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Abstract. Chemical transport models together with emis-
sion inventories are widely used to simulate NO2 concen-
trations over China, but validation of the simulations with in
situ measurements has been extremely limited. Here we use
ground measurements obtained from the air quality moni-
toring network recently developed by the Ministry of En-
vironmental Protection of China to validate modeling sur-
face NO2 concentrations from the CHIMERE regional chem-
ical transport model driven by the satellite-derived DECSO
and the bottom-up MIX emission inventories. We applied a
correction factor to the observations to account for the in-
terferences of other oxidized nitrogen compounds (NOz),
based on the modeled ratio of NO2 to NOz. The model ac-
curately reproduces the spatial variability in NO2 from in
situ measurements, with a spatial correlation coefficient of
over 0.7 for simulations based on both inventories. A neg-
ative and positive bias is found for the simulation with the
DECSO (slope= 0.74 and 0.64 for the daily mean and day-
time only) and the MIX (slope= 1.3 and 1.1) inventories, re-
spectively, suggesting an underestimation and overestimation
of NOx emissions from corresponding inventories. The bias
between observed and modeled concentrations is reduced,
with the slope dropping from 1.3 to 1.0 when the spatial
distribution of NOx emissions in the DECSO inventory is
applied as the spatial proxy for the MIX inventory, which
suggests an improvement of the distribution of emissions be-
tween urban and suburban or rural areas in the DECSO in-
ventory compared to that used in the bottom-up inventory.
A rough estimate indicates that the observed concentrations,

from sites predominantly placed in the populated urban ar-
eas, may be 10–40 % higher than the corresponding model
grid cell mean. This reduces the estimate of the negative bias
of the DECSO-based simulation to the range of −30 to 0 %
on average and more firmly establishes that the MIX inven-
tory is biased high over major cities. The performance of the
model is comparable over seasons, with a slightly worse spa-
tial correlation in summer due to the difficulties in resolv-
ing the more active NOx photochemistry and larger concen-
tration gradients in summer by the model. In addition, the
model well captures the daytime diurnal cycle but shows
more significant disagreement between simulations and mea-
surements during nighttime, which likely produces a positive
model bias of about 15 % in the daily mean concentrations.
This is most likely related to the uncertainty in vertical mix-
ing in the model at night.

1 Introduction

Nitrogen dioxide (NO2) is an important trace gas in the tro-
posphere. It actively participates in the formation of tropo-
spheric ozone and secondary aerosols (Seinfeld and Pandis,
2006), which influences human health and impacts climate
significantly. Emissions of NO2 together with nitric oxide
(NO) that is rapidly converted to NO2 in the troposphere dur-
ing daytime are closely related to anthropogenic activities,
in particular fossil fuel consumption, which has increased
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global NOx (NO+NO2) emissions by a factor of 3–6 since
preindustrial times (Prather et al., 2001). China is one of the
largest contributors to NOx emissions over the world, con-
tributing 18 % of global NOx emissions based on the esti-
mate of EDGAR v4.2 (European Commission (EC): Joint
Research Centre (JRC)/Netherlands Environmental Assess-
ment Agency (PBL), 2011), as a consequence of the large
energy consumption driven by the rapidly growing economy.
A good understanding of NO2 levels as well as temporal and
spatial variations is urgent to help solve the serious envi-
ronmental problems, particularly poor air quality, caused by
emissions.

Chemical transport models (CTMs) have been widely used
to provide predictions of gas-phase pollutants including NO2
and particulate matter concentrations, which are powerful
tools for understanding regional air pollution issues, assess-
ing emission control scenarios (Kiesewetter et al., 2014), and
analyzing trans-boundary transport (Streets et al., 2007). The
modeled NO2 concentrations have received extensive evalu-
ation by comparing with ground-based measurements (Pay
et al., 2012), satellite observations (Huijnen et al., 2010), and
airborne observations (Carmichael et al., 2003) for regional
(Stern et al., 2008) and urban-scale (Terrenoire et al., 2015)
air quality simulations. The results of these intercomparisons
show quite good performance of the models but still suggest
uncertainties in the estimation of the meteorological input
data (Bessagnet et al., 2016), the modeling of NOx chem-
istry (Valin et al., 2011), and particularly emission invento-
ries (Mues et al., 2014).

Emission inventories are necessary input to CTMs and rec-
ognized as one of the most important sources of uncertain-
ties. Traditional bottom-up emissions are calculated by ag-
gregating information from diverse sources of information
such as fuel statistics and measurements of emission factors.
The large uncertainties in energy statistics (Guan et al., 2012)
and applications of non-Chinese emission factors (Streets et
al., 2003) have been propagated into uncertainties in bottom-
up inventories for China (Zhao et al., 2011). The lack of
bottom-up inventories for most recent years introduces addi-
tional biases for model simulations because inventories could
quickly become outdated due to the rapidly changing emis-
sions (Zhang et al., 2007; Liu et al., 2016a). NO2 columns
detected from space provide additional constraints to yield
a satellite-derived NOx emission inventory. Initially, NOx

emissions have been estimated from satellite observations to-
gether with CTMs at coarse resolution based on the assump-
tion of a linear relationship between NO2 columns and NOx

emissions ignoring pollution transport (Martin et al., 2003).
More complicated techniques like the Kalman filter (Nape-
lenok et al., 2008) and four-dimensional variational data as-
similation (4D-Var) (Kurokawa et al., 2009) have been intro-
duced to take pollution transport into account. In addition,
CTM-independent methods have been developed for point
sources (Beirle et al., 2011; Liu et al., 2016b). The uncer-
tainties in NO2 column retrievals (Dirksen et al., 2011), in

particular for China with high loadings of aerosols (Ma et
al., 2013), together with estimation method uncertainties re-
sult in errors in satellite-derived inventories.

The modeling of NO2 concentrations over China has been
evaluated with space- and ground-based observations. Re-
ported validation studies have focused on evaluating tropo-
spheric NO2 column densities simulated by CTMs driven
by bottom-up emission inventories using satellite measure-
ments. Differences between the simulated NO2 column den-
sities and observations of the Global Ozone Monitoring Ex-
periment (GOME) (Ma et al., 2006; Uno et al., 2007), the
Scanning Imaging Absorption Spectrometer for Atmospheric
CHartographY (SCIAMACHY) (Shi et al., 2008), and the
Ozone Monitoring Instrument (OMI) (Wang et al., 2011)
have been attributed to uncertainties in the magnitude and
spatial distribution of bottom-up emissions. The validation
of surface NO2 concentrations was generally performed for
limited time periods using a limited set of measurement sta-
tions (e.g., three large cities in Wang et al., 2011, one or two
sites in Wang et al., 2007, and the city of Nanjing in Ding et
al., 2015), due to the absence of routine monitoring data. Al-
ternatively, the satellite-derived inventories were compared
to bottom-up inventories directly, which shows considerable
disparity (Lin et al., 2012; Ding et al., 2017a).

Measurements obtained from the recently developed air
quality monitoring network in China (Zhang and Cao, 2015)
provide the means to evaluate the quality of NO2 model-
ing. We evaluate the surface NO2 concentrations simulated
by a CTM driven by both satellite-derived and bottom-up in-
ventories with this newly established dataset. To our knowl-
edge, this is the first time that modeled NO2 concentrations
over China have been evaluated with in situ measurements
throughout the country, while an intercomparison for simula-
tions with satellite-derived and bottom-up inventories is per-
formed simultaneously. We structure the paper as follows. In
Sect. 2.1 and 2.2 the CTM and emission inventories adopted
in this study are described, respectively. The introduction of
the in situ measurements from the air quality monitoring net-
work in China and the correction for interference of in situ
NO2 data are given in Sect. 2.3 and 2.4, respectively. Annual
mean simulated surface NO2 values are compared with the
corrected in situ measurements in Sect. 3.1. Further analy-
ses focusing on seasonality and diurnal cycle are provided in
Sect. 3.2 and 3.3, respectively. Section 4 presents a summary
of the major findings in this paper.

2 Methodology

2.1 CHIMERE model

We used the CHIMERE regional chemical transport model
in this study, which is designed to produce daily forecasts
of tropospheric trace gas and aerosol pollutants and make
long-term simulations at a range of spatial scales (Menut
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et al., 2013). We use the CHIMERE model v2013b over
East Asia (18 to 50◦ N and 102 to 132◦ E) with a resolution
of 0.25◦ following the configuration in Ding et al. (2015).
The CHIMERE simulation was driven by operational me-
teorological data from the European Centre for Medium-
Range Weather Forecasts (ECMWF) with a horizontal res-
olution of 0.25◦. Atmospheric variables were simulated in
eight layers from the surface to 500 hPa. Tropospheric pho-
tochemistry is represented using the reduced MELCHIOR
chemical mechanism (Derognat et al., 2003), including about
120 reactions and 44 gaseous species. An aerosol module
accounting both for inorganic and organic species of pri-
mary or secondary origin is included according to Bessag-
net et al. (2004). Boundary conditions for the model do-
main were derived from monthly mean climatology based on
the second-generation Model for OZone And Related chem-
ical Tracers (MOZART) (Horowitz et al., 2003) for gases,
the Laboratoire de Météorologie Dynamique Zoom – Inter-
action avec la Chimie et les Aérosols (LMDz-INCA; Fol-
berth et al., 2006) for nitrate and ammonium, and the Geor-
gia Tech/Goddard Global Ozone Chemistry Aerosol Radia-
tion and Transport (GOCART; Ginoux et al., 2001) for other
aerosols. At default, NOx emissions are speciated as 9.2 %
of NO2, 0.8 % of HONO, and 90 % of NO in the CHIMERE
model (Menut et al., 2013), following the Generation of Eu-
ropean Emission Data for Episodes (GENEMIS) recommen-
dations (Friedrich, 2000; Kurtenbach et al., 2001; Aumont et
al., 2003). Open-access satellite-derived and bottom-up in-
ventories that provide up-to-date emissions over East Asia
were selected to drive the model in this study, which will be
detailed in Sect. 2.2.

2.2 Emission inventory

The satellite-derived NOx emissions were estimated by the
algorithm DECSO (Daily Emission estimates Constrained by
Satellite Observations) v5 using an extended Kalman filter
(Mijling and van der A, 2012; Ding et al., 2015, 2017b).
DECSO uses one forward model run of a CTM to calcu-
late the response of NO2 concentrations to both local and
nonlocal NOx emissions. Daily OMI NO2 observations re-
trieved with the DOMINO version 2 algorithm (Boersma et
al., 2011) are used as a constraint to update emissions. The
DECSO emission data are available at www.globemission.eu
(last access: 20 March 2018).

The bottom-up anthropogenic NOx emissions were taken
from the MIX inventory (Li et al., 2017a), a mosaic Asian an-
thropogenic emission inventory under the international col-
laboration framework of the Model Inter-Comparison Study
for Asia (MICS-Asia) and the Task Force on Hemispheric
Transport of Air Pollution (TF HTAP). The MIX inventory
is developed for the years 2008 and 2010 by an integration
of state-of-the-art regional emission inventories for all major
anthropogenic sources in 29 countries and regions over Asia.
The emissions of China integrated in the MIX inventory

are derived from the Multi-resolution Emission Inventory
for China (MEIC: http://www.meicmodel.org, last access: 20
December 2017) compiled by Tsinghua University. The an-
thropogenic emissions together with the biogenic emissions,
which were computed automatically in the CHIMERE model
using the global MEGAN (Model of Emissions of Gases and
Aerosols from Nature) model (Guenther et al., 2006), were
adopted as the bottom-up inventory. We refer to this combi-
nation as the MIX inventory for brevity hereinafter. Note that
monthly emissions for all inventories above were provided at
the spatial resolution of 0.25◦× 0.25◦.

Both inventories show comparable spatial distributions at
national and regional scales, but distinctions between urban
and rural areas (see Sect. 3.1). The strength of the MIX in-
ventory is that it includes detailed source-category informa-
tion (e.g., power plant and transportation sector) for emis-
sions, which is useful for driving atmospheric models and
designing emission mitigation policies but is not included
in DECSO. The advantage of the DECSO inventory is that
emissions are timely updated (as soon as the satellite ob-
servations are available); while bottom-up inventories usu-
ally lag behind a few years and are outdated by the time
they become available. In addition, the spatial information
in DECSO is based on OMI NO2 observations, while MIX
relies on spatial proxies like gross domestic product (GDP)
to allocate emissions due to the lack of data. An in-depth
comparison between inventories has been described by Ding
et al. (2017).

We focused on 2015 as the most recent year with available
DECSO emission estimates and in situ measurements, but
we used the MIX inventory for 2010 because the year 2015
is not available yet. However, the use of the 2010 MIX inven-
tory without scaling is not expected to bring significant bias,
as the similarity of NOx emissions for 2010 and 2015 has
been reported by both the bottom-up inventory MEIC (Liu et
al., 2016a) and the satellite-derived inventory DECSO. For
the period of 2010–2012, the NOx emissions of China ex-
perienced a rapid growth. A sharp decline in NOx emissions
was observed in the years of 2013–2015, with a peak around
2012 (Liu et al., 2016a). As a result, the inventory for 2010
is comparable to that for 2015, even though there is a 5-year
lag. Figure 1 compares DECSO NOx emissions for 2015 (a)
and 2010 (b), which are consistent in both total amount (21.5
vs. 21.6 Tg) and spatial distribution (r = 0.83). Figure 1 fur-
ther displays the spatial distributions of the MIX NOx emis-
sions for 2010 (c). These emissions are significantly higher
(39 %) than the DECSO inventory when averaged over the
model domain.

An air quality simulation using the CHIMERE model was
conducted for the full year 2015. Pollutant concentrations in-
cluding NO2 were simulated based on the 2015 DECSO and
the 2010 MIX NOx inventories, respectively. Note that the
2010 MIX inventory for other species was used together with
both NOx inventories. Because of the inconsistency between
the emission sectors used in the DECSO and the MIX inven-
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Figure 1. Maps for NOx emissions in the DECSO inventory, 2015 (a); the DECSO inventory, 2010 (b); and the MIX Asian inventory, 2010
(c). The unit is gigagrams of NO2 per grid cell.

tories and that in SNAP (Selected Nomenclature for Air Pol-
lution) 97, which is internally used in the CHIMERE model,
we adopted the sector mapping table as discussed in Ding
et al. (2015). The concentration in the lowest model layer
(from the ground up to 20 m) was used for validation against
surface NO2 observations in this study. Figure 2 illustrates
the annual mean surface NO2 simulation using both invento-
ries. Large enhancements are found over industrial regions,
in particular northern China, the North China Plain, and the
Yangtze River Delta. The model run based on the MIX inven-
tory (Fig. 2b) shows overall larger concentrations than that
based on the DECSO inventory (Fig. 2a).

2.3 Ground-level in situ measurements

The real-time hourly NO2 concentrations as well as other
major air pollutants are continuously recorded by the Min-
istry of Environmental Protection (MEP) in China and are
publicly accessible from the year 2013 onwards (Zhang and
Cao, 2015). We obtained the hourly in situ measurements
from a total of 1413 air quality monitoring sites of the MEP
network for 323 major cities over the model domain. The
majority of those monitoring sites have been placed in the
city center and are named urban assessing stations in the of-
ficial document (MEP, 2013). These are meant to evaluate
the overall level and trend of air quality for areas with the
highest concentrations and highest population exposure. The
placement criteria of urban assessing stations laid down in
the legislation (MEP, 2013) ensure that the measurements
are representative for urban areas. Stations are required to be
well distributed within the developed area of the city and not
too close to stationary emission sources (50 m) or roads (10–
100 m depending on the traffic flow). The minimum num-

ber of monitoring sites required per city depends on both the
urban population and city size, i.e., at least one station for
an area of ∼ 50 km2 (Table 1). In addition, for areas with
the concentration exceeding grade II of the national ambient
air quality standard (i.e., the annual mean NO2 concentra-
tion of 40 µg m−3; MEP, 2012), the minimum required num-
ber of monitoring sites is increased by 50 %. MEP also oper-
ates other types of measurement sites, including regional and
background stations to assess the background air pollution
levels and pollutant transport, and source impact and traf-
fic stations close to emission sources. However, only megac-
ities like Beijing and Guangzhou operate such non-urban
stations. The fact that urban observations dominate should
be kept in mind when comparing the observations with the
model results. The horizontal resolution of the model is lim-
ited to 0.25◦, which will cause representativeness errors (bi-
ases) when comparing the measurements from city stations
with the mean of a grid box of the simulations, which can
also include rural areas. Note that only the measurements for
the dates with 24 h valid measurements (larger than 0) are
used for the following analysis in this study.

Figure 3a displays the heterogeneous spatial distribution
of monitoring sites at the scale of the model grid cell. The
over 1000 monitoring sites are allocated to a total of 594 grid
cells based on their geolocations. The sites belonging to the
grid cells with one, two, and three sites account for 17, 21,
and 22 % of the total, respectively (Fig. 3b). We calculated
the averaged distance between monitoring sites by averag-
ing individual pairwise distances for every two stations in the
same grid cell. Because most monitoring sites are urban sta-
tions and are clustered in the city areas, which are often much
smaller than the area of a grid cell (∼ 600 km2), the averaged
distance is rather small with an average of 3.6 km for all grid
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Figure 2. Annual mean surface NO2 concentration in 2015 based on the CHIMERE model driven by the DECSO inventory, 2015 (a); the
MIX Asian inventory, 2010 (b); and the corrected DECSO inventory (c).

Table 1. The requirement for the minimum number of urban sta-
tions.

Population of Area of Minimum number
built-up areas/k built-up areas/km2 of stations

< 250 < 20 1
250–500 20–50 2
500–1000 50–100 4
1000–2000 100–200 6
2000–3000 200–400 8
> 3000 > 400 10 (1 per 50–60 km2)

cells as shown in Fig 3c. For megacities with significantly
larger built-up areas and thus more monitoring sites, the dis-
tribution of sites is more homogeneous over the grid cell and
results in a lager distance between stations. The average dis-
tance increases from 5 km for grid cells with only one pair of
stations to 11 km for those with over eight stations.

In our analysis, we excluded in situ measurements from
cities with unexpected discrepancies between urban and sub-
urban stations. Because only large cities potentially place
the monitoring sites outside urban areas related to the rapid
expansion of built-up areas, we classified stations as urban
and suburban by visually inspecting satellite imagery from
Google Earth for large cities with over four stations. We cal-
culated the annual mean NO2 of each station. When the NO2
concentration of urban stations is less than that of suburban
stations, the measurements behave differently than expected.
The cities (four in total) detected to have unexpected mea-
surements are labeled as “unselected” and discarded from
the validation dataset. Note that suburban stations present-
ing higher NO2 levels than urban stations but close to large

emission sources, e.g., industrial park and airport, are under-
standable and thus are not excluded from the database. Fig-
ure 4 presents the daily average surface NO2 abundance for
the city of Xi’an. Only the dates with 24 h valid measure-
ments (lager than 0) are used for the time series illustration
here. The expected enhancement in winter highlighted by
both urban (red line) and suburban (blue line) stations has not
been detected for the urban station with lower annual mean
NO2 abundance than suburban stations (black line), which
provides further support for excluding the Xi’an measure-
ments from the model evaluation.

2.4 Correction factor

NO2 concentrations are measured using commercial chemi-
luminescence analyzers (Zhang and Cao, 2015), which are
subject to a systematic overestimation of ambient NO2 con-
centrations (Steinbacher et al., 2007). NO2 is catalytically
transformed into NO by a molybdenum converter and subse-
quently measured with chemiluminescence. However, other
reactive oxidized nitrogen compounds (NOz) such as perox-
yacetyl nitrate (PAN) and nitric acid are also partly converted
to NO, resulting in an overestimation of the measured NO2.

We applied a correction factor proposed by Lamsal et
al. (2008) to account for the interferences of other oxidized
nitrogen compounds, based on the modeled ratio of NO2 to
NOz. The correction factor (CF) was calculated from the lo-
cal chemical concentrations as follows:

CF=
NO2

NO2+
∑

AN+ 0.95×PAN+ 0.35×HNO3
, (1)

where
∑

AN is the sum of all alkyl nitrate concentrations.
Figure 5 shows the seasonal means of the correction fac-

tors determined with concentrations of the interfering species
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Figure 3. (a) Spatial distribution of in situ measurements. Measurements are allocated to the CHIMERE model grid cells based on their
geolocations. The magnitude of the size of symbols denotes the number of stations located in the same grid cell. The color of the symbols
denotes the average distance between stations located in the same grid cell. Triangles and “M” denote sites located in mountainous areas. (b)
Histogram of the total number of grid cells with a certain number of stations. (c) Statistics of the averaged distance among stations located in
the same grid cell. The black and blue horizontal lines are the median and mean of the averaged distance, respectively; the box denotes the
25 and 75 % percentiles, and the whiskers denote the 10 and 90 % percentiles. The grey dots denote the outliers.

Figure 4. Daily mean surface NO2 concentrations (µg m−3) of sta-
tions located in the city of Xi’an for the year 2015. The data are cal-
culated based on the measurements from the air quality monitoring
network of MEP. The measurements from the stations correspond-
ing to the maximum and minimum annual mean NO2 concentra-
tions are displayed in red and blue, respectively. The measurements
from the urban station with lower NO2 concentrations than subur-
ban stations are displayed in black.

predicted by the CHIMERE model driven by the DECSO in-
ventory. Consistent with the findings in Europe (Huijnen et
al., 2010) and the US (Lamsal et al., 2008), the correction
factor (difference with the ideal value of 1.0) is largest over
polluted urban regions, where NOx is a larger fraction of to-
tal oxidized nitrogen compounds. The correction factor tends
to be closer to unity in winter, when the NOx photochemistry
is slower and thus NOx has a larger relative contribution to
total oxidized nitrogen compounds. The correction factor de-
rived from simulations with the MIX inventory (not shown)
shows a similar pattern to Fig. 5, but with a larger number
of values close to 1 related to the larger emissions. Hourly
correction factors for individual hours of each day during the
year for all individual stations have been applied to the in situ
measurements. It is difficult to quantify the accuracy of the
correction factors and errors, as the collocated measurements
of other oxidized nitrogen compounds are not publicly avail-
able. We used the standard deviation of the daily means of
correction factors within a season as a measure of its uncer-
tainty. The average standard deviations for all sites are 10 %,
which is comparable to the uncertainty level pointed out by
the study of McLinden et al. (2014).
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Figure 5. Seasonally averaged correction factors for interference in NO2 measurements using chemiluminescence analyzers as estimated
from a CHIMERE simulation driven by the DECSO emission inventory for the year 2015.

Table 2. Correlation coefficient, regression slope, root-mean-square error (RMSE), and normalized mean error (NME) in 2015 of the sim-
ulated surface NO2 concentrations driven by DECSO 2015, MIX Asian 2010, and the corrected DECSO emission inventory versus the
corrected in situ measurements. The intercept is set to 0 when performing the regression. The unit of RMSE is µg m−3.

Category DECSO MIX Corrected DECSO

r Slope RMSE NME r Slope RMSE NME r Slope RMSE NME

Main sample 0.73 0.74 11.6 0.32 0.85 1.3 14.8 0.36 0.72 1.0 10.5 0.29
Main sample (daytime) 0.76 0.64 12.1 0.39 0.84 1.1 11.3 0.31 0.76 0.89 8.8 0.26
Unselected 0.63 1.0 9.2 0.25 0.81 1.5 19.7 0.56 0.61 1.3 15.9 0.42
Mountainous 0.51 0.35 15.0 0.65 0.77 0.77 11.3 0.44 0.51 0.50 13.0 0.53
Northern 0.92 0.20 14.9 0.85 0.81 0.62 10.4 0.44 0.92 0.27 14.1 0.79
< Four stations 0.77 0.65 11.3 0.40 0.83 0.99 9.2 0.29 0.76 0.90 9.3 0.30
Densely located (“L”) 0.55 0.74 13.7 0.53 0.87 0.78 7.4 0.25 0.57 0.99 15.0 0.52

3 Results and discussion

3.1 Annual intercomparison

We compare the modeled surface NO2 with the corrected
in situ measurements throughout China. In general, the spa-
tial distribution of annual mean NO2 concentrations from the
CHIMERE model simulations is well in line with that from in
situ measurements, with a correlation coefficient of over 0.7.
However, the modeled NO2 is biased compared to ground
measurements. The differences of annual mean NO2 concen-
trations between simulations and measurements are given in
Fig. 6. The CHIMERE simulations with the DECSO inven-
tory show considerably lower NO2 concentrations than the
in situ measurements, with a negative difference for nearly
90 % of all grid cells. Conversely, the CHIMERE simulations
with the MIX inventory are generally higher than the in situ
measurements for grid cells corresponding to large cities: A
positive bias is found for 70 % of the grid cells with over four
monitoring sites.

Grid cells are classified into five categories, i.e., moun-
tainous, northern, < four stations, densely located, and main
sample, and the corresponding scatter plots of corrected mea-
surements against simulations are shown in Fig. 7. We de-
fine a grid cell as “mountainous” where the average el-
evation is higher than 1000 m and the standard deviation
of elevations is over 15 % of the mean, based on the to-
pographic data from the 30 arcsec global land topography
“GTOPO30” archived by the US Geological Survey (avail-
able at https://lta.cr.usgs.gov/GTOPO30, last access: 10 July
2017, rescaled to 0.05◦). The grid cells higher than 45◦ N
are classified as “northern”. The grid cells with less than
four measurement stations are classified as “< four stations”.
The grid cells with only densely located stations (see defini-
tion later in this section) are classified as “densely located”.
Note that the priority of the category of mountainous, north-
ern, < four stations, and densely located is from high to low
when we perform the classification in this study. For instance,
for grid cells that meet the criteria of both mountainous and
northern, we classify them as mountainous. The remaining
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Figure 6. The normalized difference of annual mean surface NO2 concentrations between model simulations and the corrected in situ
measurements in 2015. The simulated NO2 concentrations driven by (a) the DECSO inventory, 2015; (b) the MIX Asian inventory, 2010;
and (c) the corrected DECSO inventory are subtracted from the corrected in situ measurements to derive the differences. The mean of the
differences is further subtracted from the differences to derive the normalized differences. The magnitude of the size of symbols denotes the
number of stations located in the same model grid cell. The color of the symbols denotes the difference of NO2 concentrations. Grid cells
with densely located stations are labeled with “L”. The outline of circles corresponding to “main sample” (see Table 2) is highlighted in
black.

grid cells are classified as “main sample”. The results for the
daytime period (08:00–19:00 LT) are displayed separately.
The correlation coefficient, regression slope, and root-mean-
square error for the individual categories compared to mea-
surements are given in Table 2.

Significant regional differences are found. The small slope
over mountainous regions could be related to model limita-
tions to resolve cities in the valleys. Furthermore, we may
expect difficulties for the model in describing NO2 concen-
trations over complex terrain. For mountainous regions, the
lower slope may also be related to the large uncertainties in
the meteorological parameters associated with the difficul-
ties in resolving the characterization of small-scale orogra-
phy in the ECMWF model (Beljaars et al., 2004). The er-
rors on meteorological parameters, such as mixing height and
temperature (Hongisto, 2005) and wind fields (Minguzzi et
al., 2005), can introduce biases for air quality simulations.
In addition, the accuracy of the DECSO algorithm highly
relies on the appropriate wind fields because DECSO per-
forms trajectory analysis to account for NOx transport away
from the source when calculating the sensitivity of concen-
trations to emissions (Mijling and van der A, 2012). In this
way, uncertainties in meteorological parameters are ampli-
fied in the DECSO inventory, resulting in a worse agreement
for mountainous areas (r = 0.51) compared to the MIX in-
ventory (r = 0.77).

The CHIMERE model accurately reproduces the spatial
variability in NO2 for northern grid cells with a high corre-
lation coefficient of 0.92 and 0.81 for the simulations with
the DECSO and the MIX inventories, respectively, but with a
large negative bias. The bias could be related to model uncer-
tainties in NOx sinks for high latitudes (Ding et al., 2017b),

indicated by the sensitivity studies of modeled NO2 columns
to errors in chemical parameters associated with NOx sinks
(Lin et al., 2012; Stavrakou et al., 2013). Additionally, the
bias is particularly significant for the simulations with the
DECSO inventory, showing a slope of merely 0.20. This
could be further explained by the general underestimation
of NOx emissions caused by the bias in NO2 tropospheric
columns of DOMINO v2 for this area (Ding et al., 2017b),
partly due to a bias in the calculation of air mass factor for
retrievals at large solar zenith angles by the radiance trans-
fer model (Lorente et al., 2017) and possibly biases in the
estimated stratospheric background.

Figure 8 depicts the ratio of the simulated annual mean
surface NO2 concentrations to the corrected in situ measure-
ments sorted by the number of stations located in the same
grid cell from small to large. It is interesting to note that the
ratio is small for grid cells with less than four stations, but
increases along with the increase in the number of stations
from four to nine, ranging from 0.6 to 1.0 and 0.9 to 1.8 for
the simulations with the DECSO and the MIX inventories,
respectively. The trend in the ratio suggests that the represen-
tativeness of in situ measurements for the average NO2 levels
of a grid cell improves with increasing numbers of stations or
city size. For grid cells with less than four stations, the model
with its limited spatial resolution cannot be expected to ac-
curately resolve the spatial gradient of pollutants towards the
city center in relatively smaller urban areas. Similarly, the
in situ measurements for stations located close together are
expected to be less representative of the grid cell mean com-
pared to the homogeneously distributed stations. This is in
agreement with the tendency that grid cells with lower av-
erage measurement station distances (< 10 km) tend to show
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Figure 7. Scatter plots of the simulated annual mean surface NO2 concentrations in 2015 driven by (a) the DECSO inventory, 2015; (b) the
MIX Asian inventory, 2010; and (c) the corrected DECSO inventory and the corrected in situ measurements. The orange dots correspond to
the grid cells with a latitude higher than 45◦ N. The pink dots correspond to the grid cells labeled with “L” in Fig. 6. The corrected DECSO
inventory is derived by scaling the total amount of NOx emissions from the DECSO inventory to that from the MIX inventory. The intercept
is set to 0 when performing the regression.

Figure 8. Correlation among the number of stations in the same model grid cell, ratio of the simulated annual mean surface NO2 concentra-
tions in 2015 driven by (a) the DECSO inventory, 2015, or (b) the MIX Asian inventory, 2010, to the corrected in situ measurements, and the
average distance among stations located in the same grid cell. The magnitude of the size of the circle denotes the average distance between
stations located in the same grid cell. The diamond denotes the average ratio of simulations to measurements for grid cells with different
numbers of stations.

lower ratios (< 0.5) in Fig. 8, in particular for grid cells with
a larger number of stations. We select the grid cells with over
four stations but lower average distances than the 10 % per-
centiles in Fig. 3c and name them densely located. We an-
alyze the performance of the model in those grid cells with
only densely clustered stations (labeled with “L” in Fig. 6).
Not surprisingly, the simulations for those grid cells show
larger discrepancies compared to the measurements, and also
the correlation coefficient of simulations with the DECSO in-
ventory drops down to a rather low value of 0.55 (Table 2).

We exclude grid cells in the special categories dis-
cussed above (i.e., mountainous, northern, < four stations,
and densely located stations) to draw conclusions on the abil-

ity of the model to reproduce the measurements. Statistical
values (correlation, slope, root-mean-square error) for the re-
maining grid cells (main sample) are given along with the
plots in Fig. 7. A slope of 0.74 and 1.3 is found for the sim-
ulation with the DECSO and the MIX inventories, respec-
tively. As mentioned before, the majority of stations are lo-
cated in urban, populated, and polluted areas and the model
resolution of 0.25◦ will not be enough to represent the ex-
isting NO2 gradients, thus we may expect a negative repre-
sentativity offset in the modeled surface concentration, even
for the main sample obtained after data screening (Irie et al.,
2012; Lin et al., 2014). We select grid cells with over four
stations, which potentially place one or two stations in back-
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ground areas, to give a rough estimate of the offset. The back-
ground stations are defined as stations located far away from
urban areas on the basis of a visual inspection of satellite im-
agery from Google Earth. Not surprisingly, the measurement
from the background station which is expected to better rep-
resent the grid cell mean is smaller than the average value
of measurements from all stations located in the same grid
cell. The ratios of annual mean measurements from the back-
ground stations to the mean of corresponding measurements
from all stations range from 0.64 to 0.86, with an average
of 0.74. That is, the average negative representativity offset
may reach 25 %. The ratio is closer to 1 in winter (0.83 on
average) due to the reduced spatial gradients in NO2 caused
by a longer NOx lifetime, which will be discussed in detail
in Sect. 3.2. Thus, the slopes of 0.74 and 1.3 for DECSO and
MIX actually indicate a slightly negative and more signifi-
cantly positive bias, respectively.

A positive bias may indicate an overestimation of NOx

emissions, or errors in the spatial downscaling of the bottom-
up emission totals, although biases from the description of
the chemistry, transport, and removal processes in the model
cannot be ruled out. The overestimation of the MIX results
over large cities are consistent with previous findings that re-
gional inventories like MIX have large positive biases in ur-
ban areas (Zheng et al., 2017). The reason for the positive
biases will be discussed in detail later in this section. Uncer-
tainties in the DECSO results may be attributed to biases in
the OMI tropospheric NO2 column densities, or representa-
tion errors introduced by the projection of the CTM onto the
measured NO2 satellite footprint (Ding et al., 2017b). OMI
NO2 observations have been reported to be systematically
smaller than those from ground-based measurements (e.g.,
MAX-DOAS) over polluted regions (Shaiganfar et al., 2011;
Ma et al., 2013; Ialongo et al., 2016) due to their different
spatial representativeness (Irie et al., 2012; Lin et al., 2014)
and uncertainties in NO2 vertical column retrieval, including
the shielding effect of aerosols (Shaiganfar et al., 2011) and
the varying observation geometry (Vasilkov et al., 2017). In
addition, the fact that the adopted model resolution is not suf-
ficient to accurately model nonlinear effects in the NO2 loss
rate may contribute to the negative bias (Valin et al., 2011).

Regional bottom-up inventories tend to have large positive
biases in urban areas. Those inventories usually downscale
local emissions from regional totals (provincial totals are
used in the MEIC/MIX inventory for China) and distribute
them to grid cells using spatial proxies (e.g., population den-
sity and GDP). However, the spatial proxies may not match
the locations of the individual emitting sources, especially
for industrial plants located far away from urban centers that
tend to have a larger population density and GDP (Liu et
al., 2017). Such a decoupling will result in an overestima-
tion of emissions over urban areas, which has been proven
by the comparison of proxy-based regional inventory with
high-resolution urban inventories developed from the exten-

Figure 9. Monthly mean ratio of simulated surface NO2 concentra-
tions driven by the DECSO inventory, 2015 (red bar), and the MIX
Asian inventory, 2010 (blue bar), with the corrected in situ mea-
surements (left axis). The correlation coefficient of the simulated
NO2 concentrations versus the corrected in situ measurements is
displayed on the right axis.

sive use of information of individual emitting sources (Zheng
et al., 2017).

In order to better compare the spatial distributions of the
two inventories and identify the sensitivity of model perfor-
mance to spatial distributions of emissions, we further eval-
uate the impact of the spatial distribution of emissions on
simulating NO2 by applying the same spatial proxy for NOx

emissions in both inventories. We scale the total amount of
emissions of the 2015 DECSO inventory over the domain
adopted in this study to that of the 2010 MIX inventory but
kept the DECSO spatial distribution (hereinafter referred to
as the corrected DECSO inventory; see Fig. 2). We then com-
pare the modeled NO2 using the corrected DECSO inventory
with in situ measurements in Fig. 6c. It is interesting to see
that many high values in the MIX simulation are not repro-
duced by the simulation with the corrected DECSO inven-
tory. We further assess the simulation results with the cor-
rected DECSO inventory in Fig. 7c. The simulation with the
MIX inventory tends to cluster the pollutants more over ur-
ban areas than that with the corrected DECSO inventory, in-
dicating that the modeled NO2 is sensitive to the spatial dis-
tribution of emissions. The large bias in the MIX inventory
is reduced significantly, with a slope decreasing from 1.3 to
1.0, which suggests an improvement of the distribution of
emissions between urban and suburban or rural areas.

Note that due to the lack of the 2015 inventory, the
use of the 2010 MIX emissions for other species includ-
ing SO2, CO, and non-methane volatile organic compounds
(NMVOCs) in both the MIX and the DECSO simulations
may introduce uncertainties in simulating NO2. The anthro-
pogenic emissions of SO2, CO, and NMVOCs for China
have been reported to decrease by 2, 5, and increase by 21 %
from 2010 to 2015, respectively (Li et al., 2017b). In gas-
phase chemistry, the principal sink of NOx is oxidation to
HNO3. The influence of the growth in NMVOCs on the ox-
idizing power of the atmosphere is partially compensated
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for by the reduction in CO, as CO and hydrocarbons play
similar roles in depleting oxidants following the HOx–NOx–
CO–hydrocarbon chemical mechanisms (Jacob, 2000). Ad-
ditionally, SO2 influences NO2 concentrations by forming
aerosols, concentrations of which have an impact on pho-
tolysis rates and thus photochemical reaction rates associ-
ated with NOx (Mailler et al., 2017). However, the emis-
sion changes are rather small compared to the uncertainties
in bottom-up estimates, which are even smaller than the dis-
crepancies among estimates from different bottom-up inven-
tories. Thus we believe the uncertainties arising from the use
of the 2010 inventory are not significant. A sensitive analysis
will be further expected to quantify the influence of emis-
sions of other species on simulated NO2.

3.2 Seasonality

Figure 9 compares the monthly mean NO2 concentrations
simulated by the CHIMERE model using the two invento-
ries with the in situ measurements. The spatial correlation
between the modeled NO2 concentrations and the in situ
measurements shows a weak dependence on season, which is
slightly worse in summer (July). The correlation coefficients
range from 0.64 (July) to 0.73 (January) and from 0.80 (July)
to 0.83 (January) for the simulations with the DECSO and the
MIX inventories, respectively. A possible explanation for the
somewhat higher correlation in January is the smaller model
error in winter than in summer, as indicated by previous find-
ings in both China (Lin et al., 2012) and Europe (Huijnen et
al., 2010). This may be related to the difficulties in resolv-
ing the more active NOx photochemistry in summer by the
model. For instance, the model with a horizontal resolution
of 0.25◦ is not able to fully resolve the spatial gradients of
NO2 close to strong emission sources, but such an impact is
smaller in winter than in other seasons, as the NO2 gradients
in a grid cell are smeared out due to the longer NOx lifetime
in winter.

The seasonal difference is pronounced when comparing
the magnitude of the NO2 concentrations in Fig. 9. In gen-
eral, a smaller ratio between modeled NO2 concentrations
and in situ measurements is detected in winter. The ratio
reaches the lowest values in January, which is consistent with
the general underestimation of simulations in winter as indi-
cated by Lin et al. (2012). For simulations with the DECSO
inventory, the ratio deviating more significantly from unity
in winter might be due to systematic biases in the OMI NO2
observations during winter as well. Biases in OMI NO2 col-
umn densities over polluted regions are introduced by the
high aerosol loading, most of which are scattering aerosols in
China, as aerosols are not explicitly considered in the cloud
retrieval or the air mass factor calculation in the operational
NO2 product (Castellanos et al., 2015; Chimot et al., 2016;
Wang et al., 2017). The aerosols’ effect may be more signif-
icant in winter due to the higher aerosol concentrations and
larger solar zenith angle (Ma et al., 2013). Additionally, the

DECSO algorithm is more vulnerable to biased observations
as a result of the smaller number of useful observations in
wintertime because of the filtering of snow-covered regions.
Conversely, the simulations with the MIX inventory show
ratios ranging from 1.09 to 1.22 in the second half of the
year. This may signal an overestimation of total emissions,
as pointed out in Sect. 3.1. In addition, the assumptions used
in the MIX inventory for the distribution of monthly emis-
sions over the year may also contribute to the bias. For ex-
ample, higher power and industrial emissions are assumed
in the second half of the year due to larger industrial pro-
ductions and thus power generations to meet the annual total
production target (Li et al., 2017a).

3.3 Diurnal cycle

Figure 10 presents the diurnal variability in hourly-averaged
surface NO2 concentrations. The simulations with both in-
ventories and the in situ measurements exhibit a broadly sim-
ilar daily variation (r = 0.81). The distinct peak in NO2 con-
centrations in the morning hours (around 08:00 LT) and in the
afternoon (around 20:00 LT) detected by the measurements
has been well captured by the model, which can be attributed
to increasing (traffic) emissions in the rush hours indicated
by the Selected Nomenclature for sources of Air Pollution
Prototype (SNAP) diurnal profiles of emissions (Menut et
al., 2012) adopted in the CHIMERE model (grey line). Both
simulations and measurements show a drop in NO2 concen-
trations during daytime with the same timing and amplitude,
related to the varying chemical loss rate of NO2 driven by
NOx photochemistry. However, the disagreement between
simulated and measured values is larger at night, which may
point to problems regarding the treatment of boundary layer
mixing. NO2 concentrations simulated by the model cannot
reproduce the observed temporal pattern at night but present
constantly high values, probably caused by unrealistically
low boundary layer heights and too little vertical turbulence
in the model (Bessagnet et al., 2016). This has been further
confirmed by the earlier evaluation of the diurnal cycle of
trace gases as modeled by CHIMERE in Lampe et al. (2009).

We separately evaluated the model performance for the
daytime period (08:00–19:00), when the pattern of diurnal
variations simulated by the CHIMERE model is closer to
what is observed by the in situ measurements. Not surpris-
ingly, a larger negative slope of 0.64 is obtained for the sim-
ulation with the DECSO inventory compared to the surface
observations, while the slope for the simulation with the MIX
inventory has been reduced significantly to a value of 1.1 (Ta-
ble 2) due to the tendency of overestimating NO2 concentra-
tions during night in the model. Note that the slope close to
unity for the simulation with the MIX inventory during day-
time does not necessarily imply a perfect emission inventory,
but still indicates a potential overestimation because we ex-
pect a slope smaller than 1 (in the range of 0.64–0.86; see
Sect. 3.1) when comparing model simulations with in situ
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Figure 10. Diurnal variability in hourly average NO2 concentrations. Values shown are annual averages for the year 2015. On the left axis
the solid line represents the corrected in situ measurement. The dotted line represents the simulation driven by the DECSO inventory, 2015
(blue), and the MIX Asian inventory, 2010 (red). On the right axis the grey line represents the 24 h profiles applied over the daily emissions
to obtain hourly data in the CHIMERE model.

measurements which are mainly situated in populated high-
concentration areas.

4 Conclusions

In this work we evaluated the surface NO2 concentrations
from the CHIMERE CTM, driven by both satellite-derived
and bottom-up emission inventories, using the measurements
from the ground-based air quality monitoring network of
MEP. To our knowledge, this result is the first validation of
modeling NO2 results with this widespread in situ network,
which became recently available. Our study demonstrates
the capabilities of CTMs such as CHIMERE, combined with
satellite observations, to simulate NO2 concentrations at the
surface over China. MEP in situ measurements can serve as a
useful dataset for evaluating model simulations, but a careful
selection of measurements and scaling correction is neces-
sary to represent the averaged NO2 level over the area of a
grid cell. Measurements with unexpected lower annual mean
NO2 concentrations at urban stations compared to those at
suburban stations have been discarded from the final analy-
sis.

The model accurately reproduces the spatial variability in
annual mean NO2 from in situ measurements over China,
with a spatial correlation coefficient of over 0.7. In situ mea-
surements used in this study are expected to have a positive
bias when compared to model simulations due to a combina-
tion of preferential placement of monitors in polluted loca-
tions and the limitation of model resolution to resolve large
NO2 gradients over urban areas. The estimated bias is 25 %

(ranging between 10 % and 40 %), indicated by the ratios of
annual mean measurements from the background stations,
which is expected to better represent the grid cell mean to
the mean of corresponding measurements from all stations
for selected grid cells with over four stations. The bias is es-
pecially pronounced for grid cells with too few stations (less
than four in this study) or stations located close together.
Negative biases have been widely detected for mountainous
and northern regions, which are most likely related to the
representative issue discussed above, but model uncertain-
ties in meteorological parameters and NOx sinks will also
play a role. For other regions, a negative and positive dif-
ference has been found for the simulation with the DECSO
(slope= 0.74) and the MIX (slope= 1.3) inventories, respec-
tively, suggesting an underestimation and overestimation of
NOx emissions from corresponding inventories. The bias be-
tween observed and modeled concentrations was reduced
significantly, with the slope decreasing from 1.3 to 1.0, when
the spatial distribution of NOx emissions in the DECSO in-
ventory is applied as the spatial proxy for the MIX inventory.
The reduced bias suggests an improvement of the distribu-
tion of emissions between urban and suburban or rural areas
in the DECSO inventory compared to that used in the bottom-
up inventory, which shed light on addressing the spatial er-
rors in bottom-up inventories. Conversely, we also show that
the correlation coefficient of the simulated NO2 concentra-
tions versus the in situ measurements is slightly higher in
the MIX-based simulations compared to the DECSO simula-
tions. However, this does not necessarily contradict the find-
ings that the spatial distribution of NOx emissions is more
reasonable in DECSO, considering the difference in correla-
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tion coefficient is minor but the bias in the MIX-based sim-
ulations is significant. Nevertheless, the good performance
of the satellite-derived emission inventory, in particular the
spatial distribution of emissions, has been confirmed by the
widespread in situ measurements over China for the first time
in this study. The magnitude of satellite-derived emissions
shows a slightly negative bias by taking the negative repre-
sentativity offset of in situ measurements into account, which
is attributed to biases in the OMI tropospheric NO2 column
densities, or representation errors introduced by the projec-
tion of the CTM onto the measured NO2 satellite footprint. In
addition, satellite-derived NOx emissions succeed in detect-
ing the emission trend for the period of 2010–2015, which
is consistent with that in bottom-up emissions (Liu et al.,
2016a; van der A et al., 2017).

The performance of the model is comparable over seasons,
with a slightly better spatial correlation in winter. This is in
line with previous findings of a lower model uncertainty in
winter due to the difficulties in resolving the more active
NOx photochemistry and larger concentration gradients in
summer by the model. In addition, the daytime diurnal cycle
has been well captured by the model. However, the disagree-
ment between simulations and measurements is in general
larger during nighttime, which is most likely related to the
uncertainty in vertical mixing in the model. This nighttime
issue causes an estimated bias of about +15 % in the daily
mean NO2 concentrations.

Note that the validation performed in this study is focused
on urban areas, which may bring a systematic bias to the con-
clusive statements, as discussed above. In the future analysis
focusing on rural areas is expected to give a more complete
picture of the performance of CTMs with inventories. In ad-
dition, an in-depth comparison of multiple models with vari-
able chemistry schemes (e.g., Huijnen et al., 2010) is further
required to quantify the influence of chemical mechanisms
on simulated NO2. In order to support model validation, the
introduction of additional background stations, as well as the
provision of detailed information about the stations, includ-
ing classification and height, would be very valuable.
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