



## Supplement of

## Primary and secondary organic aerosols in summer 2016 in Beijing

Rongzhi Tang et al.

Correspondence to: Song Guo (songguo@pku.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

## **Figure captions**

Fig. S1 Locations of the sampling sites CP and PKUERS

Fig. S2 Mixing ratios of gaseous pollutants and meteorological conditions at (a) CP and (b) PKUERS, including concentrations of SO<sub>2</sub>, O<sub>3</sub>, NO, NO<sub>2</sub>, temperature, relative humidity, wind speed as well as wind direction. Parameters of the gaseous pollutants and meteorological conditions from 1 to 5 June were not available due to technical reasons.

Fig. S3 Back trajectory clusters during the campaign at (a) CP (b) PKUERS

Fig. S4 PM<sub>2.5</sub> chemical compositions at the regional site CP (a & c) and urban site PKUERS (b & d) Fig. S5 Three categories of PM<sub>2.5</sub> chemical compositions according to back trajectory clustering analysis

Fig. S6 Primary organic matter from different directions of CP and PKUERS

Fig. S7 Daily average concentrations for different classes of primary organic matter, (a) n-alkanes

(b) saccharides (c) PAHs (d) hopanes



Fig. S1 Locations of the sampling sites CP and PKUERS



Fig. S2 Mixing ratios of gaseous pollutants and meteorological conditions at (a) CP and (b) PKUERS, including concentrations of  $SO_2$ ,  $O_3$ , NO,  $NO_2$ , temperature, relative humidity, wind speed as well as wind direction. Parameters of the gaseous pollutants and meteorological conditions from 1 to 5 June were not available due to technical reasons.



Fig. S3 Back trajectory clusters during the campaign at (a) CP (b) PKUERS



Fig. S4 PM<sub>2.5</sub> chemical compositions at the regional site CP (a & c) and urban site PKUERS (b & d)



Fig. S5 Three categories of PM<sub>2.5</sub> chemical compositions according to back trajectory clustering analysis



Fig. S6 Primary organic matter from different directions of CP and PKUERS



Fig. S7 Daily average concentrations for different classes of primary organic matter, (a) n-alkanes (b) saccharides (c) PAHs (d) hopanes.

Table S1 Mixing ratios of gaseous pollutants (SO<sub>2</sub>, O<sub>3</sub>, NO, NO<sub>2</sub>)

|       |                | -    |                 |                |        |       |  |  |
|-------|----------------|------|-----------------|----------------|--------|-------|--|--|
| Туре  | Sites          | NO   | NO <sub>2</sub> | O <sub>3</sub> | $SO_2$ | СО    |  |  |
| Urban | PKUERS         | 7.1  | 26.0            | 32.0           | 4.9    | 820.0 |  |  |
|       | (2010) (Zheng  |      |                 |                |        |       |  |  |
|       | et al., 2016a) |      |                 |                |        |       |  |  |
|       | PKUERS         | 10.5 | 32.3            | 48.6           | 3.9    | 623.6 |  |  |
|       | (2016)         |      |                 |                |        |       |  |  |
|       | CP(2016)       | 3.1  | 19.7            | 57.7           | 3.0    | 492.4 |  |  |
|       |                |      |                 |                |        |       |  |  |

Table S2 Concentrations of tracer compounds for primary sources

|                            |                   | СР                |                 | PKUERS            |                   |                   |  |
|----------------------------|-------------------|-------------------|-----------------|-------------------|-------------------|-------------------|--|
|                            | Daytime           | Nighttime         | Diurnal         | Daytime           | Nighttime         | Diurnal           |  |
| <u>Tracers (ng·m⁻³)</u>    |                   |                   |                 |                   |                   |                   |  |
| n-alkanes (C28-C33)        |                   |                   |                 |                   |                   |                   |  |
| C-28                       | $2.74{\pm}1.18$   | $3.34 \pm 2.29$   | $3.10{\pm}1.84$ | $3.99{\pm}1.93$   | $5.06 \pm 2.44$   | 4.54±2.24         |  |
| C-29                       | 23.12±14.38       | 22.54±13.38       | 22.82±13.68     | $20.49 \pm 8.48$  | 24.96±12.69       | 22.79±10.94       |  |
| C-30                       | $1.54{\pm}0.62$   | 2.19±1.25         | $1.88 \pm 1.04$ | $2.06 \pm 0.72$   | $3.25 \pm 1.30$   | 2.72±1.23         |  |
| C-31                       | $5.22 \pm 1.98$   | $5.85 \pm 3.40$   | $5.54 \pm 2.78$ | $5.23 \pm 2.31$   | 7.24±3.72         | 6.23±3.22         |  |
| C-32                       | $1.67 \pm 1.05$   | $1.72 \pm 1.11$   | $1.70 \pm 1.07$ | $1.91 \pm 0.92$   | $2.69 \pm 1.71$   | $2.34{\pm}1.43$   |  |
| C-33                       | 1 92 10 04        | 2 40 + 1 25       | $2.10 \pm 1.15$ | $2.54 \pm 1.12$   | $2.74 \pm 1.51$   | 2 65 1 22         |  |
| Levoglucosan               | 1.83±0.94         | 2.49±1.23         | 2.19±1.13       | 2.34±1.12         | 2.74±1.31         | $2.03 \pm 1.32$   |  |
| Levoglucosan               | $28.86{\pm}16.95$ | $75.92{\pm}40.91$ | 53.03±39.26     | $39.09 \pm 25.04$ | $79.56 \pm 39.97$ | $59.87 \pm 38.93$ |  |
| Hopanes                    |                   |                   |                 |                   |                   |                   |  |
| 17α(H)-22,29,30-trishopane | $0.61 \pm 0.28$   | $0.65 \pm 0.44$   | $0.63 \pm 0.36$ | $0.88{\pm}0.55$   | $0.93 \pm 0.52$   | $0.90 \pm 0.53$   |  |
| 17β(H)-21α(H)-norhopane    | $1.42 \pm 0.48$   | $1.66 \pm 0.97$   | $1.55 \pm 0.70$ | $1.93 \pm 1.24$   | $1.79{\pm}0.96$   | $1.86 \pm 1.09$   |  |
| 17α(H)-21β(H)-hopane       | $0.80 \pm 0.32$   | $0.95 \pm 0.59$   | $0.88 \pm 0.47$ | $1.12 \pm 0.64$   | $1.16\pm0.55$     | $1.14\pm0.58$     |  |
| PAHs                       |                   |                   |                 |                   |                   |                   |  |
| benzo(b)fluoranthene       | $0.64 \pm 0.45$   | $2.45 \pm 1.68$   | $1.57 \pm 1.53$ | $0.53 \pm 0.47$   | $1.07 \pm 1.00$   | $0.81 \pm 0.82$   |  |
| benzo(k)fluoranthene       | $0.50{\pm}0.25$   | $1.42 \pm 0.73$   | $0.98{\pm}0.72$ | $0.50 \pm 0.38$   | $0.69{\pm}0.54$   | $0.60\pm0.47$     |  |
| benzo(e)pyrene             | $0.38 \pm 0.22$   | $1.09 \pm 0.67$   | $0.74{\pm}0.61$ | $0.59 \pm 0.39$   | $0.70 \pm 0.40$   | $0.65 \pm 0.39$   |  |
| benzo(ghi)perylene         | $0.71 \pm 0.40$   | $2.48{\pm}1.63$   | $1.81 \pm 1.56$ | $1.15\pm0.43$     | $1.84{\pm}0.80$   | $1.54{\pm}0.73$   |  |
| indeno(1,2,3-cd)pyrene     | $0.76 \pm 0.52$   | 2.78±2.24         | 2.01±2.03       | 0.79±0.26         | $2.02 \pm 0.97$   | $1.48 \pm 0.96$   |  |

| Species         | Tracer                | IITB          | СН            | YL            | CL        | RTP        | Yufa        | PKUERS            | PKUERS    | СР        |
|-----------------|-----------------------|---------------|---------------|---------------|-----------|------------|-------------|-------------------|-----------|-----------|
|                 | (ng·m- <sup>3</sup> ) |               |               |               |           |            | 2008        | 2008              | 2016      | 2016      |
|                 | I-1                   | 0.4±0.4       | 0.3±0.2       | 1.0±1.3       | -         | 26.5±20.9  | 29.9±19.9   | 21.0±19.5         | 1.2±0.7   | 1.4±1.7   |
| Isoprene        | I-2                   | -             | $0.2 \pm 0.1$ | 8.3±12.9      | 11.2±5.8  | 63.4±19.2  | 63.6±46.8   | 42.2±28.2         | 7.7±4.7   | 9.9±4.6   |
|                 | I-3                   | -             | 0.5±0.3       | 20.3±20.3     | 24.1±13.4 | 85.7±27.6  | 121.5±101.4 | 77.2±60.2         | 16.8±6.3  | 10.5±5.7  |
|                 | ∑isoprene             | 1.9±2.0       | 1.0±0.6       | 29.6±34.5     | 35.3±19.2 | 175.6±49.7 | 215.0±160.3 | $140.4{\pm}100.9$ | 25.7±11.7 | 18.8±12.0 |
|                 | A-1                   | -             | -             | 8.4±10.7      | 17.2±6.3  | 1.8±0.7    | 9.6±7.2     | 8.7±7.1           | 7.0±2.7   | 9.2±5.5   |
|                 | A-2                   | -             | -             | 5.9±4.9       | 17.1±5.4  | 16.3±7.3   | 5.3±2.8     | 6.8±7.1           | 4.8±2.8   | 4.2±2.4   |
|                 | A-3                   | -             | -             | -             | -         | 25.9±13.9  | 4.3±6.9     | 4.6±4.0           | 15.6±8.3  | 11.8±6.3  |
| α-pinene        | A-4                   | -             | -             | 4.6±3.6       | -         | 46.1±18.9  | 7.7±5.5     | $8.3 \pm 5.8$     | 4.8±1.2   | 4.4±1.3   |
|                 | A-5                   | 2.0±1.2       | -             | 10.2±7.0      | -         | 53.5±17.9  | 57.5±27.4   | 51.7±31.3         | 16.8±6.3  | 10.5±5.7  |
|                 | A-6                   | -             | -             | 9.7±15.1      | -         | 12.0±1.0   | 8.3±6.7     | 9.9±9.1           | 13.0±4.8  | 13.6±8.0  |
|                 | A-7                   | 0.3±0.2       | -             | 8.0±7.5       | 2.2±1.0   | 4.7±1.3    | 6.1±5.5     | 8.5±10.1          | 12.4±6.0  | 13.6±8.0  |
|                 | PA                    | 0.6±0.3       | $0.2 \pm 0.5$ | -             | 4.4±3.5   | 9.2±3.6    | 3.4±5.7     | 3.2±6.4           | 10.0±4.5  | 9.5±12.7  |
|                 | PNA                   | 5.5±3.9       | $0.1 \pm 0.1$ | -             | 6.7±1.9   | -          | 21.9±9.2    | 11.9±6.3          | 11.9±3.3  | 15.4±8.1  |
|                 | ∑α-pinene             | 8.4±5.6       | 0.3±0.6       | 46.8±56.3     | 47.6±18.1 | 169.5±64.6 | 124.1±47.8  | 113.5±63.3        | 96.4±39.9 | 92.2±58.0 |
| β-caryophyllene | C-1                   | 0.7±0.3       | 0.2±0.5       | 12.5±16.9     | 1.4±0.4   | 25.3±4.2   | 3.6±2.3     | 5.1±4.5           | 6.0±2.8   | 6.1±3.5   |
| Toluene         | T-3                   | $0.1 \pm 0.1$ | -             | $1.7 \pm 1.8$ | 8.3±2.8   | 4.1±1.9    | 11.7±6.9    | 13.3±7.7          | 11.0±3.7  | 9.7±7.3   |

Table S3 Comparison of SOA tracers for the biogenic and anthropogenic sources in different regions

I-1 represented 2-methylglyceric acid, I-2 represented 2-Methylthreitol, I-3 represented 2-methylerythritol, A-1 represented 3-Isopropylpentanedioic acid, A-2 represented 3-Acetylpentanedioic acid, A-3 represented 2-Hydroxy-4-isopropyladipic acid, A-4 represented 3-Acetyl hexanedioic acid, A-5 represented 3-Hydroxyglutaric acid, A-6 represented 2-Hydroxy-4,4-dimethylglutaric acid, A-7 represented 3-(2-Hydroxy-ehyl)-2,2-dimethyl-cyclobutanecarboxylic acid, PA represented pinic acid, PNA represented pinonic acid, T-3 represented 2,3-dihydroxy-4oxopentanoic acid, C-1 represented  $\beta$ -caryophyllinic acid.