurements of air pollu-
tants and aerosol optical depth (AOD) collected at the Cam-
paign on Atmospheric Aerosol Research network of China

Table 2. CARE-China network sites.

ID Site name Characteristics Longitude Latitude

1 Beijing Air qualitya, 116.37 39.97
AOD

2 Tianjin Air qualitya 117.21 39.08
3 Shijiazhuang Air qualitya 114.53 38.03
4 Xianghe Air qualitya 116.96 39.75
5 Beijing Forest AOD 115.43 39.97
6 Baoding AOD 115.51 38.87
7 Cangzhou AOD 116.80 38.28
8 Shenyang AOD 123.63 41.52
9 Jiaozhou Bay AOD 120.18 35.90

a Air quality: surface PM2.5, PM10, SO2, NOx, CO, O3.

(CARE-China) (Xin et al., 2015) were also used. Previous
successful networks in Europe and the United States under-
scored the importance of building comprehensive observa-
tional networks of aerosols in China to reach a better under-
standing of the physical, chemical and optical properties of
atmospheric aerosols across China. As the first comprehen-
sive attempt in China, CARE-China was launched in 2011 by
the Chinese Academy of Sciences (CAS) (Xin et al., 2015).
Before launching this campaign, CAS had already been mea-
suring air pollutants and AOD at some CARE-China sites.
Table 2 summaries the locations and characteristics of the
CARE-China measurements for January 2010. Air quality
measurements include concentrations of PM2.5, PM10, SO2,
NO2, NO, CO and O3.

In addition, AOD from the Aerosol Robotic Network
(AERONET) (https://aeronet.gsfc.nasa.gov/) and the opera-
tional meteorological measurements (near-surface tempera-
ture, humidity, wind speed and downward shortwave radia-
tion) in China and atmospheric sounding data in Beijing were
used. AERONET provides a long-term, continuous, readily
accessible and globally distributed database of spectral AOD,
inversion products and precipitable water. AOD data are cal-
culated for three quality levels: Level 1.0 (unscreened), Level
1.5 (cloud screened) and Level 2.0 (cloud screened and qual-
ity assured) (Holben et al., 1998). The locations and char-
acteristics of the AERONET measurements are also summa-
rized in Table 2. In situ measurements of meteorological data
from standard stations in China are operated by the China
Meteorological Administration (CMA) and different levels
of data, including daily, monthly and annually, are accessi-
ble to the public (http://data.cma.cn/en). The locations of all
observational sites used are marked in Figs. S5–S7.

The meteorology measurements (locations are shown in
Fig. S5) were averaged and compared with model results in
pairs. The radiation measurements were averaged and com-
pared against model results in northern China and south-
ern China (locations are shown in Fig. S6), separately. The
CARE-China, AERONET and EANET measurements (loca-
tions are shown in Figs. S6 and S7) were compared against
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model results site by site, and model ensemble mean values
were calculated by averaging all model results.

2.5 Analysis methodology

All groups participating in Topic 3 were requested to simu-
late meteorology, air quality, radiative forcing and effects of
aerosols over the Beijing–Tianjin–Hebei region of east China
during two periods: January 2010 and January 2013. Each
group was requested to submit the following fields from their
simulations.

1. Hourly mean meteorology:

a. air temperature and water vapor mixing ratio at 2 m
above the ground (T2, Q2), wind speed at 10 m
above the ground (WS10) and shortwave radiation
flux (Wm−2) at the surface;

b. above variables (except shortwave radiation flux) at
1 and 3 km above the ground.

2. Hourly mean concentrations:

a. SO2, NOx, CO, O3, PM2.5, PM10 and sulfate, ni-
trate, ammonium, BC, OC and dust in PM2.5;

b. above variables at 1 and 3 km above the ground.

3. Hourly mean AOD, aerosol direct radiative forcings at
the surface, top of the atmosphere (TOA) and inside the
atmosphere (single scattering albedo is an option for
participants).

4. Hourly mean integrated liquid water and cloud optical
depth.

5. Changes in T2, Q2, WS10 and PM2.5 concentrations at
the surface due to both direct and indirect aerosol ef-
fects.

We calculated multiple model evaluation metrics, including
correlation coefficient (r), root mean square error (RMSE),
mean bias error (MBE), normalized mean bias (NMB), mean
fractional bias (MFB) and mean fractional error (MFE). The
equations for these metrics are presented in the Supplement.

3 Results and discussions

Winter haze events frequently happen in east China, which
is partially due to the stagnant weather conditions in win-
ter. Here we present general descriptions of the meteorolog-
ical conditions during January 2010 using the NCEP/NCAR
reanalysis products. Figure S8 displays the monthly mean
T2, WS10 and total precipitation. Near-surface wind speeds
were very weak in the eastern and central China regions,
and there was no significant precipitation in northern China
(Fig. S8). During winters, northern China burns coal for heat-
ing, generating more emissions of air pollutants. Under stag-
nant weather conditions, haze episodes are easily triggered.

High concentrations of aerosols during January provide a
great opportunity to study aerosol–radiation–weather inter-
actions.

In this section, we present some major features of model
performances in meteorological and chemical variables for
the January 2010 period. Detailed analyses of aerosol feed-
backs and radiative forcing are presented in MICS-Asia III
companion papers. Heavy haze occurred over broad regions
of east China in January 2010. The plots of observed mete-
orological variables and PM2.5 in Beijing show the general
situation (Fig. 3). Elevated PM2.5 occurred during three pe-
riods separated in time by roughly 1 week (8, 16 and 26 Jan-
uary). The major event occurred during 15–21 January. The
events occurred during periods of low wind speeds and in-
creasing temperature and relative humidity. The high PM2.5
concentrations during 15–21 January also greatly reduce the
downward shortwave radiation. Below we evaluate how well
the models predict these features.

3.1 Evaluation of meteorological variables

Air quality is affected not only by emissions but also by
meteorological conditions. Meteorology affects air qual-
ity through altering emissions, chemical reactions, trans-
port, turbulent mixing and deposition processes (Gao et al.,
2016c). Thus, it is important to assess how well these partici-
pating models reproduced meteorological variables. The pre-
dicted T2, Q2, WS10 and daily maximum downward short-
wave radiation (SWDOWN) were evaluated against near-
surface observations at the CMA sites.

Figure 4a–c show the comparisons between simulated and
observed daily mean T2, Q2 and WS10 averaged over sta-
tions in east China (locations are shown in Fig. S5) during
January 2010, along with the multi-model ensemble mean
and observational SD. The calculated correlation coefficients
between models and observations are also shown in Fig. 4
and other calculated model evaluation metrics are summa-
rized in Table 3. In general, the simulated magnitudes and
temporal variations in T2 and Q2 show a high order of
consistency with observations, with correlation coefficients
ranging from 0.88 to 1. For T2, models tend to have a cool
bias; M1 and M2 have the lowest RMSE (0.64 and 0.68),
lowest MBE (−0.19 and −0.60) and lowest NMB (−0.07
and −0.22 %) values (Table 3). For Q2, most models tend
to slightly overestimate values; M1 and M2 have the best
performance, with the lowest RMSE (0.14 and 0.10), low-
est MBE (0.02 and −0.01), and lowest NMB (0.84 and
−0.55 %) values (Table 3).

Simulated wind speeds exhibit a larger diversity of results.
All models tend to overestimate WS10, with MBE ranging
from 0.15 to 2.37 ms−1. Overestimating wind speeds under
low wind conditions is a common problem of current weather
forecasting models, and many factors, including errors in ter-
rain data and reanalysis data, relatively low horizontal and
vertical model resolutions, as well as a poorly parameter-
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Figure 3. Observed near-surface daily meteorological variables and PM2.5 concentrations in Beijing for January 2010.

Figure 4. Comparisons between simulated and observed near-surface temperature (a), water vapor mixing ratio (b) and wind speeds (c)
(T2, Q2 and WS10) and downward shortwave radiation in northern China (d) and southern China (e) (spatial daily values are averaged over
measurements shown in S4 and S5; the error bars show the SD of values over the measurement sites).

ized urban surface effect, contribute to these overestimations.
From the calculated RMSE, MBE and NMB listed in Table 3,
M2, M5 and M7 show better skills in capturing WS10. In
addition, the multi-model ensemble mean shows the lowest
RMSE for Q2 and also better skills than most models for T2
and WS10. The correlation coefficients between the multi-
model ensemble mean and observations are 0.99, 0.99 and
0.98 for T2, Q2 and WS10, respectively.

The accuracy of radiation predictions is of great signifi-
cance in evaluating aerosol–radiation–weather interactions.
We evaluated simulated daily maximum SWDOWN aver-
aged over sites in northern China and southern China sepa-
rately in January 2010 against observations. The locations of
the radiation sites are shown in Fig. S6. As shown in Fig. 4d,
over stations in northern China, all models except M6 and
M7 reproduce daily maximum SWDOWN well, with corre-
lation coefficients ranging from 0.72 to 0.94. The poor per-
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Table 3. Performance statistics of meteorology variables (RMSE and MBE units: degree for T2; gkg−1 for Q2; ms−1 for WS10; Wm−2

for SWDOWN).

Metrics Models T2 Q2 WS10 SWDOWN south SWDOWN north

RMSE M1 0.64 0.14 2.04 86.32 69.39
M2 0.68 0.10 0.95 96.71 72.76
M3 2.34 0.16 1.16 60.34 59.56
M4 2.90 0.43 1.44 100.34 74.89
M5 2.97 0.46 0.91 91.06 65.27
M6 3.57 0.76 2.48 85.63 222.00
M7 2.05 0.17 0.22 158.10 218.67
Ensemble 1.81 0.10 1.28 81.96 62.51

MBE M1 −0.19 0.02 2.01 66.58 59.94
M2 −0.60 −0.01 0.91 83.88 62.38
M3 −2.18 −0.04 1.11 36.44 47.74
M4 −2.09 0.11 1.40 26.78 33.59
M5 −2.73 0.43 0.74 49.06 51.00
M6 −3.06 −0.56 2.37 −0.49 −202.26
M7 −2.02 −0.12 0.15 145.24 159.02
Ensemble −1.71 −0.02 1.25 65.54 36.37

NMB M1 −0.07 % 0.19 % 17.58 % 14.61 % 13.34 %
(%) M2 −0.21 % −0.12 % 7.94 % 18.41 % 13.88 %

M3 −0.79 % −0.34 % 9.73 % 8.00 % 10.63 %
M4 −0.75 % 0.95 % 12.26 % 5.88 % 7.48 %
M5 −0.98 % 3.65 % 6.45 % 10.77 % 11.35 %
M6 −1.10 % −4.77 % 20.73 % −0.11 % −45.02 %
M7 −0.72 % −1.05 % 1.31 % 31.88 % 35.39 %
Ensemble −0.61 % −0.14 % 10.98 % 14.38 % 8.10 %

formance of M6 in northern China is caused by a greatly
overpredicted liquid water path (LWP) over northern China
(Fig. S9). The slightly higher daily maximum SWDOWN
from M7 than other models is due to the deactivation of
aerosol–radiation interactions in the presented M7 simula-
tion.

SWDOWN decreases under conditions of high PM, as
shown for example on 9 and 15–21 January. This is one of the
important reasons for coupled air quality and meteorology
modeling. It is worth noting that most models predict higher
daily maximum SWDOWN compared to observations when
severe haze happened in the North China Plain (16–19 Jan-
uary 2010), indicating that aerosol effects on radiation might
be underestimated. Besides, clouds are also important for al-
tering radiation. To exclude clouds’ impacts on the radiation
shown here, we calculated the radiation reduction ratio due to
clouds using radiation prediction for clear sky and for cloudy
conditions from M2 (shown in Fig. S10). During the severe
haze period (16–19 January 2010), the averaged reduction
fraction is 5.9 % in northern China and 4.2 % in southern
China. Thus, the relatively lower radiation during this period
(Fig. 4d) is mainly caused by aerosols, but the lowest radia-
tion on 20 January was caused by clouds (Figs. 4d and S10).
Over southern China sites (Fig. 4e), M6 and M7 show a better
consistency with observations than over northern China sites.

According to the calculated RMSE listed in Table 3, M3 and
the multi-model ensemble mean exhibit relatively better per-
formance in capturing the observed time series of daily maxi-
mum SWDOWN in both northern China and southern China.

The above comparisons show that T2 and Q2 were re-
produced well by the participating models, but wind speeds
were overestimated by all models. Emery et al. (2001) pro-
posed that excellent model performance would be classi-
fied as wind speed RMSE smaller than 2 ms−1 and wind
speed bias smaller than 0.5 ms−1. Based on the calculated
RMSE and MBE of WS10 shown in Table 3, RMSE val-
ues from all models match the proposed RMSE thresh-
old but MBE values are higher than 0.5 ms−1. The verti-
cal distributions of temperature, water vapor mixing ratio
and wind speeds were also validated against atmospheric
sounding data in Beijing at 1 and 3 km (Fig. S11, averaged
at 00:00 and 12:00 UTC) (http://weather.uwyo.edu/upperair/
sounding.html). The magnitudes of temperature, water vapor
mixing ratio and wind speeds from different models are gen-
erally consistent with each other at 1 and 3 km, but variations
are larger near the surface.
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Figure 5. Comparisons between simulated and observed daily air pollutants (SO2, NOx, CO, O3, PM2.5 and PM10) at the Beijing CARE-
China site.

3.2 Evaluation of air pollutants

Figure 5 displays the daily averaged predicted and observed
SO2, NOx, CO, O3, PM2.5 and PM10 concentrations at the
Beijing station, along with the observational SD (locations
are shown in Fig. S7). Comparisons for the Tianjin, Shi-
jiazhuang and Xianghe sites are shown in Figs. S12–S14.
M6 only provided SO2 and NOx concentrations, so it is not
shown in the plots of CO, O3, PM2.5 and PM10. The ob-
served and predicted primary gaseous pollutants, PM2.5 and
PM10 show the same monthly variations with elevated values
at roughly weekly intervals, with the largest event occurring
during 15–21 January. For example, as shown in the com-
parisons of SO2 concentration, the temporal variations are
reproduced well by all the models, but peak values are over-
estimated or underestimated by some models. Based on the
calculated MBE values shown in Table 4, all models except
M2 tend to underestimate SO2 at the CARE-China sites. M1
shows the highest correlation (0.90) with SO2 observations
in the Beijing site, and most other models show similar good
correlations. The multi-model ensemble mean shows a bet-
ter agreement with observations with a higher correlation of
0.92, and it falls within the range shown by the SD error
bar. In general, the predictions for NOx capture the main fea-
tures in the observations, with slightly less skills than for the
SO2 prediction. The calculated correlation coefficients for

NOx from different models are close to each other, ranging
from 0.63 to 0.88. M2 and M5 predict higher NOx concentra-
tions than observations and other models (MBE in Table 4).
All models overestimate NOx concentration in Shijiazhuang
(Fig. S14), suggesting that NOx emissions in Shijiazhuang
might be overestimated in the MIX emission inventory. All
models produce similar CO predictions.

PM2.5 concentrations are well modeled, with high cor-
relation coefficients ranging from 0.87 to 0.90 in Beijing,
from 0.83 to 0.93 in Tianjin and from 0.74 to 0.91 in Xi-
anghe. The correlation coefficient of the multi-model ensem-
ble mean for PM2.5 reaches 0.94 (Table 4), better than any
individual model. The performances of all participating mod-
els in reproducing PM10 variations are not as good as re-
producing PM2.5. M1 and M2 overestimate PM10 concen-
trations, and other models underestimate PM10 concentra-
tions (MBE in Table 4). These biases are probably related to
different treatments of primary aerosols and anthropogenic
dust in the models. In winter in the North China Plain, soil
dust generally contributes about 10 % to PM2.5 concentra-
tions (He et al., 2014), but there is also primary PM from
anthropogenic activity, such as power plants, traffic and con-
struction. The primary particles are mostly in coarse mode,
which might contribute to PM10 concentrations, but this is
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highly uncertain compared with other anthropogenic emis-
sion sectors.

The models showed the poorest skills in predicting ozone.
All models exhibit different performances in simulating
ozone concentrations, and the correlation coefficients be-
tween models and observations can reach negative values
(Fig. S12). M3 and M4 tend to overestimate ozone con-
centrations, M2 slightly overestimates it, and M1, M5 and
M7 slightly underestimate it (MBE in Table 4). Accord-
ing to the calculated RMSE in Table 4, M1 and M7 show
relatively better performance in modeling ozone variations.
Although WRF-Chem and NU-WRF models were applied
at three institutions, different gas phase chemistry schemes
were used, which leads to these diversities among predicted
ozone concentrations. The impacts of gas phase chemical
mechanisms on ozone simulations have been investigated in
Knote et al. (2015). The overestimations of ozone concentra-
tions from M3 and M4 primarily occur during nighttime, im-
plying the underestimated titration of ozone by NOx. Forkel
et al. (2015) reported that the RADM2 solver in WRF-Chem
has the problem of underestimating ozone titration in areas
with high NO emissions, and it is the version that applied in
M3 and M4.

Figure 6 shows the comparisons between modeled and ob-
served ground level daily averaged concentrations of SO2,
NOx, O3 and PM10 during January 2010 at the Rishiri site
in Japan from EANET. The locations of EANET sites are
marked in Fig. S7. Comparisons at other EANET sites are
shown in Figs. S15–S18. The models are able to predict the
major features in the observations. For example, low values
of most pollutants are observed (and predicted) during the
first half of the month, followed by elevated values, which
peak on 21 January. For SO2, most models show similar ca-
pability in producing the temporal variations in observations
with slight underestimation (MBE in Table 5). According to
the calculated RMSE averaged over all the EANET sites,
M2 and the multi-model ensemble mean performed the best.
For NOx, the multi-model ensemble mean shows a lower
RMSE than any individual model (Table 5). Similar to the
comparisons over CARE-China sites, large discrepancies ex-
ist in ozone predictions, but the model ensemble mean still
shows the lowest RMSE for ozone predictions. PM10 con-
centrations are largely underestimated by M1 (largest nega-
tive MBE: −21.03 µgm−3) and overestimated by M5 (high-
est positive MBE: 3.77 µgm−3) (Table 5), which could be
related to the differences in sea-salt treatments. Spatial dis-
tributions of the monthly near-surface concentrations of SO2,
NOx, O3 and CO for January 2010 from all participating
models are shown in Fig. S19. The aerosol spatial distribu-
tions are discussed in the following section.

3.3 PM2.5 and PM2.5 chemical composition
distribution

Due to different implementations of chemical reactions in the
models, predicted PM2.5 chemical compositions from par-
ticipating models differ greatly. Figures 7 and 8 show the
predicted monthly mean concentrations of sulfate, nitrate,
ammonium, BC and OC in PM2.5 from all the participating
models for January 2010.

M1, M2, M3, M4 and M7 all predict quite low sulfate con-
centrations in east China but with considerably enhanced sul-
fate in southwestern China and western India. M5 and M6
show similar spatial patterns of sulfate except that M6 pro-
duces higher concentrations. The chemical production of sul-
fate is mainly from gas phase oxidation of SO2 by OH rad-
icals and aqueous-phase pathways in cloud water. In cloud
water, dissolved SO2 can be oxidized by O3, H2O2, Fe(III),
Mn(II) and NO2 (Seinfeld and Pandis, 2016). Most chemical
transport models have included the above gas phase oxida-
tion of SO2 by OH and the oxidation of dissolved SO2 by O3
and H2O2 in the aqueous phase. Under hazy conditions, radi-
ation is largely reduced due to aerosol dimming effects, and
sulfate formation from gas phase and aqueous-phase oxida-
tion processes are slowed down, which tends to reduce sul-
fate concentration. However, field observations exhibit an in-
crease in sulfate concentration during haze episodes (Zheng
et al., 2015). Cheng et al. (2016) proposed that the reactive
nitrogen chemistry in aerosol water could contribute signifi-
cantly to the sulfate increase due to enhanced sulfate produc-
tion rates of NO2 reaction pathways under high aerosol pH
and elevated NO2 concentrations in the North China Plain
(NCP). Wang et al. (2016) also pointed out that the aqueous
oxidation of SO2 by NO2 is key to efficient sulfate forma-
tion on fine aerosols with high relative humidity and NH3
neutralization or under cloudy conditions. Besides, Zheng
et al. (2015) suggested that heterogeneous chemistry on pri-
mary aerosols could play an important role in sulfate pro-
duction and lead to increasing sulfate simulation during haze
episodes. X. Huang et al. (2014) found that including natural
and anthropogenic mineral aerosols can enhance sulfate pro-
duction through aqueous-phase oxidation of dissolved SO2
by O3, NO2, H2O2 and transition metal. Gao et al. (2016b),
Wang et al. (2014) and Zhang et al. (2015) also emphasized
the importance of multiphase oxidation in winter sulfate pro-
duction. However, these processes are currently not incor-
porated into the participating models for this study, which
might be responsible for the apparent underpredictions of
sulfate concentrations (Fig. 9). M5 incorporated heteroge-
neous chemical reactions on aerosol surfaces (Li and Han,
2010), which enhances total sulfate production.

M1 and M5 predict relatively small nitrate and ammo-
nium concentrations, while M2, M6 and M7 produce simi-
lar magnitudes and spatial patterns of nitrate. Nitrate forma-
tion involves both daytime and nighttime chemistry. During
the daytime, NO2 can be oxidized by OH to form nitric acid
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Figure 6. Comparisons between simulated and observed daily air pollutants (SO2, NOx, O3 and PM10) at the Rishiri EANET sites.

Table 4. Performance statistics of air pollutants at the CARE-China sites (RMSE and MBE units: ppbv for gases and µgm−3 for PM).

Metrics Models SO2 NOx O3 PM2.5 PM10 SO2 NOx O3 PM2.5 PM10

r M1 0.76 0.60 0.46 0.85 0.76 MBE −17.14 −5.53 −1.54 55.69 30.70
M2 0.77 0.65 0.48 0.90 0.85 2.10 33.41 2.53 48.44 12.94
M3 0.69 0.66 0.39 0.85 0.68 −15.89 −8.00 23.93 8.13 −19.92
M4 0.67 0.61 0.42 0.88 0.73 −9.98 0.28 24.49 23.12 −3.23
M5 0.72 0.73 0.39 0.91 0.84 −9.69 64.29 −5.30 1.68 −52.49
M6 0.62 0.48 – – – −27.53 −29.98 – – –
M7 0.57 0.58 0.48 0.82 0.77 −25.56 7.85 −3.09 43.59 −21.00
Ensemble 0.79 0.71 0.51 0.94 0.87 −14.81 8.90 6.84 30.11 −8.83

RMSE M1 27.63 33.51 6.40 73.37 79.06 NMB −14.05 −5.41 7.37 63.57 18.93
M2 21.00 66.30 8.15 72.44 80.72 (%) 12.13 69.58 39.87 54.07 6.38
M3 29.50 36.87 24.76 47.20 78.21 −10.44 −6.26 306.33 9.67 −12.41
M4 26.86 36.10 25.34 49.13 72.25 0.31 4.51 316.99 27.03 −1.78
M5 32.17 87.48 7.90 45.32 81.00 6.83 127.45 −38.49 0.52 −32.94
M6 33.95 48.62 – – – −51.28 −48.59 – – –
M7 34.75 35.88 6.89 64.25 70.19 −37.87 18.32 −7.78 48.92 −12.78
Ensemble 24.10 29.12 8.86 45.25 56.65 −13.48 22.80 104.04 33.96 −5.77

MFB M1 −17.32 5.26 −5.06 64.34 21.98 MFE 53.73 43.79 54.54 69.92 41.95
(%) M2 9.09 32.82 19.88 51.18 3.44 (%) 43.18 73.39 60.79 59.87 39.35

M3 −12.96 4.52 113.60 32.67 −4.62 57.87 46.69 113.60 50.10 36.83
M4 1.53 15.34 114.35 45.27 6.07 46.30 48.13 114.35 55.03 34.72
M5 −20.24 67.25 −62.65 16.88 −35.15 63.69 72.07 80.92 48.17 45.09
M6 −77.13 −56.89 – – – 84.21 69.66 – – –
M7 −46.67 21.80 −19.50 57.19 −7.02 72.35 49.18 60.64 66.27 35.83
Ensemble −14.17 26.41 62.86 50.61 3.12 43.13 42.94 71.14 55.86 28.05
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Table 5. Performance statistics of air pollutants at the EANET sites (RMSE and MBE units: ppbv for gases and µgm−3 for PM).

Metrics Models SO2 NOx O3 PM10 SO2 NOx O3 PM10

r M1 0.57 0.64 0.14 0.59 MBE −0.68 0.68 −6.16 −21.03
M2 0.59 0.45 0.30 0.75 −0.45 −0.39 5.50 3.12
M3 0.50 0.55 0.26 0.51 −0.37 −0.21 3.67 3.55
M4 0.45 0.55 0.25 0.49 −0.57 −0.61 4.28 2.96
M5 0.58 0.54 0.01 0.03 −0.57 1.28 4.67 3.77
M6 0.33 0.24 – – 0.32 −1.68 – –
M7 0.53 0.49 0.38 0.55 −0.03 0.64 −1.89 −15.75
Ensemble 0.60 0.66 0.32 0.59 −0.34 −0.07 1.68 −3.89

NMB (%) M1 −46.45 41.49 −15.03 −82.29 RMSE 1.18 1.37 8.23 23.39
M2 −29.64 −29.75 13.47 18.90 1.01 1.35 7.29 10.01
M3 −25.42 −17.75 9.01 19.46 1.02 1.02 6.44 13.71
M4 −39.63 −35.84 10.47 16.95 1.14 0.97 6.35 13.78
M5 −34.23 38.50 11.38 31.80 1.27 2.75 12.27 23.10
M6 12.63 −93.57 – – 1.38 1.85 – –
M7 17.42 31.47 −4.71 −56.18 1.04 1.57 6.52 18.76
Ensemble −20.76 −10.79 4.10 −8.56 0.96 0.79 4.98 11.69

Figure 7. Simulated monthly concentrations of major PM2.5 components (µgm−3) for January 2010 from all participating models.

(HNO3) and by ozone to form NO3. HNO3 is easily removed
by dry or wet deposition, but NO3 is easily photolyzed back
to NO2. During nighttime, NO3 is the major oxidant, which
oxides NO2 to form dinitrogen pentoxide (N2O5). The ho-
mogenous reaction of N2O5 with water vapor is possible
but very slow, while the heterogeneous uptake of N2O5 onto
aerosol particles has been identified as a major sink of N2O5
and an important contributor to particulate nitrate (Kim et al.,
2014). The MOSAIC aerosol module (Zaveri et al., 2008)
coupled with CBMZ gas phase chemistry in WRF-Chem al-
ready includes the heterogeneous uptake of N2O5 since ver-

sion v3.5.1 (Archer-Nicholls et al., 2014), which is the ver-
sion used by M2, leading to the high production of nitrate.
An et al. (2013) incorporated photoexcited nitrogen dioxide
molecules, heterogeneous reactions on aerosol surfaces and
direct nitrous acid (HONO) emissions into the WRF-Chem
model and found that these additional HONO sources could
improve simulations of HONO and nitrate in northern China.
M7 also predicts high nitrate concentrations (N2O5 and NO2
gases react with liquid water; Zheng et al., 2015), and the
predicted lower nitrate concentrations from other models are
probably due to missing aqueous-phase and heterogeneous
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Figure 8. Simulated monthly concentrations of PM2.5 and major PM2.5 components (µgm−3) for January 2010 from all participating
models.

Figure 9. Observed and simulated daily mean concentrations of major PM2.5 chemical components at the urban Beijing site.
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chemistry or the implementations of a different gas phase ox-
idation in these models. Many studies have been conducted
regarding sulfate formation issues. Nitrate also accounts for
a large mass fraction in PM2.5 during winter haze events in
northern China, yet less attention has been paid to fully un-
derstanding its formation. It is worth digging further into the
details about how different processes contribute to high ni-
trate concentrations in future studies. M3 and M4 do not in-
clude the explicit nitrate and ammonium treatment, but am-
monium is implicitly considered in total PM2.5 mass esti-
mate.

The predicted ammonium concentrations are associated
with the amounts of sulfate and nitrate, as shown by its sim-
ilar spatial distribution to sulfate and nitrate. NH3 neutral-
izes H2SO4 and HNO3 to form aerosol, so its amount can
affect the formation of sulfate, nitrate and ammonium. Since
the same emission inventory was used, the amount of am-
monia available for neutralizing will not vary greatly among
these models. Thus, the rates of H2SO4 and HNO3 produc-
tion determines the amounts of ammonium. For example, the
produced ammonium concentrations are small in M1, similar
to its predicted sulfate and nitrate concentrations. High am-
monium concentrations are predicted from M6, due to high
productions of nitrate and sulfate (Fig. 7).

The spatial distributions and magnitudes of predicted BC
from all participating models are similar to each other as BC
is a primary pollutant and not impacted by chemical reac-
tions. The concentrations of BC in the atmosphere are mainly
influenced by planetary boundary layer (PBL) mixing and
diffusion, aging, deposition (dry deposition and wet scaveng-
ing) and advection processes. Predicted BC concentrations
from M2 and M7 are higher than those from other models,
which might be caused by the treatment of aging and de-
position (dry deposition and wet scavenging) processes. For
example, in the GOCART aerosol model (M3 and M4), 80 %
of BC are assumed to be hydrophobic and then undergo ag-
ing to become hydrophilic in an e-folding time of 1.2 days.
Hydrophilic aerosols will go through wet deposition. But in
other models like M2 and M7, BC is assumed to be hy-
drophobic and there is thus less wet removal.

The disparity among predicted OC concentrations is
mainly associated with the different treatments of SOA pro-
duction, given that the primary organic carbon (POC) pre-
diction is generally consistent among models using the same
emission inventory. The predicted OC concentrations from
M1, M2 and M7 are close to each other. M1 uses SORGAM
to simulate SOA, but M2 and M6 did not include any SOA
formation mechanism. The similar magnitudes of OC from
M1 suggest that SORGAM in M1 does not produce appre-
ciable amounts of SOA, which is consistent with the find-
ings in Gao et al. (2016a). Although SOA formation was
implemented in M5, the production is relatively weak com-
pared to M3 and M4. In the atmosphere, SOA is mainly
formed from the condensation of semi-volatile VOCs, which
are the products of the oxidation of primary VOCs. An em-

pirical two-product model (Odum et al., 1996) is often used
to simulate SOA formation, but this method was reported
to significantly underestimate measured SOA mass concen-
trations (Heald et al., 2008). Later, the volatility basis-set
(VBS) approach (Donahue et al., 2006) was developed to
represent the wide range of the volatility of organic com-
pounds and complex processes. It was found that the VBS ap-
proach was able to increase SOA production and was able to
reduce observation–simulation biases in many regions with
high emissions (Tsimpidi et al., 2010) including east China
(Han et al., 2016). It was also suggested that primary or-
ganic aerosols (POAs) are semi-volatile and can evaporate
to become SOA precursors (Kanakidou et al., 2005). In M5,
the SOA production is calculated using a bulk yield method
(Lack et al., 2004), which uses yields that represent the max-
imum amount of SOA able to be produced from a unit of
reacted VOCs. However, the SOA concentration is highly
dependent on the yield data. During haze episodes, photo-
chemistry is reduced due to the aerosol dimming effect; thus,
aqueous reaction processes on aerosol water and cloud or
fog water could become much more important in producing
SOA. R. Huang et al. (2014) also suggested that low temper-
ature does not significantly reduce SOA formation rates of
biomass burning emissions.

However, most models oversimplified SOA formation. In
M3 and M4, SOA was treated by assuming that 10 % of
VOCs from a terrestrial source are converted to OC (Chin
et al., 2002), and these models produced high OC concen-
trations, with a major contribution from SOA. The 10 %
yield rate could be unrealistically high during hazy days be-
cause solar radiation was much reduced. Zhao et al. (2016)
comprehensively assessed the effect of organic aerosol ag-
ing and intermediate-volatility emissions on organic aerosol
(OA) formation and confirmed their significant roles. All
these results suggest that more complicated SOA schemes
are needed to improve organic aerosol simulations during
haze events.

The different predictions of PM2.5 chemical components
lead to differences in PM2.5 and PM10 concentrations for
January 2010, which are shown in the last row of Fig. 8. Al-
though spatial distributions of PM2.5 from these models are
similar, the underlying causes are different. M2, M3 and M5
simulated higher PM2.5 levels in the deserts of west China,
which are contributed by wind-blown dust. M1 and M7 failed
to produce high PM2.5 concentrations in the deserts of west
China, due to the omission of dust emissions. The spatial dis-
tributions of predicted wind-blown dust from M5 are slightly
different from M2 and M3, with lower concentrations over
the Gobi desert (in west Inner Mongolia) (PM10 in Fig. 8).
M2 and M3 used similar GOCART dust emission schemes
based on wind speeds and erodible areas, while M5 fur-
ther considered the dust reduction by vegetation cover, which
could partially explain the relatively lower wind-blown dust
predictions from M5. The enhanced PM2.5 concentrations in
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Figure 10. The ensemble mean monthly averaged near-surface dis-
tributions of PM2.5 compositions for January 2010 (sulfate (a), ni-
trate (c), ammonium (e), BC (g), and OC (i)), along with the spatial
distribution of the coefficient of variation (b, d, f, h, and j, SD di-
vided by the average).

central China from M2 and M7 are caused by large nitrate
production, as shown in Fig. 7.

The differences in the predictions of aerosols composition
discussed above can be seen clearly in the comparisons at the
Beijing site during the 13–23 January period when a haze
event occurred in the NCP (Fig. 9). Most models failed to
produce the observed high sulfate concentrations. Only the
sulfate predictions from M5 are close to the observed high
values. M2 and M7 predict reasonable nitrate concentrations.
M3 and M4 overpredict OC during the haze period, but other
models underpredict OC concentrations.

Figure 11. The ensemble mean monthly averaged near-surface dis-
tributions of PM2.5 for January 2010 (a), along with the spatial dis-
tribution of the coefficient of variation (b, SD divided by the aver-
age).

Figures 10 and 11 show the ensemble mean monthly aver-
aged near-surface PM2.5, PM2.5 composition, along with the
spatial distribution of the coefficient of variation. The coef-
ficient of variation (CV) is defined as the SD divided by the
average (Carmichael et al., 2008b), and larger values indi-
cate lower consistency among models. The mean concentra-
tions of PM2.5 and the mean concentrations of PM2.5 chem-
ical compositions are high in Sichuan Basin and east China.
High CV values are shown in northern China for sulfate and
in most areas for nitrate and OC. The diversity in predictions
of these species is caused by the complexity of secondary
formation and different model treatments, which have been
discussed above. Higher consistency is shown for model BC
with CV values less than 0.3 in most areas (Fig. 10h). The CV
values for PM2.5 are also low in the northern China region,
which is consistent with the good performance of PM2.5 pre-
dictions shown in above comparisons. However, the CV val-
ues can reach above 1.6 in northwestern Chinese regions,
partially due to discrepancies in dust predictions.

3.4 Evaluation of AOD

We used the AOD measurements from the AERONET and
CARE-China networks to evaluate how participating models
perform in simulating AOD. The submitted AOD data from
all models except M6 were at 550 nm, and AOD predictions
from M6 were at 495 nm. We used the Ångström exponent
relation (Schuster et al., 2006) to convert AOD at 495 to
550 nm and all the AERONET and CARE-China AOD data
to 550 nm used. The locations of the AERONET and CARE-
China AOD measurement sites are marked in Fig. S6. Day-
time mean AOD are calculated in a pairwise manner and the
comparisons and performance statistics are shown in Figs. 12
and 13 and Table 6. On some days, data are missing because
AOD cannot be retrieved under serious pollution and cloudy
conditions (Gao et al., 2016a). On days with data, the varia-
tions in AOD are captured well by all models. However, large
disparities exist among models in the simulated peak AOD
values (factor of 2) during the severe haze episode of 15–20
January 2010 (Figs. 12 and 13). M2 consistently simulated
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Figure 12. Comparisons between simulated and observed daily (daytime) mean AOD at the CARE-China sites (Baoding, Beijing City,
Beijing Forest, Cangzhou, Jiaozhou, Shenyang).

the highest AOD values among models, followed by M5 and
M7, while M6 simulated the lowest.

In M1 and M7, particle size distribution is described by
a lognormal function with a geometric mean radius and
a geometric SD based on the OPAC (Optical Properties of
Aerosols and Clouds) database (Hess et al., 1998). In M3
and M4, sulfate, BC and OC are parameterized in bulk mode,
and a sectional scheme is used for sea-salt and dust aerosols.
M2 uses an eight-bin sectional aerosol scheme with size sec-
tions ranging from 39 nm to 10 µm. The refractive index of
different aerosol components in the models are mainly taken
from d’Almeida et al. (1991) or the OPAC database. All mod-
els except M6 use a kappa (κ) parameterization to describe
aerosol hygroscopic growth (Petters and Kreidenweis, 2007),
in which the hygroscopicity κ values largely vary among dif-
ferent aerosol chemical components. For example, κ = 0 for
black carbon and κ > 0.6 for inorganic aerosols. M6 uses
a different hygroscopic growth scheme following Kiehl and
Briegleb (1993). WRF-Chem models assume internal mixing
among aerosols within each mode (or size bin) and external
mixing between modes (or size bins), M5 assumes that inor-
ganic and carbonaceous aerosols are internally mixed but ex-
ternally mixed with soil dust and sea salt. M6 uses an external
mixture assumption among aerosols except for hydrophilic

BC, which is internally mixed with other aerosols in a core-
shell way.

As shown in Fig. 9, the observed total inorganic aerosol
concentration in Beijing on 19 January 2010 was about
130 µgm−3with sulfate concentrations higher than 50 µgm−3

and nitrate concentrations over 60 µgm−3. However, all
models except M5 largely underestimated sulfate concen-
trations. Most models except M2 underpredicted nitrate
concentrations. The predicted concentrations of inorganic
aerosols (the sum of sulfate, nitrate and ammonium) from
M2 (175 µgm−3) is higher than observations and other mod-
els (Fig. 9), which can partially explain the largest simu-
lated AOD by M2. The largest simulated AOD by M2 could
also be related to different vertical distributions of aerosols.
M6 simulated a similar level of inorganic aerosols as M2,
but the simulated AOD is lower than other models, which
could be caused by weaker hygroscopicity from a different
scheme (Kiehl and Briegleb, 1993) and/or lower simulated
RH (see Fig. S20). Although M3 and M4 largely overpre-
dict OC concentrations, the mass extinction coefficient of
OC is smaller than inorganic aerosols. M1 predicts about
3 times larger BC concentrations than the observations. Al-
though the mass extinction coefficient of BC is larger than
inorganic aerosols, the mass concentrations and hygroscop-
icity of BC are smaller than those of inorganic aerosols, lead-
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Figure 13. Comparisons between simulated and observed daily (daytime) mean AOD at the AERONET sites (Beijing, Shirahama, GIST
(Gwangju Institute of Science and Technology), Xianghe, Xinglong, Osaka).

ing to relatively lower AOD from M1 simulation. M5 and
M7 show high consistency in the simulated AOD due to
similar levels of predicted inorganic aerosol concentrations
(80∼ 90 µgm−3) and similar hygroscopic growth assump-
tions.

As listed in Table 1, internal mixing is assumed by all the
participating models except M6 for major aerosol composi-
tions. Curci et al. (2015) discussed the impacts of mixing
state on simulated AOD and found that the external mixing
state assumption significantly increase simulated AOD. M6
uses external mixing but shows relatively lower AOD mainly
due to its ignorance of other aerosol species such as dust and
sea salt. In general, the magnitudes of simulated inorganic
aerosol concentrations and the hygroscopic growth efficiency
(affected by varied RH) can explain the simulated variations
and magnitudes of AOD in Beijing during the severe haze
event, given that most models use a similar lognormal size
distribution and internal mixing assumptions.

Table 6 shows the statistics for AOD simulations at the
northern China sites and at all sites. In the NCP region, R
ranges from 0.36∼ 0.74 for all the models. It is noteworthy
that R values at the sites in NCP are larger than those at all
sites, indicating the larger reliability of model inputs (emis-
sions) and meteorological simulations in northern China. In
terms of magnitudes, all models tend to underpredict AOD,

with an NMB of −2.7 to −71 % in the NCP, and larger bi-
ases (NMB of −21 to −75 %) at all sites. It is interesting to
note that using a finer grid size (M4) can produced a slightly
smaller NMB compared with the same model using larger
grid size (M3). The effect of grid resolution will be the topic
of a future paper.

4 Summary

The MICS-Asia Phase III Topic 3 examines how current on-
line coupled air quality models perform in reproducing ex-
treme aerosol pollution episodes in northern China and how
high aerosol loadings during these episodes interact with ra-
diation and weather. A new anthropogenic emission inven-
tory was developed for this phase (Li et al., 2017), and this
inventory along with biogenic, biomass burning, air and ship,
volcano, and dust emissions was used for all the modeling
groups. All modeling groups were required to submit results
based on the analysis methodology that is documented in this
paper.

This paper focused on the evaluation of the predictions
of meteorological parameters and the predictions of aerosol
mass, composition and optical depth. These factors play im-
portant roles in feedbacks impacting weather and climate
through radiative and microphysical processes. Comparisons
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Table 6. Performance statistics of AOD.

Metrics Models M1 M2 M3 M4 M5 M6 M7 Ensemble

R Northern China 0.63 0.74 0.57 0.51 0.68 0.36 0.71 0.77
All 0.60 0.65 0.46 0.42 0.53 0.33 0.64 0.75

MBE Northern China −0.25 −0.10 −0.09 −0.07 −0.13 −0.21 −0.05 −0.03
All −0.18 −0.02 −0.01 −0.01 −0.01 −0.11 0.00 −0.12

NMB (%) Northern China −71.25 −23.28 −12.63 −9.59 −28.34 −59.19 −2.70 −30.17
All −74.94 −30.69 −25.68 −23.64 −28.24 −55.38 −21.12 −28.91

RMSE Northern China 0.35 0.20 0.26 0.28 0.24 0.36 0.22 0.22
All 1.16 1.13 1.15 1.15 1.15 1.17 1.14 0.20

against daily meteorological variables demonstrated that all
models could capture the observed near-surface temperature
and water vapor mixing ratio, but near-surface wind speeds
were overestimated by all models to varying degrees. The
observed daily maximum downward shortwave radiation and
particularly low values during haze days were represented in
the participating models. Comparisons with measurements
of air pollutants, including SO2, NOx, CO, O3, PM2.5, and
PM10, from the CARE-China and EANET networks showed
that the main features of the accumulation of air pollutants
are generally represented in the current generation of on-
line coupled air quality models. The observed variations in
AOD from both the CARE-China and AERONET networks
were also reproduced well by the participating models. Dif-
ferences were found between simulated air pollutants, par-
ticularly ozone. While winter time ozone levels are typically
low (below 40 ppb) as photochemical pathways are slow, the
models captured the synoptic variability but differed in the
absolute magnitudes of near-surface concentrations.

Large differences in the models were found in the pre-
dicted PM2.5 chemical compositions, especially secondary
inorganics and organic carbon. During winter haze events,
the production from gas phase chemistry is inhibited and in-
cluding other aerosol formation pathways (such as aqueous-
phase chemistry) leads to the large differences between sim-
ulated concentrations of secondary inorganic aerosols. In ad-
dition, different SOA treatments also lead to large discrep-
ancies between simulated OC concentrations. Differences in
the simulated variations and magnitudes of AOD in Beijing
during the January 2010 haze episodes could be explained
by the differences in simulated inorganic aerosol concentra-
tions and the hygroscopic growth efficiency (affected by var-
ied RH).

Results from this intercomparison demonstrate that there
remain important issues with current coupled models in pre-
dicting winter haze episodes. Low wind speeds play an im-
portant role in haze episodes. Current models can predict the
low wind-speed–high-haze relationship but overestimate the
low wind speeds. This contributed to the underestimation of
PM2.5. The models also underestimate the production of sec-

ondary inorganic aerosols. There is currently a great deal of
research focused on inorganic aerosol production under win-
ter haze conditions and new pathways need to be included in
the models to improve prediction skills. Furthermore, current
models have various treatments of SOA production, leading
to large differences in SOA predictions during winter haze
episodes.

However, it was also found that using the ensemble mean
of the models produced the best prediction skill. While this
has been shown for other conditions (for example, the predic-
tion of high-ozone events in the US (Mckeen et al., 2004)),
this is to our knowledge the first time it has been shown for
heavy haze events. The uncertainties in predictions of aerosol
composition concentrations and optical depth will impact es-
timates of the aerosol direct and indirect effects during haze
events (Gao et al., 2017a–c). The results of the MICS-Asia
Topic 3 experiments looking at the direct and indirect effects
during these heavy haze events are the subject of companion
papers.
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