

Supplement of

Characterization and source apportionment of organic aerosol at 260 m on a meteorological tower in Beijing, China

Wei Zhou et al.

Correspondence to: Yele Sun (sunyele@mail.iap.ac.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

	a-value=0	a-value=0.1	a-value=0.2	a-value=0.3	a-value=0.4	a-value=0.5
FFOA	Avg=3.8	Avg=4.0	Avg=3.6	Avg=3.7	Avg=3.7	Avg=4.3
		R ² =0.99	R ² =0.97	R ² =0.96	R ² =0.97	$R^2 = 0.96$
		Slope=1.04	Slope=0.95	Slope=0.95	Slope=0.99	Slope=1.15
COA	Avg=3.1	Avg=3.3	Avg=3.2	Avg=3.1	Avg=2.9	Avg=2.9
		$R^2 = 1.00$	$R^2 = 0.96$	$R^2 = 0.90$	$R^2 = 0.89$	$R^2 = 0.89$
		Slope=1.04	Slope=0.93	Slope=0.81	Slope=0.76	Slope=0.77
BBOA	Avg=2.7	Avg=3.2	Avg=3.7	Avg=4.1	Avg=4.5	Avg=4.6
		$R^2 = 0.99$	$R^2 = 0.97$	$R^2 = 0.94$	$R^2 = 0.93$	R ² =0.91
		Slope=1.17	Slope=1.36	Slope=1.48	Slope=1.56	Slope=1.54
LO-00A	Avg=5.9	Avg=5.5	Avg=5.3	Avg=5.2	Avg=5.2	Avg=4.9
		$R^2 = 1.00$	$R^2 = 0.97$	R ² =0.95	$R^2 = 0.96$	$R^2 = 0.94$
		Slope=0.91	Slope=0.89	Slope=0.88	Slope=0.86	Slope=0.78
OOA	Avg=11.0	Avg=10.7	Avg=10.8	Avg=10.5	Avg=10.2	Avg=9.8
		$R^2 = 1.00$	$R^2 = 1.00$	$R^2 = 1.00$	R ² =1.00	$R^2 = 1.00$
		Slope=0.97	Slope=0.99	Slope=0.96	Slope=0.94	Slope=0.89

Table S1. The average concentrations of OA factors obtained with each a-value (Avg). Also shown are the correlation coefficients (R^2) and regression slopes (Slope) when a-value ranges from 0.1-0.5 versus the time series obtained for a-value = 0 for each OA factor.

Figure S1: Mass spectra of five organic aerosol (OA) components resolved at ground level by HR-AMS using positive matrix factorization (PMF): (a) fossil fuel-related OA (FFOA), (b) cooking OA (COA), (c) biomass-burning OA (BBOA), (d) low-oxidized oxygenated OA (LO-OOA), and (e) oxygenated OA (OOA).

Figure S2: Mass spectra (left panel) and time series (right panel) of five organic aerosol (OA) factors resolved at 260 m by ACSM using multi-linear engine 2 (ME-2): (a) fossil fuel-related OA (FFOA), (b) cooking OA (COA), (c) biomass-burning OA (BBOA), (d) low-oxidized oxygenated OA (LO-OOA), and (e) oxygenated OA (OOA). The 4-factor solution of PMF result was also shown here.

5 Note that the mass spectra of two SOA factors in (d) and (e) were unconstrained, and the a values refer to those of three POA factors (i.e., FFOA, COA and BBOA).

Figure S3: (a) Values of Q/Q_{exp} , (b) explained variation (EV) for each factor and total unexplained variation (UEV) for different model runs, (c) the mass concentration of each factor. Note that a means the a-value which ranging from 0 to 0.5. The 4-factor solution of PMF result was also shown here.

Figure S4: Diurnal variations of (a) fossil fuel-related organic aerosol (FFOA), (b) cooking organic aerosol (COA), (c) biomass-burning OA (BBOA), (d) low-oxidized oxygenated organic aerosol (LO-OOA), and (e) oxygenated organic aerosol (OOA) for different model runs, with the variations of their external tracers on the right axis.

■ 0-2 ■ 2-4 ■ 4-6 □ 6-8 ■ 8+

Figure S5: Wind rose plots during the four different periods (a-d), i.e., NHP, APEC, HP1, and HP2.

Figure S6: Diurnal variations of (a) wind direction and (b) CO during the four different periods, i.e., NHP, APEC, HP1, HP2. Note 5 that the CO data were not available during NHP and APEC.

Figure S7: The correlation between oxygenated organic aerosol (OOA) and sulfate during the four different periods (a-d), i.e., NHP, APEC, HP1, and HP2. The points were color-coded by RH. The regression equations between the two species are also shown.