

Supplement of

Assessment of emission scenarios for 2030 and impacts of black carbon emission reduction measures on air quality and radiative forcing in Southeast Asia

Didin Agustian Permadi et al.

Correspondence to: Nguyen Thi Kim Oanh (kimoanh@ait.ac.th)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

Table S1: Description of mitigation measures for RED2030 scenario for Indonesia and ThailandTable S2: Summary of projected activity data collected for BAU2030

Figure S1: Constructed 2030/2007 ratios between 2007 and 2030 monthly simulation results for BC and OC of the global LMDZ/INCA (Courtesy to Dr. Didier Hauglustaine, personal communication)

Figure S2: Comparison of sectoral emissions in the BY2007 with BAU2030 and RED2030 scenarios for Indonesia and Thailand

No	Sector	Description of RED2030 measures		
		Indonesia	Thailand	
1	Transportation	All personal cars would have to comply with Euro2 in 2030 ^a	All personal cars <1,600 CC in the market in 2030 would have fuel consumption 5 liters per 100 km and would comply with Euro4 standard ^e	
		100% of public diesel buses would be shifted to CNG^{b}	Implementation of cleaner fuel of CNG for all public buses and taxi in 2030 ^f	
2	Residential	Full implementation of "zero kero" program to cover 42 million (64%) households converted from kerosene to LPG by 2012 and 80% of number of households as end- point (by 2030) ^c	50% of total fuel consumption of wood and charcoal in 2030 would be converted to LPG ^f	
		Substitution of traditional fuel wood cook stoves to cleaner biomass stoves (gasifier stoves) ^b	Electricity to replace biomass (in 2030 20% of fuel wood would be converted to electricity) ^f	
3	Industry	Fuel switch from coal to biomass and natural gas for cement, iron steel, pulp and paper, and textiles and fertilizer industries ^b	Increasing efficiency of boilers (new rotary burners) and furnaces (by preheating fuel) that could save energy of around 16% by 2030 ^e	
		Modernization of process from wet to dry kiln in cement industry and increasing efficiency of boilers and furnace that could save energy around 16% by 2030 ^b	Full implementation of maximum feasible reduction (application of air pollution control devices) in cement and iron industry by 2030 ^e	
4	Biomass open burning	20% reduction of burned area for forest fire and crop residue open burning in 2014 and around 40% in 2030 as compared to the year of 2010 ^d (National strategic plan 2010)	Forest area burned would not be over than 48,000 ha y ⁻¹ (2030) ^g (National master plan)	
		Zero burning of solid waste by 2030 due to improved SW management in most of urban areas ^c	Zero burning policy to re-use of crop residue as bio-energy up to 25% from total energy demand in 2030 ^g	
			Amount of solid waste subjected to burn should be reduced at least 75% through adequate solid waste management system in 2030 ^g	

Table S1: Description of mitigation measures for RED2030 scenario for Indonesia and Thailand.

Source:

^a Clean Air Asia (CAI, 2010). Roadmap of Euro standard in Asian Countries.

^b Indonesia Climate Change Sectoral Roadmap (ICCSR, 2010).

^c Energy Sector Management Assistance Program (ESMAP, 2012). Low carbon country studies: Indonesia.

^d Ministry of Forestry (MoF, 2010). Strategic Plan 2010-2014. Converted from number of hotspot (active fire count) to the burned area.

^eChotichanatawewong and Thongplew (2012). Development trajectory, emission profile and policy actions.

^f Department of Alternative Energy Development and Efficiency (DEDE, 2009). Renewable Energy Development Plant.

^g National Master Plan of Open Burning in Thailand. PCD (2007).

Table S2: Summary of projected activity data collected for BAU2030

No	Activity data	Indonesia	Thailand	2030/2007 ratio	2030/2007 ratio
				(Indonesia)	(Thailand)
1	Population	1998-2007ª	1994-2007 ^e	1.8	1.3
2	Total number of motor vehicles	1998-2007 ^ь	1988-2007 ^f	3.1	2.2
3	Total crop production	1998-2007ª	1996-2007 ^g	1.4	1.2
4	Livestock population	1998-2007ª	1996-2007 ^g	1.8	1.7
5	Petroleum refinery production	1998-2007°	2003-2007 ^h	2.1	3.3
6	Mining production	1998-2007°	2003-2007 ^h	2.0	1.1
7	Aviation landing and take off	1998-2007ª	2003-2007 ⁱ	2.4	1.1
9	GDP in forestry sector	1998-2007ª	-	0.7	-
10	Forestry area	-	1992-2001 ^e	-	0.9
11	Energy consumption in power generation	2000-2007°	1988-2007 ^h	1.8	2.1
12	Energy consumption in industrial sector	2000-2007°	1988-2007 ^h	1.9	2.0
13	Total GDP	2000-2007(all other SEA countries) ^d		2.2	

Note: only the 1999-2007 data period was used for the regression analysis. The data available before that was not incorporated because of the drastic economic recession in SEA during 1997-1998.

Data sources:

^a National Bureau of Statistics (BPS, 2008). Indonesia in figure 2008.

^b Department of Land Transportation (DLT, 2008). Transportation Statistics 2008.

^e Ministry of Energy and Mineral Resources (MEMR, 2008). Key Indicator of Indonesia Energy and Mineral Resources 2008.

^d The World Bank (WB, 2008). http://data.worldbank.org/indicator/NY.GDP.PCAP.KD.ZG. <u>P</u>opulation weighted GDP from other SEA countries and China for the period of 2000-2007 was collected to project to 2030. The GDP growth factor expressed as the ratio of 2030/2007 population weighted GDP was calculated and was used to project emissions for other SEA countries and Southern part of China.

^e Thailand National Statistics Office (NSO, 2008).

^f Ministry of Transportation (DLT, 2008). Transportation Statistics. Department of Land Transport (DLT) (2008).

^g Office of Agricultural Economics (OAE, 2008). Agricultural Statistics of Thailand 2008.

^h Energy Policy and Planning Office (EPPO, 2008). Statistics database.

ⁱ Department of Civil Aviation (DCA, 2008). Statistics report.

Figure S1: Constructed 2030/2007 ratios between 2007 and 2030 monthly simulation results for BC and OC of the global LMDZ/INCA (Courtesy to Dr. Didier Hauglustaine, personal communication)

a) Indonesia

b) Thailand

Figure S2: Comparison of sectoral emissions in the BY2007 with BAU2030 and RED2030 scenarios for Indonesia and Thailand