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S1 Electrical charge state of particles produced in the OFR

In laboratory measurements afterthe campaign, the electrical charge state of particles producedinthe
OFR was investigated, to rule outimportant effects of chargingin the size distribution dynamics.
Ambientlaboratory airwas sampledintothe OFRthrough a high efficiency particulateair (HEPA) filter
that had been usedin many previous studies to remove particles from air. The output of this filter
contained many organicvapors that off-gassed from the filter. Particles nucleated and grew rapidly in
the OFR by subjecting this airto OH oxidation, and the particle size distribution was sampled usinga TSI
3936 Scanning Mobility Particle Sizer (SMPS). The full particlesize distribution was first measured by
sampling particles through a TSI 3077 Kr-85 neutralizerto achieve equilibrium charge distribution. Next,
the size distribution was sampled without passing through a neutralizer, measuring just the relative
fraction of particles that became chargedin the OFR. The results, illustrated in Fig. S3, show that
approximately an order of magnitude fewer particles werecharged inthe OFR without the neutralizer
than with it. Thisamount was consistent with the charging expected from natural processes (e.g.,
cosmicrays) and suggest that chemistryinthe OFR (e.g., photoelectricparticle charging from the UV

lamps) does notlead to substantial particle charging.
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Tables:

Table S1. SOA yields and corresponding OA concentrations for various compounds, measured by
standard addition followed by OHor O; oxidationinan OFR during GoAmazon2014/5.

Compound + oxidant SOAvyield OA concentration (ug m)
[-caryophyllene +OH 0.52 15
[-caryophyllene +0; 0.27 25
Longifolene + OH 0.51 25
Sesquiterpenes (average) 0.43 22
Limonene +OH 0.30 20
Limonene +0; 0.17 11
[pinene +OH 0.18 28
a-pinene +OH 0.11 20
a-pinene + 03 0.21 15
Monoterpenes (average) 0.20 19
Toluene 0.11 10

Isoprene 0.06 23




| N\
&

Vg  onfi 1 VA
il ML
\ L NI D,

3 &
\

Fig. S1. Pictures of the OFRs operated atthe T3 site.
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Fig. S2. Mean ambient OHreactivity used as a parameterin the equation to estimate OHexposure in the
OFR, shown as a function of local time of day. This diurnal cycle of OH reactivity was adapted and
smoothed from Williams et al. (2016).
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Fig. S3. Particle numbersize distributions measured with and without first passing through a charge
neutralizer. The particles were produced via OH oxidationin an OFR. Air was sampled through a “dirty
particle filter, which off-gassed SOA-precursor gases into the OFR. Without the neutralizer, an order of

magnitude fewer particles werecharged inthe OFR. Thisis consistent with natural charging processes
(e.g., cosmicrays) and suggests the OFR does notinherently produce charged particles.
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Fig. S4. Coefficient of eddy diffusion (k.) as a function of chambervolume, as first used for the LVOCfate
correctioninPalmet al. (2016). The parameterizationis based on measurements presented in McMurry
and Rader (1985) and McMurry and Grosjean (1985).
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Fig. S5. Aerosol volume measured inthe AMSvs. inthe SMPS for IOP1 and IOP2. The AMS mass was
convertedtovolume using species densities of 1.75 g cm= for SO4, NO3, and NH4, 1.52 g cm3 for Chl
(DeCarloetal., 2004; Salcedoetal., 2006; Lide, 2013), and the parameterization for OA density using
elementalratios described in Kuwataetal. (2012). AMS data was calculated using CE=1 during|IOP1and
a composition-dependent CE (mostly CE=0.5; Middlebrook etal., 2012) during IOP2.
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Fig. S6. Fraction of injected isoprene remaining after OH oxidation in the OFR, as a function of
photochemical age calculated with and withoutincludingthe added 215s* OHR from the 85 ppb
injectedisoprene. Binned averages of the fraction remaining are also shown, compared to the amount
predicted toremain assuming either plug flow or using the RTD of particles from Lambe etal. (2011).
Factor-of-3errorbars are shown forthe prediction using RTD, representing the uncertainty in the
model-derived OH,,, estimation equation (Li etal., 2015; Penget al., 2015). OH suppression due to high
OHR s illustrated by the fact that predicted isoprene decay falls outside the error bars of the predicted
decay, unlessthe added OHRisincluded inthe OH,,, calculation.
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Fig. S7. Scatterplot of raw signal of SQT at m/z 204 in the PTR-TOF-MS (while sampling with NO*reagent
ion, not background corrected) versus total SQT signal measured by the SV-TAGin ambientairduring
the dry season. Quantile bin averages and alinear fit (with uncertainty of slope fit) are also shown.
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Fig. $8. Maximum SOA formation from OH oxidation during the dry season versus ambient OA
concentrations. A binned average of the maximum SOA formationis also shown. Forcomparison with
these measurements, the amount of SOA formation predicted from measured VOCs (as describedin
Sect. 2.5 and 3.5) was calculated using either constant SOA yields across all OA concentrations (i.e.,
without absorptive partitioning) orusingthe OA-concentration dependent SOA yields described in Sect.
2.5 (i.e., with absorptive partitioning). The amounts predicted from VOCs were scaled up so that the first
bin of each was equal to the measurements, allowing the slopes to be compared. Since the
measurements lie between the two prection extremes, this suggests that the dependence of absorptive
partitioning on ambient OA concentratiuons was not as large as calculated from the chamber-based
parameterizations discussed in Sect. 2.5.
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Fig. S9. High-resolution factor profiles forthe PMF analysis of the wet season, normalized to atotal sum
of 1.
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Fig. S10. High-resolution factor profiles forthe PMF analysis of the dry season, normalized to atotal sum
of 1.
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Fig. S11. Absolute (a) and relative (b) changesin PMF factors as a function of eq. days of OH aging inthe
OH-OFRfor the wet season. Note thatthe y axisin panel (b) is splitin orderto more clearly show the
region below avalue of 1.
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Fig. $12. Correlation coefficients between the SOA formed from OH oxidation of ambientairduringthe
wetand dry with the SOA formed wheninjecting individual VOCs into the OFR. All spectrawere
calculated asthe difference between the average spectrum of OA after OH oxidationinthe OFRminus
the average spectrum of concurrentambient OA. For the spectrum of SOA formed form OH oxidation of

ambientair, only datain the range of maximum SOA formation with >1 ug m= SOA formation were
used.
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Fig. S13. Elemental O:Cratio of the bulk OA measured after OH oxidation in the OFR, as a function of eq.
age of OH aging duringthe dry season.
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Fig. S14. Scatterplots of maximum measured SOA enhancement from OH oxidation at the T3 site during
the wetseason, vs. several ambient SOA precursortracer gases. Correlation coefficients (R2) are shown
for each scatterplot.
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Fig. S15. Scatterplots of maximum measured SOA enhancement from OH oxidation atthe T3 site during
the dry season, vs. several ambient SOA precursortracer gases. Correlation coefficients (R2) are shown
for each scatterplot.
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for bothwetand dry seasons.
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Fig. S17. Simulation of the effectof aninletahead of an OFRwhen measuring the SOA formation
potential of ambient air. The case shownis based onthe average SOA formation at the Manitou Forest
site duringthe BEACHON-RoMBAS campaign, as described by Palm etal. (2016) and Hunter etal. (2017).
It isassumed that a transient variation of the ambient SOA formation potential occurs at the field site,
with a time scale of 10 min. In the case withoutan inlet (i.e., as performedin Palmetal., 2016), a total
amount of SOA formation of 2.4 ug m3would be observed withoutdelay. Inthe case witha 10 m, 4"
OD, 2 lpm Tefloninlet (simulated with the model of Pagonisetal., 2017), the observed peak SOA
formationisreduced by ~%, due to the very slow transmission through the inlet of species with c* < 10°
pug m3. Note thatthe residence timeinthe OFRis not considered in these simulations.



