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Abstract. The co-variability of cloud and precipitation in
the extended tropics (35◦ N–35◦ S) is investigated using con-
temporaneous data sets for a 13-year period. The goal is to
quantify potential relationships between cloud type fractions
and precipitation events of particular strength. Particular at-
tention is paid to whether the relationships exhibit different
characteristics over tropical land and ocean. A primary anal-
ysis metric is the correlation coefficient between fractions of
individual cloud types and frequencies within precipitation
histogram bins that have been matched in time and space.
The cloud type fractions are derived from Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) joint histograms
of cloud top pressure and cloud optical thickness in 1◦ grid
cells, and the precipitation frequencies come from the Tropi-
cal Rainfall Measuring Mission (TRMM) Multi-satellite Pre-
cipitation Analysis (TMPA) data set aggregated to the same
grid.

It is found that the strongest coupling (positive correla-
tion) between clouds and precipitation occurs over ocean for
cumulonimbus clouds and the heaviest rainfall. While the
same cloud type and rainfall bin are also best correlated over
land compared to other combinations, the correlation magni-
tude is weaker than over ocean. The difference is attributed
to the greater size of convective systems over ocean. It is
also found that both over ocean and land the anti-correlation
of strong precipitation with “weak” (i.e., thin and/or low)
cloud types is of greater absolute strength than positive cor-
relations between weak cloud types and weak precipitation.
Cloud type co-occurrence relationships explain some of the
cloud–precipitation anti-correlations. Weak correlations be-
tween weaker rainfall and clouds indicate poor predictabil-

ity for precipitation when cloud types are known, and this is
even more true over land than over ocean.

1 Introduction

Attempts to estimate precipitation from cloud observations
have a long history dating back to the era of first passive
thermal infrared observations of clouds (e.g., Richards and
Arkin, 1981). Enlisting numerical models to help with the in-
terpretation of observations has not been as helpful as hoped
since these models generally do not produce coherent rela-
tionships between clouds and precipitation (e.g., Stephens
et al., 2010; Gianotti et al., 2012; Jiang et al., 2015), with
even cloud-resolving models explicitly representing precipi-
tation processes facing challenges in that respect (e.g., Koop-
erman et al., 2016; Matsui et al., 2016). In the case of atmo-
spheric global circulation models (AGCMs), it is nearly im-
possible to resolve individual precipitating processes due to
the sub-grid nature of the problem and the excessive compu-
tational burden. Hence, for AGCM evaluation, and also for
observation-based water budget studies, a synoptic approach
for identifying the relationships between cloud and precipi-
tation has been deemed an inevitable compromise.

One example of employing a synoptic approach is the
use of the concept of a “cloud regime” (CR) also known as
“weather state” (WS; Jakob and Tselioudis, 2003; Rossow
et al., 2005; Oreopoulos and Rossow, 2011; Tselioudis
et al., 2013; Oreopoulos et al., 2014, 2016) to study precipi-
tation characteristics. Cloud regimes represent the dominant
mixtures of cloud types, and can be used as a framework to
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categorize cloud data in a grid (e.g., Level-3 satellite prod-
ucts). Using the International Satellite Cloud Climatology
Project (ISCCP) WSs defined in the extended tropics (35◦ S–
35◦ N), Lee et al. (2013) provided a comprehensive picture of
precipitation characteristics for each WS, with an additional
focus on the relationship between the most convective regime
(WS1) and precipitation. Rossow et al. (2013) also conducted
similar analysis but for precipitation extremes using ISCCP
WSs for the deep tropical zone of 15◦ S–15◦ N. While such
CR-based approaches provide valuable information about the
cloud–precipitation relationship at large scales, the precipi-
tation composites by CR encompass large spreads which ob-
scure details of the relationship. Since CRs contain mixtures
of clouds types by design, and therefore contain considerable
cloud variability, ambiguities in the cloud–precipitation rela-
tionships are hard to resolve.

Cloud–precipitation relationships can, however, be ex-
amined at a more detailed level with coincident precipita-
tion profile and cloud measurements. An example of this
is the “cloud and precipitation feature database” of Liu
et al. (2008). The database was derived from observations
by the precipitation radar (PR), the Tropical Rainfall Mea-
suring Mission (TRMM) Microwave Imager (TMI), the Vis-
ible and Infrared Scanner (VIRS), and the Lightning Imag-
ing System (LIS) aboard the TRMM satellite. The authors
performed several case studies with this data set that con-
trasted continental and oceanic precipitating cloud systems,
and found that oceanic storms were generally horizontally
larger at 2 km altitudes, but continental storms tended to be
vertically more coherent, with a higher top and more se-
vere rainfall. Houze et al. (2015) also reported similar re-
sults using solely vertical rainfall profiles from the TRMM
PR. While these studies provided a more detailed look at the
cloud–precipitation relationship thanks to the high resolution
of the TRMM PR (4–5 km footprint at nadir), the penalty was
narrow horizontal coverage (swath widths of 215 km before
orbit boost and 247 km after orbit boost).

Our study aims to go beyond widely known cloud–
precipitation associations (such as geometrically deep and
optically thick clouds producing stronger rainfall), and to ex-
amine instead more carefully the details of the connections
between clouds and precipitation for situations that also in-
clude non-heavy precipitation. We thus strive for general-
ity of results by covering the entire tropics and for over-
coming the ambiguity of CR-based studies by taking ad-
vantage of the ability to break down individual grid-box
cloud fractions with the aid of joint cloud histograms. Hence,
our paper revisits and explores anew the mesoscale cloud–
precipitation relationship via the synoptic approach by em-
ploying a Moderate Resolution Imaging Spectroradiometer
(MODIS) gridded cloud data set (King et al., 2003; Plat-
nick et al., 2003) and the TRMM Multi-satellite Precipita-
tion Analysis (TMPA) data set (Huffman et al., 2007, 2010).
While the MODIS Level-3 data are provided at 1◦×1◦ reso-
lution, the 2-D joint histogram of cloud optical thickness (τ )

and cloud top pressure (pc) contains pixel-level cloud infor-
mation which can be combined with the sub-grid variability
of precipitation at the 1◦×1◦ scale, available by virtue of the
finer 0.25◦× 0.25◦ spatial resolution of TMPA. While still
coarser than the TRMM PR data set, the combined MODIS
and TMPA data set covers the entire tropics every single day,
allowing better generalization of the daytime relationship be-
tween clouds and precipitation. We seek to answer questions
such as the following: what are the general expectations and
limitations in predicting precipitation given a cloud type in
the extended tropics? Is there a closer relationship between
certain precipitation rates and cloud types? Do answers to
the above questions differ substantially between oceans and
continents?

The next section introduces the concept of “precipitation
histogram” and how it can be matched and correlated to sub-
grid cloud type fractions at the grid level. A comprehensive
examination and interpretation of cloud and precipitation co-
variability over tropical land and ocean follows in Sect. 3. In
addition to summarizing the results, the concluding Sect. 4
calls attention to the new insights that emerge from this study
and challenges that remain to be addressed about the nature
of cloud–precipitation coupling.

2 Data and methodology

2.1 Cloud and precipitation data

Our passive cloud retrievals come from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) instrument aboard
the Terra and Aqua satellites. The MODIS cloud data set
(MOD08_D3 and MYD08_D3; King et al., 2003; Plat-
nick et al., 2003) provides Level-3 cloud products at daily
timescales with 1◦× 1◦ horizontal resolution. Among var-
ious cloud products, we focus on the 2-D joint histogram
of cloud optical thickness (τ ) and cloud top pressure (pc).
The histogram is composed of cloud fraction (CF) values
along seven classes of pc and six classes of τ (for a to-
tal 42 histogram bins), and contains pixel-level cloud vari-
ability information at the 1◦ scale. The most recent ver-
sion of the MODIS atmospheric data sets, known as “Col-
lection 6” (Platnick et al., 2017), provides a separate his-
togram for “partially cloudy” (PCL) pixels, flagged as such
by the so-called “clear-sky restoral” algorithm (Pincus et al.,
2012; Zhang and Platnick, 2011). The PCL pixels usually
represent cloud edge pixels for which the cloud property re-
trievals are deemed more uncertain (Cho et al., 2015). We
opted to include PCL pixels in our analysis by adding the
PCL histogram to the nominal histogram because, by doing
so, the MODIS cloud climatology becomes more consistent
(see Oreopoulos et al., 2014) to that by ISCCP (Rossow and
Schiffer, 1991, 1999), which has a long track record in cloud
research and can potentially be used in a study similar to this
one. In this study, the joint histogram bins are coarsened from
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42 bins to nine cloud types because of practical considera-
tions (see Sect. 2.3) as well as our desire to draw an analogy
with the ISCCP cloud types (Chen et al., 2000; Rossow and
Schiffer, 1999).

The precipitation data set used in our study is the 3B42
research product (version 7) of Tropical Rainfall Measur-
ing Mission (TRMM) Multi-satellite Precipitation Analysis
(TMPA; Huffman et al., 2007, 2010; Huffman and Bolvin,
2015). The TMPA pursues the “best” satellite precipitation
estimates using TRMM Microwave Imager (TMI) and Pre-
cipitation Radar (PR) data as calibrators in merging mea-
surements from several microwave and infrared sensors, and
monthly gauge data (over land) from the Global Precipitation
Climatology Centre (GPCC; Huffman et al., 2007). The hori-
zontal resolution of TMPA is 0.25◦×0.25◦ covering 50◦ S to
50◦ N. TMPA is available from January 1998 with 3-hourly
resolution, but we use only the period from December 2002
to November 2015 which overlaps temporally with Aqua and
Terra MODIS data. Since we pursue the co-variability of
cloud and precipitation, and one of the essential pieces of
cloud information is the optical thickness which is only avail-
able during daytime, our study relies on measurements only
around the Terra and Aqua overpasses of 10:30 and 13:30 lo-
cal solar time (LST), respectively. We restrict our study to the
extended tropical region (35◦ N–35◦ S) to avoid ambiguities
in the interpretation of the MODIS joint histograms which in-
clude progressively more temporal variability towards higher
latitudes as data from successive spatially overlapping orbits
fall within the same 1◦× 1◦ grid cell. Still, we should note
that when various aspects of the analysis were tested on the
full TMPA spatial coverage (50◦ N–50◦ S), the results were
not substantially different. Lastly, since it is well established
that precipitation properties over land and ocean are quite dif-
ferent (e.g., Williams and Stanfill, 2002; Zipser et al., 2006;
Matsui et al., 2016), we maintain via the MODIS land–water
mask (Carroll et al., 2009) distinct land and ocean results
throughout our analysis. At the 1◦×1◦ resolution, a grid cell
is marked as ocean when the water mask area is greater than
90 %, while it is marked as land when the water mask area
is smaller than 10 %. For our extended tropics domain this
definition assigns 71.1 % of the grid cells to the ocean and
24.1 % to the land category.

The quality of the TMPA product differs between land and
ocean, mainly due to two factors: (1) gauge adjustment which
reduces systematic biases in land precipitation and (2) satel-
lite retrieval algorithm differences which result in lower ran-
dom errors over ocean (Liu, 2016; Sapiano and Arkin, 2009;
Tian and Peters-Lidard, 2010). We assert that our findings
about ocean–land differences are not much affected by these
algorithm differences because, first, random errors should be
suppressed due to large sample size and, second, our analy-
sis is largely based on deviations from the mean state. Nev-
ertheless, it is understood that TMPA overall performs less
reliably in certain situations such as continental warm rains
(Kidder and Vonder Haar, 1995; Kummerow et al., 2015).

Figure 1. Histograms of TMPA original 0.25◦× 0.25◦ 3-hourly
3B42 precipitation data (green), and subsets matched with day-
time Terra (blue) and Aqua (red), from December 2002 to Novem-
ber 2015 in the extended tropics domain. The boundaries that define
the six simplified precipitation groups are shown at the bottom.

2.2 Matching precipitation data to cloud grid

Because the 3B42 data set has higher spatial resolution than
the MODIS Level-3 cloud data set, we resample it to the
1◦× 1◦ resolution of the MODIS data set. Previous studies
averaged precipitation rates to a single value representing
grid mean (e.g., Lee et al., 2013; Rossow et al., 2013). In
this study, a marginal histogram of 3B42 0.25◦× 0.25◦ grid
precipitation rates is created for each 1◦× 1◦ grid cell. The
idea of such 1◦×1◦ precipitation histograms was drawn from
our other main data set, the MODIS joint 2-D histogram of
pc− τ , which preserves a certain degree of sub-grid cloud
information (although not of the actual spatial distribution of
the sub-grid variability). So, in a sense, sub-grid information
about precipitation rate can also be preserved in the form of
a histogram by assigning the 16 values (when there are no
missing values) of precipitation rate at 0.25◦× 0.25◦ reso-
lution to pre-defined bins to create a marginal histogram at
1◦× 1◦ grid cell. The histogram is normalized by dividing
each bin count by the total count in the histogram bins, i.e.,
16, in the default case of no missing value. Hence, each bin
value falls between 0 and 1 in multiples of 1 / 16, and sub-
grid precipitation rates are interpreted as areal fractions of
specific ranges of precipitation rates. Of the 16 precipitation
histogram bins, 1 corresponds to “no-rain” and the remaining
15 bins correspond to rain rates greater than 0. Histogram
bin boundaries are selected with 15 logarithmically spaced
intervals to ensure a more even distribution of counts (see
Fig. 1). Figure 1 shows the distribution of precipitation rate
of the original TMPA data in our extended tropics domain
according to this histogram binning approach. We see that
the amount of missing data is negligible, and that the “no-
rain” bin has an 89.5 % share of all data points. The rain rate
around 1 mmh−1 has a maximum share near 1.1 %, and ex-
treme values are below 0.4 % at both low and high rain rates.
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In addition to the trivial matching of grid cells, the TMPA
and MODIS observations also need to be matched in time.
Since MODIS Level-3 cloud data come from the aggrega-
tion of retrieved satellite observation along the Terra or Aqua
paths, and since these satellites are in a Sun-synchronous or-
bit, each grid cell of a daily MODIS map has a limited range
of nominal LST, but has a varying Coordinated Universal
Time (UTC), the time-keeping system of TMPA. The UTC
of each grid cell can be estimated from the mean solar zenith
angle (SZA) available as a MODIS Level-3 variable, and the
latitude and time information for each grid cell. Because of
minimal overlap of satellite orbits in the tropics, the mean
SZA value is a result of mostly (small) spatial variations
within the 1◦×1◦ grid cell. After identifying the UTC corre-
sponding to the grid cell of cloud data, the proper TMPA data
points can be extracted. Since the TMPA data are available at
3 h intervals, TMPA data centered, say, at 12:00 LTC, will be
matched with MODIS data between 10:30 and 13:30 LTC.

The histograms of TMPA tropical rainfall rate that match
Terra and Aqua paths spatially and temporally are also shown
in Fig. 1. One notable change from the original TMPA data
to Terra- or Aqua-matched data is that the portion of missing
data now surges to over 5 % of total data points. Most of these
missing data are traced back to unavailable Level-3 MODIS
data, for reasons such as absence of clouds or gaps be-
tween consecutive Terra–Aqua orbits at low latitudes. Other
differences in occurrence frequencies between original and
matched data are probably due to the diurnal cycle of precip-
itation. At the Terra overpass time of around 10:30 LST, pre-
cipitation is relatively weak over both land and ocean (e.g.,
Yang and Smith, 2006; Kikuchi and Wang, 2008). This ap-
pears in Fig. 1 as Terra-matched precipitation having smaller
frequencies than the original and the Aqua-matched precip-
itation, although it is somewhat improper to directly com-
pare Terra- or Aqua-matched data with fully sampled data
because the higher ratio of available (non-missing) data in the
fully sampled data propagates as higher relative frequency
in the various precipitation bins. It is also notable that for
weak-to-moderate precipitation rates (less than 1 mmh−1),
even Aqua-matched precipitation is (slightly) lower in per-
centage terms than fully sampled TMPA precipitation, which
can be interpreted as weak-to-moderate precipitation being
more frequent outside the time windows of Terra and Aqua
overpasses.

2.3 Analysis method and simplification of cloud and
precipitation histograms

The simplest and most straightforward method to measure
the co-variability of two variables is to calculate their cross-
correlation coefficients, namely Pearson’s r . In this study, the
cloud fraction values in each bin of the pc–τ joint histogram
and the relative frequencies in the precipitation histogram
form large arrays (O(1 000 000)) in the spatiotemporal do-
main, from which we can calculate correlation coefficients as
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Figure 2. ISCCP cloud types assigned to groups of bins in MODIS
joint histogram of τ–pc.

time and location varies. The original resolution of the pc−τ
and precipitation histograms yields 672 (= 42 CF bins× 16
precipitation bins) correlation coefficients. Analysis and vi-
sualization of such a large number of coefficients are imprac-
tical, hence we pursue an analysis where both the cloud and
precipitation histograms are coarsened.

Reducing the 42 bins of the cloud histogram allows us
to make a more intuitive physical connection with the nine
standard ISCCP cloud types of Rossow and Schiffer (1999).
While these cloud types were given the same names as the
standard cloud types seen by human observers from the
ground and have some affinity with them, they are only
loosely connected with the widely recognized traditional
cloud types. Figure 2 shows the pc and τ range for each cloud
type. Low and mid-level cloud types are composed of four
CF bins (= two pc classes× two τ classes) while high cloud
types are composed of six CF bins (= three pc classes× two
τ classes). Hence, the CF value of each cloud type comes
from the summation of either four or six CF bin values of the
original 2-D joint histogram.

Similarly, the 16 histogram bins of precipitation are re-
duced to six groups. The “no-rain” bin is unchanged, and the
other 15 bins of measurable rainfall are resampled to five pre-
cipitation groups (each referred to as a “P-group” hereafter)
by summing three consecutive precipitation bins, as shown at
the bottom of Fig. 1. Each P-group is labeled from P1 to P5,
with P1 representing the lightest precipitation, and P5 rep-
resenting the heaviest precipitation. For simplicity, the same
symbols are henceforth also used to represent the frequency
of occurrence within these groups, since their meaning is al-
ways clear by the context.

Our histogram coarsening reduces the number of correla-
tion coefficients to 54 (= nine cloud type CF values× six P-
group frequencies). Since the Terra and Aqua data (and
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matched precipitation data) are considered as a single en-
semble, our results represent the local cloud–precipitation
co-variability for the 6 h daytime period spanning 1.5 h be-
fore the Terra overpass to 1.5 h after the Aqua overpass.

3 Land–ocean difference of cloud–precipitation
relationships

3.1 Basic statistics and composite means of cloud and
precipitation data

Before examining correlations between cloud and precipi-
tation data, it is illuminating to examine the basic statisti-
cal information and mean states of both histograms from
which correlations are extracted. First, we examine the P-
groups that co-exist with certain cloud type fractions at the
grid level. Figures 3 and 4 show the conditional probability
of P-group occurrence under the condition that a particular
cloud type exists over ocean (Fig. 3) and land (Fig. 4). For
example, for all oceanic 1◦× 1◦ grid cells with cumulonim-
bus (Cb) clouds occurring, about 52 % of the grid cells re-
port P5 precipitation at one or more 0.25◦ sub-grid cell(s)
(Fig. 3a, upper-right bin). The threshold CF that determines
cloud occurrence is set to 6.25 %, i.e., the same threshold
fraction (1/16) that defines precipitation occurrence. We note
that P-groups are not mutually exclusive because several P-
groups can occur simultaneously in a 1◦× 1◦ grid cell.

Over ocean, the cloud type co-occurring the most with pre-
cipitation rates of moderate to heavy intensity is, not surpris-
ingly, Cb. The P-group most likely to occur alongside Cb
clouds is P4 with a probability of 0.77 (Fig. 3b). The proba-
bility of P5 group occurrence is lower at 0.52 but also comes
with an overall P5 population smaller than that of P4 (Fig. 1
and Table 1). When precipitation of any intensity is consid-
ered (Fig. 3f), besides Cb having the highest probability of
precipitation, 0.90, oceanic nimbostratus (Ns) also emerges
with a high probability of 0.75. The no-rain occurrences are,
not surprisingly, more strongly associated with thin and/or
low clouds (so-called “weak” clouds), topped by the 0.82
probability for cumulus (Cu) clouds. It is notable that no-
rain probabilities are clearly distinguishable from those of
the weak P1 or P2 rain groups not only by the probability
of these P-groups occurring (we note that the population of
the no-rain case is much larger) but also by how the prob-
ability varies with cloud type within the precipitation group
(e.g., compare Cu and Ns in Fig. 3e and g as an extreme con-
trast). Comparing Figs. 3 and 4, we see that land clouds gen-
erally have a smaller chance of precipitation co-existing with
clouds at the 1◦ scale. Even the P4 precipitation probability
of Cb clouds is only 0.54 (Fig. 4b), far lower than its oceanic
counterpart of 0.77. For the case of rainfall with any inten-
sity (Fig. 4f), the precipitation probability of Ns is only 0.35
compared to 0.75 over ocean. The precipitation probability of
mid-level altostratus (As) also decreases from 0.53 to 0.31, so

Table 1. Population percentages of grid cells with specific precipi-
tation characteristics over ocean and land from 13 years of data in
our 35◦ S–35◦ N extended tropics domain.

Ocean Land

P0> 0.5 85.21 % 89.95 %
P4> 0 11.13 % 9.73 %
P5> 0 4.52 % 4.23 %
P4+P5> 0 11.41 % 10.13 %
P4> 0 and P5> 0 4.27 % 3.83 %

mid-level clouds seem to be particularly less active precipita-
tion producers over land. In addition, the lightest rain group,
P1, over land is not associated with any particular cloud type
(Fig. 4e vs. Fig. 3e), while the no-rain case exhibits strong
probability dependence on cloud type. The issue of less rain
over land is also covered in the next composite plots (Figs. 5
and 6).

Figures 5 (ocean) and 6 (land) show composite mean cloud
and precipitation histograms, for occurrences of the strongest
precipitation groups P5 and P4 (i.e., at least one of the sub-
grids within the 1◦× 1◦ grid cell has a precipitation rate be-
longing to the P5 or P4 group). When P5 occurs over ocean
(Fig. 5), both cloud and rainy fractions exceed those of the
P4 cases. On the cloud side, Cb exhibits the largest increases
in CF when moving from the P4 to the P5 composite. For
the P5 composite, the largest CFs (red color) are located in
the bins with pc below 310 hPa and the τ bins extending
from 9.4 to 60, while in the P4 composite, CF peaks in the
bin bounded by 310 and 180 hPa, and with τ between 3.6
and 23. Conversely, thin (t < 3.6) cloud CFs as well as stra-
tocumulus (Sc) CF are smaller in the P5 composite than the
P4 composite. However, it cannot be determined from this
analysis alone whether the increased amounts of thin and Sc
clouds in the P4 composite are directly linked with the oc-
currence of P4 precipitation, or if they are a consequence of
increased chance of co-existence with other clouds produc-
ing P4 precipitation. The CFs of mid-level clouds increase
only slightly from P5 to P4 composites in terms of absolute
values, but these increases are quite large in a relative sense
because absolute CF values for these clouds are very small
in the MODIS climatology.

Consistent with the CF changes, the total rainy fraction,
defined as the sum of the 15 precipitation histogram bin fre-
quencies excluding the “no-rain” bin in 1◦× 1◦ grid cells,
also increases in the P5 composite (0.794 vs. 0.627). The
mean precipitation histogram in the P5 composite (Fig. 5 top
right) exhibits a peak within the P5 group, but the fraction
of total precipitation in the P4 group is larger. This does not
come as a surprise because, first, the absolute population of
P4 is higher than that of P5 (Fig. 1), and second, most P5
precipitation events co-occur with P4 precipitation events at
1◦× 1◦ resolution (Table 1). The P4 fractional contribution
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Figure 3. (a–e) Conditional probabilities of precipitation within a P-group (from TMPA) given occurrences of a cloud type (from MODIS)
over ocean in the extended tropics from December 2002 to November 2015. (f) Conditional probabilities of any rain amount (sum of all
P-group frequencies). (g) Conditional probabilities of no rain co-occurring with cloud. The CF threshold for cloud type occurrence is 6.25 %.

Figure 4. Same as Fig. 3, but over land.

in the P5 composite is also larger than the P4 contribution
in the P4 composite (Fig. 5 bottom right), while the light-
to-moderate P-group (P1–P3) fractions are slightly larger in
the P4 composite compared to the P5 composite. This indi-
cates that stronger precipitation events also have a weaker
tail towards lower rainfall rates. In terms of total rainy frac-
tion, considering that approximately 38 % of the P4 compos-
ite population overlaps with the P5 composite (Table 1), we
see that the spatial extents of oceanic rain systems producing
P4 but not P5 are often much smaller than systems producing
P5.

We also examined the geographical distributions of P4 and
P5 occurrence frequency (Fig. S1 in the Supplement), and
found that the distribution maps look very similar, with the
regions significantly skewed towards one of P4 or P5 being
very few. This result suggests that the P4 and P5 compos-
ites in Fig. 5 are related and likely respectively capture the

developing and mature stage of mesoscale convective sys-
tems (MCSs). The review of Houze (2004) and Chapter 9
of Houze (2014) describe MCS as the combined system of
a large region of stratiform precipitation paired with individ-
ual or clustered Cb clouds, yielding thus a variety of cloud
and precipitation structures (Houze et al., 1990). The P5
composite patterns of cloud and precipitation shown in Fig. 5
are in accordance with such MCS characteristics, i.e., strong
convective clouds and a broad spectrum of precipitation.

Figure 6 shows the same P4 and P5 composite means as
Fig. 5, but over land. Comparing the top and bottom panels
of Fig. 6, we see that the general characteristics of the differ-
ences between P4 and P5 land composites are similar to their
oceanic counterparts. For example, the total CF and rainy
fraction increase from the P4 to the P5 composites, accom-
panied by larger CFs of Cb clouds, and P4 group fractional
contribution in the P5 composite. However, there are also no-
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Figure 5. Conditional composite mean of 2-D joint histogram of pc and τ (left column), differences from overall (unconditional) mean
(middle column), and precipitation histogram (right column) over the extended tropical oceans for 13 years. Top row is for P5, while bottom
row is for P4 precipitation. Blue lines in precipitation histograms indicate the overall mean. Both cloud and precipitation overall means
correspond to the entire domain, and not just ocean. Numbers on cloud histograms are the cloud fraction (CF; in percentage) of each cloud
type, which is the sum of four or six histogram bin values assigned to the cloud type. The sum of all values is equal to the total cloud fraction
provided above each panel. Numbers on precipitation histograms are the fraction of each P-group, P1 (left) to P5 (right), obtained as the sum
of three individual bin values. Total rainy fraction is the sum of all P-groups’ fractions (i.e., sum of 15 individual bin values).

Figure 6. Same as Fig. 5, but over land.
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table differences, such as total CF difference between P4 and
P5 composites being smaller over land than over ocean. Over
land, smaller CFs can produce P5-magnitude precipitation
while larger CFs are needed for P4-magnitude precipitation
compared to ocean. The total rainy fractions of P4 and P5
composites are also smaller over land. For example, when P5
occurs, 79 % of oceanic sub-grids at 1◦ scales are precipitat-
ing, while the same is true for only 59 % of continental sub-
grids. For P4 composites, the values are 63 % over ocean vs.
47 % over land. These are strong indications that continen-
tal systems producing heavy rainfall are in general smaller in
size than their oceanic counterparts (Liu et al., 2008; Houze,
2014, Chapter 9; Houze et al., 2015).

The distributions of total rainy fraction as well as grid
mean cloud properties by P-group are further examined in
Fig. 7, which shows box plots of total rainy fraction, CF,
log10(τ ), and pc distributions. Over ocean, both total rainy
fraction and CF generally increase monotonically with pre-
cipitation. However, the picture is somewhat different for
land. From P2 to P5, both the median and mean values of
land CF are quite similar (Fig. 7b). As a result, in the P2 case,
the land CF median is nearly 10 % greater than the ocean
CF median, while it becomes 5 % smaller than its ocean CF
counterpart in the case of P5. At the same time, the total rainy
fraction over land appears to monotonically increase in the
same way as over ocean, albeit with a notably smaller abso-
lute value and slope of growth. Hence, it appears that over
land, similar amounts of CF (e.g., 70 to 80 %) in a 1◦× 1◦

grid cell are involved in a broad range of precipitation rates,
while the fraction of raining clouds in the grid cell is much
smaller compared to ocean. Collectively, these results indi-
cate reduced predictability of precipitation from knowledge
of CF over land, at least with the precipitation data set at
hand.

Houze (2014, Chapter 9) and Houze et al. (2015) noted
that shallow and isolated clouds producing “warm rain” are
mostly oceanic phenomena, while the size of MCSs is gen-
erally larger over ocean than land. These two different pre-
cipitating sources can explain the big contrast over ocean of
total rainy fraction between P2 (median 35 %) and P5 (me-
dian 85 %); over land the difference is less than 30 %. In ad-
dition, Fig. 7c and d show that light-to-moderate precipita-
tion groups (P1–P3) over ocean are associated with optically
thinner and shallower clouds, more evidence of the preva-
lence of marine “warm” rain processes. Note also the larger
variability (taller interquartile box) of oceanic pc for light
precipitation compared to heavy precipitation, indicating that
the former is harder to relate to particular cloud types. For
continental light precipitation, associated clouds are optically
thicker and of higher altitude than oceanic counterparts, but
TMPA’s potential weakness in identifying such precipitation,
as described in Sect. 2.1, may be affecting the land results of
Fig. 7.

In summary, the 1◦× 1◦ spatiotemporally matched cloud
and precipitation data suggest that prevailing features such as

contrasting horizontal size of oceanic and land MCSs can be
clearly detected by this study’s methods. In the next subsec-
tion, the covariability of cloud and precipitation is examined
in detail using explicit correlation analysis.

3.2 Correlations between cloud and precipitation
fractions

As stated previously, to measure the co-variability of cloud
and precipitation, we calculate cross-correlation coefficients
between the CFs of the nine cloud types and the normal-
ized frequencies (equivalent to fraction of precipitating area)
within the five P-groups. Figures 8 and 9 show correlations of
cloud types for each P-group as well as all combinations of
consecutive cumulative P-group frequencies over the oceanic
and land regions of our extended tropical domain. We note
that when the fraction sum of specific P-group(s) is 0, the
data point is excluded from the calculation of correlations.
Hence, for example, correlation coefficients with P5 over
ocean (Fig. 8a) are calculated with approximately 4.5 % of
the total data available. Even over land, the sample size for
this case (Fig. 9a) still exceeds 1 million, placing the 99 %
significance level at less than 0.005 in terms of correlation
coefficient absolute value. The statistical significance level
was calculated here using a bootstrapping method which ran-
domly shuffles the array, but in a way that considers the ef-
fect of autocorrelations between neighboring grid cells (i.e.,
shuffling by “chunks”; Kunsch, 1989; Léger et al., 1992; Liu
and Singh, 1992). Consideration for the effect of neighboring
grid cells is important because neighboring grid cells are usu-
ally not independent (e.g., a cloud system can occupy multi-
ple grid cells); without this consideration, the degree of free-
dom will be overestimated, and thus the significance level
underestimated. With the significance level quoted above, all
correlations in Figs. 8 and 9 are statistically significant.

Examining first oceanic cloud–precipitation coupling,
Fig. 8 reveals that strong correlations, both negative and
positive, occur in the panels on the left, whilst correlations
weaken as one moves to the right. The leftmost column pan-
els consist of P-group(s) that include P5, the group of heav-
iest precipitation, while as one moves to the right, heav-
ier precipitation is progressively excluded. The overall pic-
ture then is that of strong correlations corresponding mostly
to heavy precipitation and of light precipitation correlating
poorly with all cloud types. The leftmost column panels of
Fig. 8 indicates that positive coefficients occur for high cloud
types of moderate to strong optical thickness, namely cir-
rostratus (Cs; probably includes many anvils) and Cb (deep
convection core), while negative values occur for low cloud
types that are also optically thin. In the five panels of the left-
most column, Cb clouds always have strong positive corre-
lations with precipitation, a result that comes as no surprise.
For the correlation of Cs clouds to become positive and then
increase, lighter precipitation has to be added to P5. For ex-
ample, when only P5 values are used (Fig. 8a), the correla-

Atmos. Chem. Phys., 18, 3065–3082, 2018 www.atmos-chem-phys.net/18/3065/2018/



D. Jin et al.: The co-variability of cloud and precipitation 3073

Figure 7. Box-and-whisker plot of (a) the total rainy fraction, (b) the total cloud fraction, (c) the grid-mean log10(τ ), and (d) the grid-mean
pc conditioned by precipitation groups, separately for ocean and land. The median values are shown as red horizontal lines, and the mean
values are shown as black crosses. The vertical width of the boxes indicates the interquartile range (25th–75th percentile), and the whiskers
extend from 5 to 95 % values. Percentage numbers above the boxes indicate the occurrence ratio of each P-group relative to the total ocean
or land grid cells.

tion coefficient of Cs clouds is negative (−0.16), but changes
to 0.22 after P4 is added to P5 (Fig. 8b). This suggests that
lighter rain in the vicinity of the heaviest rain is more closely
related to Cs (or anvil) clouds. A similar trend of stronger
correlations when lighter precipitation is added also ensues
for low and thin Cu clouds, although with a negative sign in
this case. In Fig. 8a, a strong negative correlation is seen with
(high and thin) cirrus (Ci) clouds, and as lighter precipitation
is added, the peak of negative correlations moves towards
lower Cu clouds.

In order to get a sense of the physical reality represented
by Pearson’s r , we examined two-dimensional histograms
of cloud type CF and P-group for both strong positive and
strong negative correlations (Figs. S2 and S3 in the Supple-
ment). We note that more samples are available for 0 or small
values of cloud type fraction for each case, and the distribu-
tion patterns look otherwise reasonable. We also examined
the geographical dependence of these correlations and found
them generally insensitive to location (Fig. S4 in the Supple-
ment).

Notable patterns in correlation coefficients are also de-
tected in the second left column panels which show correla-
tions with P4 precipitation included, but without P5. Similar
to the leftmost column panels, Cb, Cs, and Cu clouds show
the stronger correlations with positive or negative signs. One
difference from the P5 cases is that in Fig. 8e, h, and l, the
positive correlations of Cs clouds are stronger than those
of the thicker Cb clouds. The correlation coefficient values
of Cs clouds in these panels are quite similar to the values
for the same clouds in the leftmost column (which includes
P5 precipitation). This result suggests that it is actually Cs
clouds that are related the most to the variability of P4 and
lighter precipitation.

Moving now to the land regions of our extended tropical
domain, we use the same “correlation pyramid” to note that
the relationship between high and optically thick Cb clouds
and P5 heavy precipitation is of positive strength similar to
that over oceans (Fig. 9). However, other details are quite
different between land and ocean. First, the negative correla-
tions of Cu clouds in the leftmost column panels are weaker.
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Figure 8. Cross-correlation coefficients in the extended tropical oceans for 13 years calculated between CFs of cloud types and precipitation
group (individual or cumulative P-groups) values. The sum of all five precipitation groups shown in panel (k) corresponds to the total rainy
fraction.

In Fig. 8, the peak negative correlation values reached−0.40
and occurred in panels (d) and (g), which include the moder-
ate to weak precipitation of the P3 and P2 groups. In Fig. 9 on
the other hand, the peak negative value weakens to−0.23 and
occurs in panel (b), which represents the sum of only P4 and
P5 precipitation; the negative correlations weaken as lighter
precipitation is added. This result suggests greater chances
of Cu clouds and P5 precipitation co-existing in 1◦× 1◦ grid
cells over land compared to ocean. This observation may be
related to our earlier finding inferred from Figs. 5–7 that the
size of precipitating systems is much smaller over land than
ocean.

Secondary but still noteworthy differences between land
and ocean are identified in the correlations between Cs
clouds and precipitation that include the P4 and P3 groups
(second and third column panels from left in Figs. 8 and 9).

Previously in Fig. 8, the maximum correlation values in the
second-from-left column were the ones correlated with Cs
clouds, up to 0.36. In the third column, associated with P3
precipitation, correlations with Cs clouds weaken to 0.16.
In contrast, Fig. 9 shows that the strongest correlations of
the second column are those for Cb clouds, not Cs. In the
third column, the correlations with Cs clouds do not weaken
as much, with a 0.21 correlation value being reached in P-
groups that include P3. This pattern indicates that continen-
tal high clouds are more correlated with lighter precipitation.
It is also notable that correlation coefficients with Cs clouds
in the first column of Fig. 9 (including P5 over land) reach
just 0.25, while those in Fig. 8 (ocean) are as high as 0.39.
A possible explanation of the above correlation results is that
thick anvils of continental MCS (Cetrone and Houze, 2009;

Atmos. Chem. Phys., 18, 3065–3082, 2018 www.atmos-chem-phys.net/18/3065/2018/



D. Jin et al.: The co-variability of cloud and precipitation 3075

Figure 9. Same as Fig. 8, but over land.

Yuan et al., 2011) are more frequently classified as Cb rather
than Cs (as defined in this study).

For light precipitation, the absolute values of correlation
coefficients are smaller than those for heavy precipitation
commonly found over land and ocean, reflecting the fact
that the mechanisms and origins of light precipitation exhibit
a greater variety. Nevertheless, a meaningful difference be-
tween land and ocean can be seen in Figs. 8 and 9. When
comparing Fig. 8n and o with Fig. 9n and o, peak correla-
tions around 0.1 occur for stratus (St) over ocean, but similar
peak correlations over land occur even for Cs and Cb. This
result suggests that over land even light precipitation is more
frequently related to strong convective activity while oceanic
light precipitation has a greater chance of being produced by
“warm rain” mechanisms, as noted at the end of Sect. 3.1.

In summary, continental Cs and Cb clouds co-exist with
a broader range of precipitation, but are also more weakly
correlated with them, compared to their oceanic counterparts.

This result is consistent with the previously noted clima-
tological features of grid-mean cloud properties shown in
Fig. 7. For example, the median pc for the P2 group over
land in Fig. 7d was already below 440 hPa, while for oceanic
clouds the median pc reached such values when precipitation
was strong enough to belong to the P4 group. The optical
thickness was also generally larger for land clouds (Fig. 7c).
It is possible that TMPA is missing some “warm” rain events
over land due to microwave retrieval inadequacies as stated in
Sects. 2.1 and 3.1. For heavy precipitation, Level-2 TRMM
observations led Liu et al. (2008) to conclude that tropical
land storms are more vertically developed, i.e., with opti-
cally thicker clouds with higher tops, but also spatially more
confined than oceanic storms (see also Houze et al., 2015;
Matsui et al., 2016). Hence, precipitation over land occupies
a smaller area, resulting in weaker correlations at scales of
1◦. Differences in correlations between Figs. 8 and 9 there-
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fore reflect land–ocean differences in the nature of tropical
storms or MCSs.

There are other intriguing aspects of cloud–precipitation
co-variability in land and ocean, and these are examined
more closely in the next subsection: (1) the origin of nega-
tive correlations and (2) correlation sensitivity to precipita-
tion strength.

3.3 Further investigation for correlation features

3.3.1 Negative correlations between precipitation and
thin clouds

In Figs. 8 and 9, we saw thin clouds having negative corre-
lations with heavy precipitation. These negative correlations
can be interpreted as thin clouds being rarer when heavy pre-
cipitation occurs, an interpretation that is consistent with em-
pirical observation and expectations. However, since it is also
seen that heavy precipitation is strongly related to thick and
high-level clouds (e.g., Cb), the negative correlation of op-
tically thin clouds with heavy precipitation can also be in-
terpreted as a contemporaneous negative co-occurrence rela-
tionship between optically thin low and optically thick high
clouds. Please note that for a cloud type to be always (i.e.,
regardless of precipitation strength) anti-correlated with pre-
cipitation, its occurrence must be anti-correlated with that of
other cloud types that are positively correlated with precip-
itation of a certain range. In order to examine these issues,
we calculate internal correlations among cloud types based
on the spatiotemporal variability of their CFs. From all pos-
sible combinations, we elect to show results where one of
the cloud types is either Cs or Cb when P4 or P5 precipi-
tation group occurs. These results for both land and ocean
are shown in Fig. 10. For example, Fig. 10a (ocean) and d
(land) show correlation coefficients between the CF of Cs
and the CFs of all other cloud types for grid cells reporting P4
precipitation. We note that the samples used for Fig. 10 cor-
relations are the same as those used for cloud–precipitation
correlations shown in Figs. 8 and 9, given the same precipi-
tation conditions, namely P4 or P5 values greater than 0 (i.e.,
Figs. 10a and b, and 8c).

Figure 10a, b, and c shows correlation coefficients based
on oceanic Cs and Cb CFs. The Cs clouds are strongly anti-
correlated with Cu and Sc clouds, while Cb clouds are fur-
thermore strongly anti-correlated with Ci clouds. In the cases
of P5 precipitation presence (Fig. 10c), the anti-correlation
between Cb and Ci CFs becomes even stronger. Actually, in
this case, Cb clouds are anti-correlated with all other cloud
types; i.e., when Cb CF increases at 1◦× 1◦ grid cell, CFs of
other clouds decreases, and vice versa. These cloud type cor-
relation patterns remind us of Fig. 8a, b, and c. For example,
a comparison between Figs. 10c and 8a shows that the anti-
correlation ordering by strength is the same, with Ci clouds
coming first, Cu second, and Sc clouds third. This finding
suggests that in tropical oceans P5 precipitation is mainly re-

lated to Cb clouds, and its anti-correlation with thin clouds
is another expression of the anti-correlation between Cb and
thin clouds. The exact nature of the anti-correlation is un-
known because a passive sensor such as MODIS has limited
skill in distinguishing between cases where the mid- and low-
level clouds are absent and cases where they are obscured by
high clouds.

When focus shifts to the weaker P4 precipitation group,
both Cs and Cb clouds anti-correlate with low Cu and Sc
clouds, and the anti-correlation is only slightly weaker for Sc
than Cu (Fig. 10a and b). Previously however, Fig. 8c indi-
cated that the anti-correlation between P4 group and Sc cloud
is much weaker than that between P4 and Cu cloud (−0.15
vs. −0.28). This discrepancy is also seen in all panels of
Fig. 8 representing correlations with moderate-to-heavy pre-
cipitation classes (third column from left), but is not seen
over land (Fig. 9). While this issue will be discussed fur-
ther in the next subsection, which deals with correlation sen-
sitivity, suffice it to say here that cloud–precipitation anti-
correlations cannot be exclusively attributed to cloud type
co-occurrence anti-correlations.

When comparing oceanic and continental correlation pat-
terns in Fig. 10 (top row vs. bottom row), we see the correla-
tion patterns being quite similar, but with weaker correlation
magnitudes over land. For example, Cs clouds in Fig. 10d
remain strongly anti-correlated with Cu and Sc clouds, and
Cb clouds in Fig. 10f are still anti-correlated with all other
cloud types. However, differences between ocean and land
clouds also emerge. First, particularly in the presence of non-
zero P4 precipitation (Fig. 10d and e), there are stronger
anti-correlations between Cb or Cs clouds and mid-level
clouds over land. Previously in Fig. 6, we noted that mid-
level clouds have greater CFs over land compared to ocean
(even though their absolute value is much smaller than high
clouds). The increased CFs of mid-level clouds over land
may be related to a closer relationship with high thick clouds,
thus affecting the correlation strength.

Another difference between ocean and land is the corre-
lation between Cb and Cs in the presence of P5 precipita-
tion. Comparing Fig. 10c and f, the notable anti-correlation
value of −0.27 over ocean weakens to −0.16 over land. This
result indicates that Cb and Cs clouds are less mutually ex-
clusive over land. Since overcast conditions (100 % CF) in
a 1◦×1◦ grid cell are more frequent over ocean (Fig. 7b), in-
dicating that oceanic MCS can grow to sizes larger than 1◦,
there is a greater chance of competition between Cb and Cs
over ocean to fill the grid cell.

Lastly, we return to our previous point that the anti-
correlation of CFs among cloud types does not explain all
features of the anti-correlation between cloud and precipita-
tion shown in Figs. 8 and 9. For example, comparing Figs. 8a
and 9a, anti-correlation between P5 and Cu cloud weakens
from−0.25 (ocean) to−0.20 (land). However, Fig. 10c and f
indicate that the anti-correlations between Cb and Cu clouds
are almost the same for ocean and land (−0.37 vs. −0.36).
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Figure 10. Conditional cross-correlation coefficients between cloud joint histogram bin CF values calculated for 13 years, based on (a) Cs
CF over ocean when P4> 0, (b) Cb CF over ocean when P4> 0, (c) Cb CF over ocean when P5> 0, (d) Cs CF over land when P4> 0,
(e) Cb CF over land when P4> 0, and (f) Cb CF over land when P5> 0. The percentage numbers above each panel are sample size ratios
relative to the total number of ocean or land grid cells.

This further supports the hypothesis that the frequencies of
the P5 precipitation group and Cb CFs are more weakly cou-
pled over land.

3.3.2 Correlation sensitivity to heavy precipitation

Correlations between cloud and precipitation shown previ-
ously in Figs. 8 and 9 indicated that the heaviest precip-
itation group has a solid relationship (correlation or anti-
correlation) with cloud types, while weaker precipitation
groups do not. This fundamental finding is examined more
closely with more detailed CF–precipitation correlations.
Figure 11 shows correlation coefficients over both ocean and
land between the CF of various cloud types and the frequency
of cumulative precipitation within original precipitation bins,
from the seventh bin onward (i.e., 0.251 mmh−1 and above).
Hence, at the start of the x axis the precipitation frequency
corresponds only to the seventh bin, and as one moves along
the axis precipitation frequencies for subsequent bins are pro-
gressively added until the end of the axis where the precipi-
tation frequency represents the sum of all values from the 7th
to 15th bin, namely the sum of frequencies of the P3, P4, and
P5 groups. When compared to Figs. 8 or 9, Fig. 11 shows
essentially in more detail the evolution of correlation coef-
ficients for the third row of the “pyramid”; i.e., correlation
changes as one moves from Fig. 8f (9f) to 8e (9e), and then
to 8d (9d) over ocean (land).

Figure 11a shows the correlation change of high clouds
(Ci, Cs, and Cb). Over ocean (solid line), the correlation
of Cb cloud increases monotonically as heavy precipitation
is added, while that of Cs cloud peaks when the 13th bin
(2.51–3.98 mmh−1) is added; further additions of heavier
precipitation result in correlation coefficients trending down-
ward. Similar patterns are also seen for the land clouds in
this category. However, one prominent difference between
ocean and land is that the land clouds in this group tend to
be more strongly correlated with weaker precipitation. For
example, continental Cb clouds correlate more than oceanic
Cb with precipitation up to the 13th bin. However, the cor-
relation curve for oceanic Cb clouds exhibits a steeper slope
after adding the 11th bin, and ends up surpassing continental
Cb clouds with the heaviest precipitation. In the case of Cs
cloud, the continental correlation curve peaks with the ad-
dition of the 11th bin (1.0–1.58 mmh−1), while the oceanic
peaks upon addition of the 13th bin. This result indicates that
P4 precipitation over land tends to be more related with Cb
than Cs clouds, contrasting what happens over ocean. In the
case of Ci clouds, the anti-correlation is stronger at weak
precipitation over land, consistent with the above argument,
but the difference between land and ocean is not very pro-
nounced given the small absolute values of coefficients com-
pared to Cs and Cb clouds.

For the mid-level cloud group shown in Fig. 11b, a no-
table difference between ocean and land is seen for the As
and Ns clouds. Oceanic Ns clouds have broad positive cor-
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Figure 11. Correlation coefficients between cloud type CF and pre-
cipitation histogram values, for (a) high clouds (Ci, Cs, and Cb),
(b) mid-level clouds (Ac, As, and Ns), and (c) low clouds (Cu, Sc,
and St). Precipitation histogram values are added cumulatively from
the seventh bin onward, so the sum from the seventh to the ninth bin
corresponds to P3, and so on. Oceanic cloud results are shown in
solid lines, and continental cloud results are shown in dashed lines.

relations around 0.1 for all precipitation bins. Oceanic As
also have positive correlations with moderate-to-heavy pre-
cipitation bins, although they decrease to 0 as heaviest pre-
cipitation is added. On the other hand, continental As and
Ns clouds show only negative correlations with all precip-
itation strengths. As and Ns occurrences are smaller over
ocean (3.8, 1.7 %) than over land (5.3, 2.5 %) in Figs. 5 and
6 (when P4> 0), but shallower convection over ocean seems
sufficiently strong to produce moderate-to-heavy precipita-
tion from As and Ns clouds.

In the case of the low cloud group shown in Fig. 11c, first,
the thickest St clouds’ correlation evolution pattern looks
similar to that of As clouds above, although the presence of
St clouds over ocean is even smaller than As (St CF= 1.3 %
vs. As CF= 3.8 % when P4> 0 in Fig. 5). The correlation
pyramid of Fig. 8 showed that the positive correlation of St
clouds is stronger when it is related to weak precipitation
groups (P1 or P2), which are not included here (but are in-
cluded in Fig. S5 in the Supplement). Secondly, also notable
is the contrasting correlation evolutions of oceanic Cu and Sc

clouds, previously mentioned to have different magnitudes
of anti-correlation. Oceanic Sc clouds have slightly positive
correlations with the seventh and seventh to eighth precipita-
tion bins, which then become negative as heavier precipita-
tion is added. Similar to the St cloud, the positive correlation
of Sc cloud is expected to strengthen with even lighter pre-
cipitation (Figs. 8 and S5 in the Supplement). For the oceanic
shallow convection, our results of low- and mid-level cloud
correlations consistently indicate that shallower and thinner
clouds (e.g., Sc) are more related to lighter precipitation,
while higher and thicker clouds (e.g., Ns) are more related
to heavier precipitation. In the case of Cu, the correlation co-
efficient is roughly the same between ocean and land for the
seventh precipitation bin, but the correlation curves diverge
as heavier precipitation is added. By the time the frequencies
of all precipitation bins from 7th to 15th have been added,
oceanic Cu clouds have twice as strong anti-correlation com-
pared to their continental counterparts. As discussed previ-
ously in the context of Fig. 10, correlations among cloud
fraction co-occurrence, i.e., Cu vs. Cs or Cu vs. Cb, are not
as different between ocean and land as those shown here be-
tween clouds and precipitation. The weaker anti-correlation
of continental Cu cloud with rainfall reflects then, at least
partly, the less robust relationship between heavy precipita-
tion and continental high clouds.

3.4 Limiting factors and uncertainties

3.4.1 Uncertainty of cloud type classification

In this study, MODIS-observed clouds are classified into
nine cloud types adopted from previous ISCCP conventions
(Chen et al., 2000; Rossow and Schiffer, 1999) for the sake
of convenience. This classification is, strictly speaking, based
on arbitrary τ and pc thresholds, and clouds assigned to each
pair of bin boundaries will only loosely represent cloud types
originally defined from morphological features seen by sur-
face observers. Previously we noted that continental MCSs
often include thick anvils (Cetrone and Houze, 2009; Yuan
et al., 2011), but we can not confirm that these anvils are clas-
sified as Cs or Cb without knowledge of the cloud vertical ex-
tinction profile. Moreover, a passive sensor like MODIS has
intrinsic limitations in identifying certain cloud types. Recent
studies examining the nature of MODIS cloud regimes with
active sensor observations from CloudSat and the Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observa-
tions (CALIPSO) show that similar MODIS joint histograms
can have a variety of cloud vertical structures (Oreopoulos
et al., 2017). In addition, Wang et al. (2016) showed that
defining cloud types from CloudSat–CALIPSO observations
where cloud vertical extent is better known can yield large
disagreements with cloud type definitions from the MODIS
pc–τ joint histogram. Such ambiguous definitions of cloud
types from passive measurements may be the reason for sub-
stantial correlations between As and certain ranges of pre-
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cipitation even though As is usually thought of as a non-
precipitating cloud type. In summary, the nine cloud types
in this study may not strictly correspond to their traditional,
ground-based classification, so their relationship with precip-
itation should not be taken literally or juxtaposed with empir-
ical knowledge. They are simply a convenient framework to
organize findings about cloud–precipitation co-variability at
1◦ scales.

Furthermore, the passive MODIS observations suffer
from low skill in detecting multi-layer clouds. Specifically,
MODIS generally only detects the cloud top of the highest
cloud, so high clouds such as cirrus or stratiform anvil will
mask the presence of shallow clouds. This may be a con-
tributing factor to the negative correlations by Cu and Cs in
Fig. 10. Unfortunately, this is a shortcoming of passive cloud
observations that we have to live with in exchange for wider
coverage.

3.4.2 Uncertainty of TMPA and its temporal matching
to MODIS

As noted in Sect. 2.1, TMPA quality varies by location.
Over land, the strong surface emissivity forces microwave
retrievals of precipitation to rely on the ice scattering signa-
ture, which may not be present for warm (or shallow) rain.
While there are gauge adjustments over land, they depend
on the quality and density of the gauges used and operate
at monthly timescales; thus they may not be able to cor-
rect the precipitation rates for individual rain events. Over
ocean, gauge adjustment is unavailable, leading to potential
systematic errors in the precipitation estimates. Furthermore,
the retrieval of remotely sensed precipitation relies on al-
gorithms that estimate surface precipitation rates from pas-
sive microwave brightness temperature, a task that remains
challenging. In addition, due to the intermittency of passive
microwave sensors on low-Earth orbit satellites, gaps in the
microwave field are filled in by infrared-based precipitation
estimates, which have poor accuracy as infrared brightness
temperature in isolation is only indirectly related to precip-
itation (it is as if we were trying to correlate precipitation
here with one-dimensional pc histograms). Hence, TMPA es-
timates possess considerable uncertainties.

Furthermore, precipitating systems can develop quickly,
especially over land. For example, a tropical squall line can
develop in a few hours, so it is possible that MODIS and
TMPA observe different stages of a system given that a 1.5 h
difference is possible in spite of our temporally matching.
This situation can result in decreased correlation coefficients
between high thick clouds and heavy precipitation over land.
We are somewhat less concerned about this sampling issue
because the lead/lag time between MODIS and TMPA is ex-
pected to be random, and therefore hopefully not a source
of systematic bias. In the future, this concern can be amelio-
rated by using a higher temporal resolution precipitation data

set such as the Integrated Multi-satellitE Retrievals for GPM
(IMERG; Huffman et al., 2018) instead of TMPA.

4 Summary and conclusion

The total amount, intensity, and frequency of precipitation
should be organically related to the properties of the clouds
from which they originate. However, due to the different ra-
diative signal strengths of hydrometeors at particular parts of
the electromagnetic spectrum, precipitation and cloud obser-
vations are significantly decoupled, necessitating joint anal-
ysis of products developed for different purposes and from
imperfectly matched observations. Even with such non-ideal
data at hand, the community still aspires to answer funda-
mental questions such as the following: to what degree can
precipitation be predicted given information about clouds?
Conversely, with precipitation information at hand, can we
provide good guesses about the nature of the clouds respon-
sible? Is precipitation variability associated with cloud vari-
ability? Do answers to the above questions differ substan-
tially between ocean and land? This paper seeks to contribute
ideas and results that will help us make progress in obtaining
concrete answers in the near future, especially if observations
also make considerable strides.

In order to work towards solving the problem of under-
standing cloud–precipitation co-variability, we use contem-
poraneous multi-year data sets, widely accepted concepts
about how to classify clouds into various types from passive
observations, and a combination of compositing and correla-
tion analysis. We try to preserve some sub-grid variability in-
formation at 1◦ scales by employing precipitation histograms
built from the TMPA data set, as well as MODIS joint his-
tograms of cloud top pressure and cloud optical thickness,
both of which are matched spatiotemporally.

We find, not surprisingly, that correlations between deep
convective clouds and heavy rainfall are strong and stand out
clearly, dwarfing all other correlation combinations for both
land and ocean. Land–ocean differences are also remark-
able. For example, oceanic deep convection systems (e.g.,
mesoscale convective systems) are more likely to attain over-
cast conditions and to have larger fractions of rainy sub-grids
within 1◦× 1◦ grid cells, both indicative of larger horizontal
size than their continental counterparts, consistent with pre-
vious studies. Over land on the other hand, Cb and Cs clouds
are related not only with heavy precipitation, but rather with
a broader range of rainfall which translates to weaker corre-
lations.

Thin clouds, particularly Cu clouds (as defined here) are
anti-correlated with moderate-to-heavy precipitation. The
anti-correlation is stronger over ocean, and the magnitude is
comparable to the anti-correlation between Cu and high thick
clouds (Cb or Cs). The fact that oceanic deep convection of-
ten fills and outgrows the 1◦× 1◦ reference grid cell, is ul-
timately the cause of clearer relationships (less uncertainty)
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among heavy precipitation, high thick clouds, and low thin
clouds.

Over ocean, low- and mid-level clouds also exhibit posi-
tive correlations with precipitation of certain ranges, which
represents shallow convection and warm rain processes.
Among those clouds, the relatively higher and thicker Ns
clouds are more related to moderate-to-heavy precipitation,
while lower and thinner Sc clouds are more related to light
precipitation. In the end, positive correlations indicate that
oceanic precipitation comes from a variety of cloud types
and rain formation processes (warm rain) while most pre-
cipitation over land requires the presence of high clouds.
Notably, the shallow continental clouds show stronger anti-
correlations with heavy precipitation than positive correla-
tions with light precipitation. It is conceivable that this result
can change once detection of low clouds in the presence of
high clouds and of warm rain over land improves (Field and
Heymsfield, 2015; Mülmenstädt et al., 2015).

Collectively, we make a strong case that rainfall pre-
dictability is better over oceans than continents when cloud
information is available. But even over oceans, there are sig-
nificant uncertainties in linking certain ranges of precipita-
tion with specific cloud types, at least with our approach. Our
self-imposed objective to make the study general, multi-year,
and applicable to half of the Earth’s surface led us to Level-
3 gridded data as the most appropriate choice. While some
of the details seen in previous studies that used Level-2 data
will unavoidably be lost, our data sets are good enough to ex-
tract major features of cloud–precipitation co-variability and
allow us to claim that they are broadly representative of this
co-variability in the tropics. We argue that the insensitivity
of cloud–precipitation relationships to location (Fig. S4 in
the Supplement) and precipitation data set (initial tests with
recent GPM-IMERG data that may be presented in a future
study yielded similar results) strengthens the validity of this
conclusion.

We expect that our study has the potential to form the basis
for enhanced evaluation of precipitation in GCMs. A regime-
based analysis in the deep tropics by Tan et al. (2017) sug-
gests that clouds and precipitation are more decoupled in
models than in observations (see also Jing et al., 2017;
Suzuki et al., 2015). Confirming that conclusion with the ap-
proach introduced in this study is a possible next endeavor. In
addition, more effort should be extended to apply the frame-
work in this study to various case studies with more appropri-
ate data sets (e.g., using higher-resolution precipitation data
sets for regional/seasonal studies, or longer period data sets
for climate studies) in order to increase further our degree of
confidence about the cloud–rainfall relationships.

Data availability. TMPA precipitation data were obtained from
the public precipitation data portal (https://pmm.nasa.gov/
data-access/downloads/trmm). MODIS data are publicly available
at https://modis-atmos.gsfc.nasa.gov/products/daily/doi-reference

(Terra: https://doi.org/10.5067/MODIS/MOD08D3.006;
Aqua: https://doi.org/10.5067/MODIS/MYD08D3.006). Please
note that any citations of the Collection 6.0 MODIS cloud data
should have the following wording:
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