Corrigendum to Atmos. Chem. Phys., 18, 339–355, 2018 https://doi.org/10.5194/acp-18-339-2018-corrigendum © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

Corrigendum to "Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates" published in Atmos. Chem. Phys., 18, 339–355, 2018

Lin Zhang¹, Youfan Chen¹, Yuanhong Zhao¹, Daven K. Henze², Liye Zhu³, Yu Song⁴, Fabien Paulot⁵, Xuejun Liu⁶, Yuepeng Pan⁷, Yi Lin⁸, and Binxiang Huang⁹

¹Laboratory for Climate and Ocean–Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
²Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
³Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095, USA
⁴State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Science, Peking University, Beijing 100871, China
⁵Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ 08544, USA
⁶Key Laboratory of Plant–Soil Interactions of MOE, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094, China
⁷State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
⁸School of Earth and Space Sciences, Peking University, Beijing 100871, China
⁹Department of Agrometeorology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China

Correspondence: Lin Zhang (zhanglg@pku.edu.cn)

Published: 14 January 2021

An error occurred when calculating the ammonia emissions in Fig. 1 (p. 342) and Table 1 (p. 341). The correct versions of Fig. 1 and Table 1 are provided below.

In the text (p. 341) it states that "NH₃ emissions from livestock waste range from 2.88 to 8.82 Tg a^{-1} "; this should be corrected so that the emissions "range from 2.93 to 8.82 Tg a^{-1} ". The values calculated for "NH₃ from humans ... another source with considerable differences (0.12–1.81 Tg a⁻¹)" should be corrected to "(0.12–1.83 Tg a⁻¹)".

Figure 1. Spatial and seasonal variations of anthropogenic NH₃ emissions in China from different bottom-up inventories. Numbers inset are annual totals of Chinese anthropogenic NH₃ emissions. See Table 1 for references of the emission inventories.

 Table 1. Bottom-up estimates of ammonia anthropogenic emissions in China¹.

References	Base year	Fertilizer application	Livestock waste	Human	Others ²	Total
Yan et al. (2003)	1995	4.32	2.48 ³	0.21		7.01
Streets et al. (2003)	2000	6.85	5.22	1.63		13.7
Li and Li (2012)	2004	1.82	8.30	1.67	0.21	12.0
Wang et al. (2009)	2005	4.3	8.82	0.26		13.38
Zhang et al. (2011)	2005	4.31				
Dong et al. (2010)	2006	8.68	6.61	0.65	0.14	16.08
Huang et al. (2012)	2006	3.2	5.3	0.2	1.1	9.8
Cao et al. (2010)	2007	3.62	9.58 2.8		16.0	
EDGAR	2008	8.2	3.2	0.1		11.5
Xu et al. (2016)	2008	3.3	3.8 ³	0.7	0.6	8.4
Paulot et al. (2014) (MASAGE)	2008	3.6	5.8	0.8		10.2
Kurokawa et al. (2013) (REAS v2)	2008	9.58	2.93	1.83	0.86	15.2
Zhao et al. (2013)	2010	9.82	7.36	1.12		18.3
Fu et al. (2015)	2011	3				
Kang et al. (2016)	2012	2.8	4.99	0.12	1.71	9.62
This study	2008	5.05	5.31	1.30^{4}		11.7

¹ Emission totals in units of Tg $NH_3 a^{-1}$. ² Others include sources from transportation, industry, waste disposal, and agricultural burning. ³ Only considering NH_3 emission from livestock manure spreading to cropland. ⁴ Emission estimates adopted from Huang et al. (2012).