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Abstract. Optimized biogenic carbon fluxes for Europe were
estimated from high-resolution regional-scale inversions, uti-
lizing atmospheric CO2 measurements at 16 stations for the
year 2007. Additional sensitivity tests with different data-
driven error structures were performed. As the atmospheric
network is rather sparse and consequently contains large spa-
tial gaps, we use a priori biospheric fluxes to further constrain
the inversions. The biospheric fluxes were simulated by the
Vegetation Photosynthesis and Respiration Model (VPRM)
at a resolution of 0.1◦ and optimized against eddy covari-
ance data. Overall we estimate an a priori uncertainty of
0.54 GtC yr−1 related to the poor spatial representation be-
tween the biospheric model and the ecosystem sites. The sink
estimated from the atmospheric inversions for the area of Eu-
rope (as represented in the model domain) ranges between
0.23 and 0.38 GtC yr−1 (0.39 and 0.71 GtC yr−1 up-scaled to
geographical Europe). This is within the range of posterior
flux uncertainty estimates of previous studies using ground-
based observations.

1 Introduction

Global and regional atmospheric inversions assimilate atmo-
spheric CO2 measurements made by a global network for
2 decades to infer terrestrial carbon fluxes using surface in
situ or flask measurements of CO2 dry mole fractions (Tans
et al., 1989; Enting and Mansbridge, 1989; Conway et al.,
1994; Fan et al., 1998; Rödenbeck et al., 2003). The opti-

mization of CO2 biospheric fluxes for the European domain
has been of high interest in previous studies using either
pseudo or real data (Peters et al., 2010; Carouge et al., 2010a,
b; Rivier et al., 2010; Broquet et al., 2011, 2013; Peylin et al.,
2013). Retrieved fluxes from most of the inversions are ob-
tained from global systems at coarse resolution; hence, the
spatial and temporal flux variability on finer scales cannot be
resolved. Large uncertainties in the flux retrievals are intro-
duced due to the coarse resolution of the transport models
used and due to the network sparseness (Peters et al., 2010).

Apart from ground-based observations, satellite measure-
ments have also been recently used in atmospheric inversions
to infer terrestrial fluxes (Basu et al., 2013; Deng et al., 2014;
Chevallier et al., 2014). The advantage of using spaceborne
measurements lies in the high density of the observations,
providing the opportunity to constrain regions not seen by the
ground network. However, satellite-based inversions signifi-
cantly differ from ground-based inversions, reporting a larger
annual uptake for Europe. A characteristic example is the es-
timated European uptake in the study by Reuter et al. (2014).
They calculated an uptake of 1.02 GtC yr−1, which triggered
an ongoing debate on whether those estimates are data driven
or they lack robustness due to deficiencies in the satellite ob-
servations and in the inverse modeling (Feng et al., 2016).

One of the largest sources of uncertainty in inversions
is the atmospheric transport uncertainty. Modeled dry mole
fractions are biased due particularly to uncertainties in verti-
cal mixing near the surface (Gurney et al., 2003; Gerbig et al.,
2008; Houweling et al., 2010). As a consequence, posterior
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flux estimates are also biased because biases in concentra-
tions due to transport model errors are translated into biases
in fluxes through the optimization procedure. Propagation of
uncertainties in winds (Lin and Gerbig, 2005) and in mixing
heights (Gerbig et al., 2008) for summer months with active
vegetation resulted in uncertainties in simulated dry air mole
fractions of 5.9 and 3.5 ppm, respectively.

The current study uses the same inversion system as in
the technical note in the study of Kountouris et al. (2018)
(hereafter referred to as Ko16) in which the inversion sys-
tem and its setup were assessed based on pseudo data. As
a next step, we apply the modeling framework to real CO2
atmospheric observations. Our main objectives are to inves-
tigate the potential to infer flux estimates for Europe with re-
duced uncertainties and to estimate biospheric fluxes at high
spatial resolution and for a full year. We use a spatial flux
resolution of 0.25◦× 0.25◦ to couple fluxes with the atmo-
spheric transport model, and the state space allows the opti-
mization of 3-hourly net ecosystem exchange (NEE) correc-
tions to the prior NEE fluxes at a nominal spatial resolution
of 0.5◦× 0.5◦. A data-driven error structure that was tested in
the Ko16 study is implemented consistent with model–data
flux mismatches (Kountouris et al., 2015). Further, different
error structures are used and assessed, also including a spa-
tial error structure with a hyperbolic correlation shape as sug-
gested by Chevallier et al. (2012). Since spatial autocorrela-
tions have been found to be very short, the annual aggregated
uncertainty over the European domain is smaller than tradi-
tionally assumed (see also Ko16). The error inflation neces-
sity and implementation was addressed in Ko16 either by in-
flating the error covariance or, more formally, by introducing
a bias term. However, the hyperbolic correlation shape sug-
gested by Chevallier et al. (2012) has a stronger impact from
larger distances compared to the exponential shape, leading
to an aggregated uncertainty that does not require being in-
flated. We also perform a number of sensitivity tests to ac-
count for misrepresentation of the fossil fuel signal and also
for transport uncertainties due to vertical mixing.

This paper is structured as follows: Sect. 2 describes the
inversion system, the network, and station data that are used,
and it details the assumed error structure. Section 3 shows
the results of the goodness of fit, and the retrieved fluxes.
The data fitting and the reliability of the posterior fluxes are
extensively discussed in Sect. 4.

2 Methods

2.1 Two-step inversion

Real-data inversions require a nested inversion scheme since
observations also contain contributions from regions outside
of the domain of interest (DoI). As in Ko16, the Jena inver-
sion system (Rödenbeck, 2005), including the two-step nest-
ing scheme (Rödenbeck et al., 2009; Trusilova et al., 2010),

was used. This scheme allows the combination of regional
and global inversions within a consistent system. Here we
only provide a brief description as details are given in Rö-
denbeck et al. (2009) and Trusilova et al. (2010). The atmo-
spheric transport models TM3 (step 1; Heimann and Körner,
2003) and STILT (step 2; Lin et al., 2003) were used for
transport at the global and regional domain, respectively. For
the global runs, TM3 was used at a spatial resolution of 4◦

latitude× 5◦ longitude, driven by meteorological fields from
the ERA-Interim reanalysis produced by ECMWF (Dee et
al., 2011). The transport matrix for the regional inversions
was identical to the one used for the synthetic data study in
Ko16.

In the first step, a global inversion is performed using the
global transport model. The outcome is an optimized flux
field on a coarser scale for the full period (FP) and the global
domain. Then two forward runs are performed. The first run
uses the global transport model over the FP, computing the
modeled mixing ratios 1cmod1. The second run again initial-
izes the global transport model but only within the regional
DoI. This can be regarded as a regional simulation, but with
coarse resolution, yielding modeled mixing ratios 1cmod2.
Then the “remaining mixing ratio” is calculated for all the
observing sites inside the DoI:

1cremain = cmeas− (1cmod1−1cmod2+ cini), (1)

where cini is the initial condition that corresponds to a well
mixed atmosphere with a given initial tracer mixing ratio.

In step two, the high-resolution transport model is used
for the regional inversion within the DoI, where all fluxes are
represented at fine resolution. For this inversion the vector
containing the measured mixing ratios cmeas is replaced by
the remaining mixing ratios 1cremain. The optimized fluxes
from this step are the high-resolution fluxes of interest.

2.2 Atmospheric network and data

For step 1 we used the same station network as in ver-
sion s04_v3.6 of the Jena CarboScope CO2 inversion (http://
www.bgc-jena.mpg.de/CarboScope/?ID=s04_v3.6), with 64
stations globally. For step 2 (regional inversion) continuous
and flask measurements from 16 stations within Europe were
used as described in Ko16 (see also Table 1). Of those 16 sta-
tions, 7 are already included in the step 1 inversion. All valid
values provided were used, except those paired flask mea-
surements that differed by more than 0.34 ppm, which were
omitted. Measurements from the continuous stations were
aggregated to hourly values where needed. Nighttime and
daytime observations were selected depending on the type of
station (Ko16). As all institutions report mixing ratio values
traceable to the WMO (World Meteorological Organization)
calibration scale, we expect compatibility between the differ-
ent datasets (also see Rödenbeck et al., 2006).

In this study we use the site HEI (Heidelberg), which is tra-
ditionally not used for European CO2 flux inversions since it
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Table 1. Information on the stations used for the regional inversions. Same network applied for the synthetic data inversions and the real-data
inversions in Kountouris et al. (2018). In the first column the term “type” stands for continuous (C) or flask (F) data. Under “Data origin”
WDCGG means World Data Centre for Greenhouse Gases.

Site code/ Name Latitude Longitude Height Measurement Model Data Data Citation
type (◦) (◦) (m a.s.l.) height height provider origin

(m) (above ground)
(m)

BAL/F Baltic Sea, Poland 55.50 16.67 8 57 28 NOAA Direct Dlugokencky et al. (2015)
contact

BIK/C Białystok, Poland 53.23 23.03 183 90 90 MPI-BGC Direct Popa et al. (2010)
access

CBW/C Cabauw, Netherlands 51.58 4.55 −2 200 200 ECN Direct Vermeulen et al. (2011)
contact

CMN/C Monte Cimone, Italy 44.18 10.7 2165 12 670 IAFMS WDCGG Alemanno et al. (2014)
HEI/C Heidelberg, Germany 49.42 8.67 116 30 30 University of CarboEurope Hammer et al. (2008)

Heidelberg
HPB/F Hohenpeissenberg, Germany 47.80 11.01 934 50 10 NOAA Direct contact –
HUN/C Hegyhátsál, Hungary 46.95 16.65 248 115 96 HMS WDCGG Haszpra et al. (2001)
JFJ/C Jungfraujoch, Switzerland 46.55 7.98 3572 10 720 University of Bern CarboEurope –
KAS/C Kasprowy Wierch 49.23 19.93 1987 5 480 UKRAK, AGH CarboEurope Necki et al. (2013)
LMU/C La Muela, Spain 41.36 −1.6 570 79 80 University of CarboEurope –

Barcelona
MHD/C Mace Head, Ireland 53.33 −9.90 25 10 15 LSCE WDCGG Ramonet et al. (2010)
OXK/C Ochsenkopf, Germany 50.03 11.81 1022 163 163 MPI-BGC CarboEurope Thompson et al. (2009)
PRS/C Plateau Rosa, Italy 45.93 7.71 3480 – 500 RSE WDCGG Ferrarese et al. (2015)
PUY/C Puy de Dôme, France 45.77 2.97 1465 10 400 LSCE CarboEurope Lopez et al. (2015)
SCH/C Schauinsland, Germany 47.92 7.92 1205 – 230 UBA WDCGG –
WES/C Westerland, Germany 54.93 8.32 12 – 15 UBA WDCGG –

Glossary for the data providers are as follows. AGH: University of Science and Technology Poland; ECN: Energy research Centre of the Netherlands; HMS: Hungarian Meteorological Service; IAFMS: Italian Air Force
Meteorological Service; LSCE: Le Laboratoire des Sciences du Climat et de l’Environnement; MPI-BGC: Max Planck Institute for Biogeochemistry; NOAA: National Oceanic and Atmospheric Administration; RSE: Ricerca sul
Sistema Energetico; UBA: Umweltbundesamt; UKRAK: Department of Environmental Physics Poland.

Table 2. Overview of the inversion scenarios. “Shape” describes the internal structure of the bias component (proportional to respiration R
or to net ecosystem exchange, NEE), and “Time vary” indicates whether the bias component also has temporal variations or not. The fifth
column “Prior” represents the terrestrial model used as prior, and “Correlation shape” describes the functional form used for the spatial prior
uncertainty correlation, either exponential (E) or hyperbolic (H). The last column indicates whether the full or the reduced station network
was assumed.

Inversion Bias Shape Time Prior Correlation No. of
code component vary shape stations

nBV – – – VPRM E 16
nBB – – – GBIOME E 16
BVR Yes R Flat VPRM E 16
BVN Yes NEE Flat VPRM E 16
BVRT Yes R Vary VPRM E 16
nBV14 – – – VPRM E 14
nBVH – – – VPRM H 16

is considered too local (Broquet et al., 2013; Rödenbeck et
al., 2009; Rivier et al., 2010). The Heidelberg region is con-
sidered to be one of the most polluted regions in Germany
(Fiedler et al., 2005) and therefore could bias the flux esti-
mates. Moreover, the WES (Westerland) site contains long
periods with no data. This could potentially affect posterior
flux estimates since extended data gaps can lead to jumps in
the presence of biases. Thus, we evaluate the performance
and the sensitivity of the European flux estimates to the net-
work configuration by also performing an inversion (referred
to as nBV14; see Table 2) excluding HEI and WES.

2.3 A priori information and uncertainties

A set of inversion cases differing in the prior information, the
error structure and the station configuration was realized (see
overview in Table 2). Prior information derived from both
biosphere models (VPRM and GBIOME-BGCv1) is used to
investigate the impact of the prior fields to the posterior flux
estimates. Furthermore, an ensemble of inversions using dif-
ferent error structures is used to investigate the impact on the
posterior flux estimates and uncertainties.

Similarly to the synthetic inversion (Ko16), the model–
data mismatch uncertainties are the same as in the Ko16
study (see also Fig. 2 therein). Further, we use the base case
nBV (no bias VPRM as prior, B1 in Ko16), which inflates
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the prior uncertainty by upscaling the error covariance ma-
trix, and case BVR (bias VPRM as prior respiration as shape;
S1 in Ko16), which includes a bias term. In the base case
the VPRM model provides the prior flux field, and exponen-
tially decaying correlations are assumed. The bias compo-
nent in the BVR scenario will always have a correction with
the same sign for all grid cells as it just scales a predefined
flux field. In the BVR case it follows the shape of the annu-
ally averaged respiration flux, in the BVN case that of the a
priori net biogenic flux, and in the BVRT case again that of
the annually averaged respiration flux, but with monthly tem-
poral resolution of the bias term to allow for some temporal
flexibility. The nBB inversion refers to the scenario in which
GBIOME-BGCv1 was used as a priori information instead
of VPRM, and the error structure does not contain a bias
term. With this case we can evaluate how sensitive the pos-
terior flux estimates are with respect to the prior information
that has been used. We also examine a spatial error structure
based on a hyperbolic (instead of an exponential) spatial cor-
relation shape as suggested in Chevallier et al. (2012), which
we will refer to as the nBVH scenario.

Note that in most of the inversions performed, VPRM
fluxes were used as prior information. Those fluxes are al-
ready optimized using EC measurements; therefore, evalua-
tion of the posterior flux estimates against EC data on a local
scale could result in posterior fluxes that are limited or even
not further constrained (since they are already optimized). In
contrast, posterior fluxes produced with BIOME-BGC used
as prior are expected to show significantly larger corrections
compared to the prior estimations and are therefore used for
evaluation against EC data. Nevertheless, in most cases we
use VPRM as prior in order to keep our estimates as data
driven as possible through the overall optimization proce-
dure: on a local scale by using EC data and on a regional
scale using the atmospheric dry mole fractions.

As in the synthetic experiment (Ko16) the temporal
decorrelation time was set to 31 days. In Kountouris et
al. (2015), model–data comparisons representative on a site
scale (around 1 km) showed spatial correlation lengths of
40 km whilst model–model comparisons representative at
50 km resolution identified a correlation scale of 370 km.
Also considering that the state space has a resolution of
50 km, the spatial decorrelation length was chosen to be
approximately 100 km (66 km in the meridional direction
and 130 km in the zonal direction). In the prior error co-
variance, diagonal elements of 2.27 µmol m−2 s−1 were as-
sumed, consistent with the model–data flux mismatches as
calculated in Kountouris et al. (2015). Propagating this spa-
tiotemporal error structure yields a domain-integrated un-
certainty (EST) of 0.15 GtC yr−1. Note that this is substan-
tially smaller than for the synthetic experiment due to the
much shorter spatial correlation length scales. A total annual,
domain-integrated uncertainty Etot of 0.3 GtC yr−1 was as-
sumed, which corresponds to twice the standard deviation
of annual terrestrial flux estimates for 2007 between ter-

restrial biosphere models taken from the global carbon at-
las (http://www.globalcarbonatlas.org). This is also consis-
tent with the prior uncertainty (for Europe) assumed for the
global inversions performed by the Jena inversion system.
For those inversions in which the additional bias term was
considered (BVR, BVN and BVRT scenarios), their error
EBT was calculated using

E2
tot = E

2
ST+E

2
BT. (2)

For the nBVH scenario using hyperbolic correlations simi-
lar to Chevallier et al. (2012)

(
1

1+d

)
, a characteristic value

d (lag distance) was used such that the correlation drops af-
ter around 60 km to 1/e of its initial value, consistent with
the hyperbolic fit to the model–data flux residual autocorre-
lation in Kountouris et al. (2015). For this case no additional
bias term was needed, as the spatially and temporally ag-
gregated uncertainty was found to be 0.32 GtC yr−1, which
is very close to the uncertainty assumed for the inversions
(0.3 GtC yr−1).

Furthermore, we include ocean fluxes from Mikaloff-
Fletcher et al. (2007) and anthropogenic emissions from the
EDGAR v4.1 inventory scaled at national level for individ-
ual years according to the BP (British Petroleum) statisti-
cal review of world energy (BP, 2012) following Steinbach
et al. (2011). Anthropogenic emissions are considered to be
perfectly known (with no prior uncertainty), as one typically
assumes that there is more a priori knowledge regarding the
anthropogenic emissions as compared to biogenic fluxes. As
the inversion cannot distinguish between biogenic and an-
thropogenic signals, any errors in the a priori anthropogenic
emissions will be included as corrections to the NEE flux.

2.4 Diagnostics and aggregation of fluxes

Similar to Ko16, we use the χ2
c metric to evaluate the good-

ness of fit for each station (Eq. 3):

χ2
c =

∑
t

(1ct )
2

σ 2
t

n
, (3)

where1ct is the model–data mismatch in dry mole fractions
for a given observation time t , n the number of observations
and σt the assumed uncertainty. Further, we also make use of
the reduced χ2

r (Eq. 4), where Jmin is the cost function at its
minimum:

χ2
r = 2

Jmin

n
. (4)

For more details about the chi square metric the reader is
referred to the Ko16 study.

The optimized fluxes are derived at 0.25◦ spatial and daily
temporal resolution from the inversion system. We post-
process the fluxes by aggregating them spatially on country
and domain-wide scales and temporally on monthly and an-
nual scales.
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Figure 1. Daily nighttime (23:00–04:00 UTC) averages for prior,
true and posterior CO2 dry mole fraction time series for the
Schauinsland site for the real-data inversion. Time starts at 1 Jan-
uary 2007.

Flux comparisons with other studies require that both
fluxes refer to the same geographical region. Typically stud-
ies refer to TransCom regions with a European domain that
expands more into the Eurasian region. To scale our results
to the TransCom EU region, we calculated the area ratio be-
tween the TransCom EU region and our European domain.
This ratio (about 1.69) was used to scale our posterior esti-
mates and the corresponding uncertainties assuming linearity
in the variances (presented in Fig. 8).

3 Results

3.1 Simulated CO2 and goodness of fit

Figure 1 presents a comparison of observed and modeled
daily averages of the nighttime (hours 23:00, 00:00, 01:00,
02:00, 03:00, 04:00 UTC) CO2 dry air mole fractions for the
Schauinsland station (SCH), a mountain station, for the year
2007. The prior estimates (gray line) as derived from a for-
ward model run using VPRM flux fields are systematically
lower than the observations (black line) with the most diver-
gent values occurring during the growing season. A similar
pattern was found for the other atmospheric stations. Pos-
terior CO2 time series from all the inversions are in much
closer agreement with the observations.

Table 3 summarizes the statistics between the modeled and
the observed CO2 dry mole fractions for all stations based
on daily averages using the respective sampling times (see
also Ko16) for mountain (nighttime) and other stations (day-
time). Of note is that the real-data inversions include errors
due to the modeling of transport, which is not the case in the
synthetic experiment in Ko16 as the same transport model
was used for forward and inversion runs. Standard deviations
of the posterior residuals (observed minus modeled) show
an average decrease of 59 % for all inversion setups and for
all stations compared to the prior residuals. Correlations be-
tween prior and observed mole fractions as well as posterior

Figure 2. Taylor diagram for modeled and observed time series of
CO2 dry mole fractions. Prior (black), observed (green, the perfect
match of modeled and observed time series) and the different in-
version cases (nBV is blue; BVR is red) are displayed. Different
symbols denote different atmospheric stations. The normalized SD
was calculated as the ratio of the SD of the modeled time series to
the SD of observations. Gray semicircles show contours of the SD
of the model error.

and observed mole fractions (also Table 3) were likewise in-
creased on average from 0.48 to 0.93. Of note is that nBV and
nBB, which use an inflated prior error covariance for the spa-
tiotemporal component, show larger improvement relative to
the prior in RMSD and some limited improvement in corre-
lation coefficient, compared to those inversions in which a
bias component was included (BVR, BVN, BVRT). Figure 2
visually summarizes the goodness of fit in a Taylor diagram
for cases nBV and BVR, presenting prior and posterior esti-
mates of the correlation and the normalized standard devia-
tion between the modeled and observed CO2 dry mole frac-
tion time series. It is obvious that the additional flexibility of
nBV in the spatiotemporal flux distribution results in a bet-
ter reproduction of the concentration variability. The same
picture emerges when comparing the nBV and nBB inver-
sions to nBVH (see Table 3). Although all these cases as-
sume no explicit bias term in the error structure, the larger
correlations from areas farther away for the nBVH case with
a hyperbolic correlation cause a reduced number of effec-
tive degrees of freedom, which results in larger residuals in
posterior-observed mole fractions (Table 3) comparable to
those of the BVR case.

Calculating the goodness of fit using the station-specific
χ2
c values from Eq. (3), most of the sites (Table 3) show val-
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Table 3. RMSD (first column in ppm) and correlation coefficients (second column) between observations and prior–posterior CO2 dry mole
fractions for daily daytime or nighttime averaged values and for each station. The third column shows χ2

c , the normalized dry mole fraction
mismatch per degree of freedom for 7-day averaged residuals as a measure of how well the data were fitted. The format for each station is as
follows: RMSD | r2

|χ2.

Prior nBV nBB BVR BVN BVRT nBV14 nBVH

BAL 7.12 | 0.20 | 69.35 1.48 | 0.97 | 0.89 1.53 | 0.97 | 0.93 2.26 | 0.93 | 2.04 2.26 | 0.93 | 2.03 2.25 | 0.93 | 2.02 1.41 | 0.97 | 0.83 2.37 | 0.92 | 2.07
BIK 8.20 | 0.52 | 60.10 2.93 | 0.93 | 0.88 3.17 | 0.92 | 0.99 3.52 | 0.90 | 1.51 3.52 | 0.90 | 1.53 3.51 | 0.90 | 1.53 2.93 | 0.93 | 0.88 3.78 | 0.88 | 1.70
CBW 8.71 | 0.23 | 83.98 3.43 | 0.88 | 2.05 3.49 | 0.88 | 2.18 4.09 | 0.83 | 2.47 4.09 | 0.83 | 2.48 4.09 | 0.83 | 2.49 3.42 | 0.88 | 1.99 4.33 | 0.81 | 2.61
CMN 4.20 | 0.40 | 31.73 1.26 | 0.96 | 0.16 1.35 | 0.95 | 0.19 1.45 | 0.94 | 0.19 1.44 | 0.95 | 0.19 1.46 | 0.94 | 0.21 1.25 | 0.92 | 0.15 1.57 | 0.94 | 0.26
HEI 14.04 | 0.37 | 31.28 6.93 | 0.84 | 3.05 7.07 | 0.83 | 3.07 7.92 | 0.79 | 4.22 7.91 | 0.79 | 4.23 7.92 | 0.79 | 4.23 – 8.34 | 0.77 | 5.17
HPB 5.06 | 0.43 | 15.61 1.41 | 0.91 | 0.34 1.70 | 0.94 | 0.50 2.00 | 0.96 | 0.65 2.01 | 0.91 | 0.66 2.00 | 0.91 | 0.65 1.41 | 0.96 | 0.33 2.03 | 0.91 | 0.67
HUN 7.44 | 0.55 | 66.36 2.58 | 0.94 | 0.84 2.74 | 0.93 | 0.88 3.07 | 0.92 | 1.32 3.08 | 0.92 | 1.34 3.08 | 0.92 | 1.33 2.58 | 0.94 | 0.87 3.43 | 0.90 | 1.98
JFJ 4.52 | 0.03 | 21.39 1.96 | 0.77 | 1.59 2.23 | 0.72 | 1.53 2.07 | 0.75 | 1.83 2.07 | 0.75 | 1.82 2.07 | 0.75 | 1.84 1.95 | 0.78 | 1.58 2.10 | 0.74 | 1.98
KAS 6.35 | 0.39 | 52.58 3.41 | 0.87 | 2.90 3.43 | 0.87 | 2.89 3.88 | 0.82 | 3.96 3.88 | 0.82 | 3.99 3.87 | 0.83 | 3.93 3.29 | 0.77 | 2.77 4.01 | 0.81 | 4.67
LMU 6.01 | 0.05 | 29.00 1.45 | 0.94 | 0.29 1.51 | 0.94 | 0.28 1.74 | 0.92 | 0.59 1.74 | 0.92 | 0.58 1.76 | 0.92 | 0.60 1.44 | 0.95 | 0.29 1.84 | 0.91 | 0.68
MHD 4.50 | 0.21 | 22.24 1.23 | 0.94 | 0.24 1.20 | 0.94 | 0.21 1.29 | 0.92 | 0.31 1.74 | 0.93 | 0.31 1.76 | 0.94 | 0.31 1.23 | 0.94 | 0.24 1.26 | 0.94 | 0.27
OXK 5.39 | 0.28 | 38.95 2.45 | 0.85 | 0.79 2.52 | 0.84 | 0.85 2.78 | 0.81 | 1.19 2.78 | 0.81 | 1.20 2.79 | 0.81 | 1.20 2.41 | 0.86 | 0.70 2.98 | 0.78 | 1.59
PRS 2.98 | 0.07 | 20.75 1.06 | 0.89 | 0.46 1.10 | 0.88 | 0.49 1.16 | 0.87 | 0.52 1.16 | 0.87 | 0.52 1.17 | 0.87 | 0.52 1.07 | 0.89 | 0.45 1.22 | 0.86 | 0.53
PUY 4.86 | 0.29 | 39.48 2.05 | 0.87 | 0.67 2.16 | 0.86 | 0.75 2.40 | 0.82 | 0.97 2.40 | 0.82 | 0.97 2.40 | 0.82 | 0.95 2.02 | 0.88 | 0.71 2.48 | 0.81 | 1.27
SCH 5.18 | 0.24 | 41.77 1.90 | 0.89 | 0.27 2.00 | 0.88 | 0.28 2.23 | 0.85 | 0.51 2.23 | 0.85 | 0.51 2.23 | 0.85 | 0.51 1.84 | 0.90 | 0.24 2.38 | 0.84 | 0.70
WES 8.06 | 0.23 | 41.77 2.21 | 0.94 | 0.27 2.00 | 0.94 | 0.28 2.23 | 0.91 | 0.51 2.23 | 0.91 | 0.51 2.23 | 0.91 | 0.51 – 2.38 | 0.90 | 0.70

ues around 1, indicating that the misfits are inside the 1σ site
specific uncertainty. For the CBW, HEI, JFJ and KAS sites,
values above 1 regardless of the error structure were found,
with the most extreme value being 5.17 for the HEI site in
the nBVH inversion. This could suggest that for a polluted
site like HEI larger uncertainties should be considered.

The reduced χ2
r values regarding the overall model perfor-

mance (Eq. 4) for all inversion setups are found to be close
to 1, with χ2 values of 1.08 (nBV), 1.16 (nBB), 1.17 (BVR),
1.17 (BVN), 1.19 (BVRT), 0.89 (nBV14) and 1.25 (nBVH),
suggesting that the assumed prior uncertainty describes the
actual uncertainties well.

3.2 Posterior flux estimates on different scales

The annually integrated spatial flux distribution is presented
in Fig. 3 for all the different inversion settings. Differences
between the results based on the two general error struc-
tures (with and without the bias term) were observed mainly
in central and western Europe (longitudes less than 20◦ E),
where the network provides a strong constraint. This differ-
ence is characterized by stronger spatial flux variability for
the general nBV case, with multiple transitions between car-
bon sources and sinks on regional scales. The same picture
emerges for the western part of Europe. In contrast, all the
inversions including a bias component (BVR, BVN, BVRT)
yield a more homogeneous flux distribution with a some-
what finer structure in the flux retrievals (e.g., France and the
northeastern part of Europe). Comparisons between BVR,
BVN and BVRT flux distributions do not show any signifi-
cant difference. Almost the same picture emerges when com-
paring the nBV and nBV14 cases, indicating that excluding
the two stations does not have a very strong influence on our
annual flux estimates. However, spatial differences were ob-
served for the areas close to the two sites. The most impor-

tant one applies for the area near the HEI station where we
observed a transition from source to net carbon sink when ex-
cluding the corresponding site. The choice of the prior does
only have a small impact on the mean flux as can be seen by
comparing posterior fluxes from nBV and nBB despite the
significant differences in the flux innovations (Fig. 3). All
innovations show that positive fluxes were added mainly in
central Europe and more intensively for the cases for which
no bias term was used. The positive flux corrections are to be
expected since prior fluxes from VPRM show a strong Euro-
pean sink of 0.96 GtC yr−1, which is most likely to be unreal-
istic. Overall the results suggest that the general error struc-
ture matters, i.e., whether or not to include a bias term, but
how the bias is implemented is of less importance for the re-
trieved flux patterns. One would expect that the flux distribu-
tion from the nBVH case would follow the general flux struc-
ture from the inversions without the bias term. Interestingly,
the distribution is similar to the one obtained from the inver-
sions with the bias term (cases BVR, BVN and BVRT). This
shows that inversions assuming correlations with a strong
contribution from the far field have similar characteristics as
inversions that assume a flat bias term.

Figure 3 shows the spatially aggregated posterior flux esti-
mates for the full domain with the corresponding uncertain-
ties integrated on monthly and annual temporal scales. The
same prior uncertainty was used for cases nBV and nBB,
although they differ in prior flux field. Posterior estimates
from nBV (blue line/shading) and nBB (green line/shading)
inversions presented in Fig. 5a do not show any significant
difference on monthly and annual scales despite the large
difference in prior fluxes. We observe that the maximum
uptake occurs slightly earlier for the nBB case. Monthly
fluxes from the nBVH inversion also show the same tempo-
ral evolution. We do not observe any significant difference in
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Figure 3. Annual biogenic flux spatial distribution (a) and flux innovations (posterior minus prior, b) as estimated from the different inver-
sions for the real-data case. Units are in gC yr−1 m−2.

monthly fluxes for the BVR (red line/shading) and BVN (vi-
olet line/shading) inversions (Fig. 5b). Both cases are com-
parable to the nBV and nBB cases on monthly and annual
scales. A slightly different picture emerges from the BVRT
inversion, in which the bias term allowed for more degrees
of freedom for monthly corrections. The resulting seasonal
cycle is somewhat smaller, with reduced summer carbon up-
take. Inversions that included the bias term yielded smaller
posterior uncertainties on both temporal scales, which is ex-
pected as the spatiotemporal component of the uncertainty
was not inflated as was the case for the nBV scenario. Flux
retrievals from the reduced network (sensitivity case nBV14)
show a slightly deeper sink, but the differences from the base
case nBV are insignificant (i.e., clearly within the posterior
uncertainties).

All of the inversions suggest Europe to be a carbon sink,
with a range of −0.23± 0.13 to −0.38± 0.17 GtC yr−1 for
the BVRT and nBV inversions, respectively. The mean an-
nual posterior flux estimate for Europe averaged over differ-
ent inversions amounts to −0.32 GtC yr−1.

Posterior monthly flux estimates on smaller spatial scales
(country level) are shown in Fig. 6. Areas that are not well
constrained by the current network show some divergence in

the posterior flux estimates, although not significant consid-
ering the uncertainty range. For example, Germany, which
is better constrained, shows a limited spread of the posterior
fluxes, with an annually averaged standard deviation between
the different posterior flux estimates being 0.9 MtC yr−1,
while the United Kingdom (which is less well constrained)
shows a slightly larger spread of the posterior estimates, with
an annually averaged standard deviation of 2 MtC yr−1. Note
that the posterior uncertainties are smaller by about 36 % for
the BVR case, which is related to the smaller prior uncertain-
ties on monthly timescales (see also Sect. 3.2 in Ko16).

3.3 Validation against eddy covariance measurements

As shown in Broquet et al. (2013) and in Ko16, eddy co-
variance (EC) measurements in principle have the potential
for quantitative evaluation of the retrieved fluxes from the
inversions. Here we used posterior flux estimates from the
nBB inversion for evaluation against EC measurements, as
the prior flux fields in nBB (GBIOME-BGCv1) were not op-
timized using EC measurements. Gap-filled data were down-
loaded from the European Fluxes Database Cluster (http:
//www.europe-fluxdata.eu). A modified flux site network

www.atmos-chem-phys.net/18/3047/2018/ Atmos. Chem. Phys., 18, 3047–3064, 2018

http://www.europe-fluxdata.eu
http://www.europe-fluxdata.eu


3054 P. Kountouris et al.: Quantification of the European terrestrial CO2 fluxes

Figure 4. As Fig. 3, but only for the nBB inversion case. The numbers denote the number of mountain sites used in the inversions, e.g., MS0:
no mountain site. Units are in gC yr−1 m−2.

compared to the one reported in Kountouris et al. (2015)
was used. Specifically we omitted sites that were not used
for the VPRM optimization (CH-Fru, CH-Lae, CH-Oe1,
ES-LMa, FR-Avi, FR-Mau, IT-Cas, IT-LMa, IT-Ro2, NL-
Dij, NL-Lut, SE-Sk1, SK-Tat) as well as sites that were
not available as gap-filled data (CH-Dav, ES-Agu, FR-Aur).
Further, some more sites were added both for the VPRM
optimization and for the flux comparisons (CZ-wet, DK-
Sor, HU-Bug, IT-Non, NL-Ca1, PL-wet, RU-Fyo, UK-PL3).
Monthly-averaged fluxes were extracted, with weights for
each vegetation class that compensate for the asymmetry be-
tween the number of flux towers per vegetation type and the
fraction of land area covered by the specific vegetation type,
similar to Ko16.

The analysis of the monthly prior biospheric fluxes in
Fig. 7 reveals significant differences between observed and
prior fluxes from the inversion. The GBIOME-BGCv1 model
systematically overestimates the observed fluxes throughout
the year. The retrieved fluxes from the inversion (dark green
line) are closer to the observed fluxes, with a stronger up-
take compared to the prior during spring and summertime.
The timing of the peak uptake is shifted to 1 month earlier
in comparison to the observations. The mean absolute bias
(averaged absolute differences between prior minus observed
fluxes and posterior minus observed fluxes) is significantly

reduced by 52 % from 0.84 to 0.40 gCm−2 day−1. The stan-
dard deviation of the residuals is reduced by around 24 %,
from 0.68 for the prior to 0.40 gCm−2 day−1 for the poste-
rior residuals. Splitting the sites into two main categories,
the first only with crops and the second with non-crop sites,
revealed differences on how well those sites can be repre-
sented. Clearly the best matches were found for the non-crop
sites, with a reduction in the mean absolute bias of 51 %,
whilst for the crop sites it is limited to 38 %.

4 Discussion

We performed a series of atmospheric CO2 inversions based
on atmospheric data taken from 16 European stations for
2007. Different data-driven error structures in the prior error
covariance were assessed, and optimized biospheric fluxes
were retrieved and post-processed on various temporal and
spatial scales for further evaluation. In this part we discuss
the fitting performance of the inversion system, and we de-
tail the comparisons between our flux estimates on grid, na-
tional and continental scales against EC data and reported
flux estimates from previous studies. Finally, we discuss how
sensitive flux retrievals are in the presence of erroneous rep-
resentation of the fossil fuel fluxes and the site selection.
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Figure 5. Monthly and annual (d) biosphere fluxes integrated over the domain. Panel (a) shows the nBV, nBB and nBVH cases, panel
(b) shows the BVR and BVN cases, and panel (c) shows the BVRT and nBV14 cases. Note that all inversions share the same annual prior
uncertainty but monthly prior uncertainties differ. Units are in GtC month−1 and GtC yr−1 for monthly and annual fluxes, respectively.

4.1 Goodness of fit

Site-specific misfits show a reasonable fit to the atmospheric
data. Nevertheless, in four cases (CBW, HEI, JFJ and KAS)
site-specific χ2

c values were found to be larger than 1 (see
also Table 3), indicating that either the model–data mismatch
errors were chosen too small or the spatiotemporal resolution
of the flux model was too coarse compared to the biosphere
fluxes and therefore small-scale variations are not resolved
(Rödenbeck et al., 2003). In fact this seems to be the case for
the JFJ and KAS sites as those are high-altitude sites with
steep cliffs. In such a complex terrain the atmospheric circu-
lation is hard to be simulated from the transport models. Re-
garding CBW and in particular HEI, they are polluted sites
and it would be reasonable to assume larger model–data mis-
match uncertainty since the model is too coarse to resolve
the fossil fuel emission patterns. One could argue that us-
ing higher spatial resolution to couple fossil fuel fluxes with
transport models might reduce the model–data mismatch un-
certainties and hence improve posterior fluxes. To investi-
gate this, we performed a forward run at coarser (0.25◦) and
higher (1/12◦ latitude× 1/8◦ longitude) spatial resolution

using only the fossil fuel emissions. As we use a Lagrangian
transport model, fluxes at higher resolution than that of the
meteorological fields can be used such that the simulated
fossil fuel signals contain more spatially detailed informa-
tion (Lin et al., 2003). The derived concentration signal was
subtracted from the observations and subsequently an atmo-
spheric inversion was performed. We report no significant
differences between the retrieved fluxes, indicating that sim-
ply increasing the spatial resolution to about 10 km is not
enough to correctly represent the fossil fuel distribution.

A common approach in atmospheric inversion studies to
evaluate the defined uncertainties is to examine the reduced
χ2

r values. However, this might not always be a sufficient
metric (Michalak et al., 2005). The reduced χ2

r values in our
study (between 1.08 and 1.25) are larger than those found by
Tolk et al. (2011), who found values between 0.34 and 0.78
for their pixel-based inversion, indicating a more conserva-
tive choice for their model–data mismatch errors. Even lower
values were reported in the study by Peylin et al. (2005), with
values ranging from 0.01 up to 0.6 depending on the assumed
correlations. χ2 values from Zhang et al. (2015) were within
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Figure 6. Temporal evolution of prior and posterior monthly NEE for selected European countries.

a range of 1 to 4, but were modified by inflating the error
covariances through an iterative procedure, resulting in χ2

r
values comparable to ours. In conclusion, the χ2

r values give
confidence that the assumed prior uncertainties are well de-
fined.

4.2 Validation against eddy flux measurements

On the local scale the inversion shows the ability to capture
the observed flux variability on a monthly scale, as shown
for the nBB case (see Fig. 7). The residuals between posterior
model and EC flux data for monthly- and site-averaged fluxes
show a range of misfits not exceeding 1.04 gCm−2 day−1,
which is comparable with Broquet et al. (2013), who found
misfits of up to 1.5 gCm−2 day−1 using 6 years of data
(2002–2007). Of note is that the estimated carbon uptake
agrees well with the estimated uptake for 2007 in Broquet
et al. (2013) (within the uncertainty range). However, in con-
trast to the synthetic inversion of Ko16, the real-data inver-
sion showed a larger monthly-averaged posterior bias equal

to 0.40 gCm−2 day−1 compared to the −0.04 gCm−2 day−1

for the synthetic case. The poorer performance in terms of
bias compared to the synthetic case is presumably mainly
caused by the representation error. In the synthetic inversion
we created a true flux field at the same spatial resolution as
the posterior flux estimates and sampled this true flux dis-
tribution at the specific EC measurement location. This does
not include any spatial representation error of the EC mea-
surements (footprint about 1 km) with respect to the spatial
resolution of 25 km at which the fluxes are used within the
inversion. A further cause for this poorer performance is re-
lated to the transport error, as in the synthetic case the same
transport was used to create the synthetic observations and
to perform the inversion, while in the real-data inversions
the observed atmospheric mole fractions are a result of real
transport, which can only be approximated with the transport
model used for the inversion.

Differences between posterior flux retrievals and observed
NEE fluxes at the EC stations are clearly driven by the crop
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Figure 7. Temporal evolution of monthly NEE (gCm−2 day−1) av-
eraged over all EC sites (a), excluding crop sites (b) and using only
crop sites (c). Uncertainties (error of the mean monthly NEE) are
indicated by the shaded areas.

sites. The good agreement between posterior inverse flux es-
timates and fluxes measured with the eddy covariance tech-
nique at non-crop sites can be attributed to the relatively sta-
ble, within the year, land condition. Contrastingly, crop ar-
eas are subject to human activities throughout the year. Soil
enrichment with organic fertilizers, irrigation and harvest-
ing can severely influence the carbon balance of the local
ecosystem. Thus, the poor performance between inverse es-
timates and EC flux measurements at crop sites can be linked
to the extensive anthropogenic influence on those areas. Fur-
ther, another difficulty that is common for all the ecosystems
is that atmospheric concentrations implicitly contain more
components than just the NEE signal, e.g., fire emissions.
Such emissions are captured in the atmospheric observations
(representative scale of hundreds of kilometers) but might not
be captured from the EC flux measurements, which have a
very short representative scale of around 1 km.

Posterior fluxes showed a shift by 1 month earlier (in
May), for the maximum carbon uptake (see also Fig. 7). An
initial hypothesis that this might be driven from sites that are
difficult to simulate, such as those located in mountain re-
gions, cannot be justified. Specifically, mountain sites were
excluded in an additional sensitivity analyses, but the tem-
poral shift remains. However, looking into the error of the
difference between two months suggests that the flux differ-
ence between May and June is not significant. The error of
the difference was calculated using a Monte Carlo experi-
ment. Fluxes were averaged over the stations and the monthly

Table 4. Results from jackknife delete-1 statistics for VPRM es-
timated domain-wide NEE for different vegetation classes and for
all of the land area. The uncertainty in NEE from all land area was
derived assuming independence in the vegetation-class-specific un-
certainties. Note the strong asymmetry between the fraction of land
area covered by the different vegetation classes and the number of
eddy covariance sites used, indicating over- and underrepresenta-
tion: for example, 8 crop sites represent 51 % of the land area, while
15 grassland sites represent 5.6 % of the land area of Europe.

NEE NEE Number Fraction of
uncertainty of sites land area

(GtC yr−1) (GtC yr−1) ( %)

Evergreen forest −0.165 0.039 16 16.5
Deciduous forest −0.174 0.020 5 4.4
Mixed forest −0.025 0.176 2 8.4
Open shrub∗ −0.201 – 1 13.8
Savanna∗ −0.012 – 0 0.3
Crop −0.443 0.502 8 51.0
Grass 0.059 0.026 15 5.6
Total 0.960 0.536 47 100
∗ Uncertainties for open shrubland and savanna could not be derived due to the lack of
representative eddy covariance sites.

differences were calculated. Then we used the standard de-
viation of the differences over the ensemble members to de-
scribe the month-to-month uncertainty.

4.3 Reliability of European flux estimates

4.3.1 Mismatch in bottom-up and top-down methods

Of note is the strong flux correction when using a priori
fluxes from VPRM with an uptake of 0.96 GtC yr−1 com-
pared to 0.3 GtC yr−1 after the inversion. The large correc-
tion of about 0.66 GtC yr−1 corresponds to roughly twice
the prior uncertainty. We note that VPRM is a diagnostic
model that uses simple light use efficiency and respiration
equations and MODIS indices, with parameters optimized to
match hourly observations of NEE fluxes (Mahadevan et al.,
2008). It does not account for land management and land
use changes (i.e., crop harvest, deforestation); thus, it will
estimate a strong sink even for lands that have been har-
vested, with the respiration fluxes resulting from the use of
the harvest (e.g., as food) not included. Those so-called lat-
eral carbon fluxes, which are modeled by the atmospheric
inversion, account for approximately 0.165 GtC yr−1 of the
prior–posterior flux difference (Ciais et al., 2008). The rest
of the difference of about 0.5 GtC yr−1 might be related to
local characteristics of EC sites, which VPRM is not able
to represent. Spatial variations in NEE from VPRM are
driven by those of EVI (enhanced vegetation index), which
is used at a spatial resolution of 1 km. For example, a crop
field with typical dimensions of 100–200 m surrounded by
other fields with different crop rotation (and differing phe-
nology) are hard to represent with 1 km resolution EVI (even
with the highest possible resolution of 250 m for MODIS re-
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flectances). To quantitatively assess the impact of this repre-
sentation error in combination with the selection of sites used
for the VPRM optimization, the annual domain-wide C bud-
get from VPRM was recalculated after omitting one site per
vegetation type at a time and optimizing the VPRM parame-
ters (jackknife delete-1 method). Detailed results are shown
in Table 4. The derived jackknife standard error amounted to
0.54 GtC yr−1, with a dominant contribution from the crop-
land vegetation class (0.50 GtC yr−1). This uncertainty can
fully explain the mismatch between the a priori and the poste-
rior fluxes, and it emphasizes the importance of site selection
and site representativeness in upscaling local EC measure-
ments to larger regions.

The estimated uncertainty for VPRM fluxes based on jack-
knifing is larger than the prior uncertainties assumed for the
atmospheric inversions. Hence, one could argue that the prior
fluxes using VPRM (which indicate a too strong sink) com-
bined with a too small prior uncertainty in the inversion lead
to erroneous posterior flux estimates. However, the optimized
biogenic fluxes from all inversions converge at the annual
and domain-integrated scale. A particular example is that of
the nBB inversion. Even though the GBIOME-BGCv1 fluxes
differ greatly from those produced by VPRM, this inversion
is fully in line with the results from the rest of the inversions,
indicating that the optimized flux estimates are not biased by
the a priori flux fields but instead are driven by the atmo-
spheric data.

4.3.2 Sensitivity to anthropogenic emissions

Another source of biospheric flux misrepresentation is the
fossil fuel inventories. As mentioned in Sect. 2.3 we do not
allow for corrections in anthropogenic emissions, as they are
assumed to be better known than the terrestrial fluxes. An
overestimation or underestimation in anthropogenic emis-
sions will thus lead to a stronger or weaker biospheric sink in
atmospheric inversions. The anthropogenic emissions we use
are 0.32 GtC yr−1 (27 %) lower for the EU-12 countries com-
pared to those used by Rivier et al. (2010) (1.2 GtC yr−1).
Peylin et al. (2011) estimate the difference between national
totals for the different emission inventories to be around
10 %. In a study by Ciais et al. (2009) uncertainties of to-
tal fossil fuel CO2 emissions in the EU-25 member states
were estimated to be 19 % based on four different emission
inventories. For the EU-25 countries, EDGAR emissions
were found to be 12 % larger than the mean of the GAINS
(Greenhouse Gas and Air Pollution Interactions and Syner-
gies), UNFCCC (United Nations Framework Convention on
Climate Change) and CDIAC (Carbon Dioxide Information
Analysis Center) inventories (Ciais et al., 2009, Table 2).
Sensitivity tests with increased prior fossil fuel emissions
showed that the added fossil fuel increases the estimated
uptake by almost 50 % relative to the added anthropogenic
emissions. Taking an extreme scenario in which the fossil
fuel emissions are increased by 17 % or 0.3 GtC yr−1 (result-

ing in 1.77 GtC yr−1 compared to 1.47 GtC yr−1 total emis-
sions for the EU domain; see Fig. 1 in Kountouris et al., 2018,
for the extent of the EU domain), we estimate a European
carbon sink for the nBV setup of −0.51± 0.17 GtC yr−1

compared to −0.38± 0.17 GtC yr−1 for the standard nBV
case. Thus, the additional assumed fossil fuel emissions in-
creased the estimated uptake by 0.13 GtC yr−1, which is
about 44 % of the added anthropogenic emissions. The fact
that the resulting increase in the biospheric sink does not
fully correspond to the increase in assumed emissions is
likely a result of the sparse network, in which emissions from
regions further away from the measurement sites are not fully
registered in the simulated mole fractions.

In this study we assumed that anthropogenic emissions are
perfectly known (which is a traditional assumption in atmo-
spheric inversions), although this is not the case. As a result
of not allowing for a correction in the fossil fuel component,
this correction will be added to the correction of the biogenic
signal. In this paragraph we already discussed how uncertain
fossil fuel emissions may be. Further, we estimated how the
uncertainty in the fossil fuel component impacts the carbon
flux estimates; the magnitude but also spatial and temporal
flux distributions may be significantly erroneous. For better
future carbon flux estimations, fossil fuel optimization seems
to be necessary. However, that would require 14C tracer mea-
surements, which are currently not available.

4.3.3 Sensitivity to site selection

Uncertainties in vertical mixing and especially in the noc-
turnal boundary layer (Gerbig et al., 2008) should be care-
fully addressed as they might lead to erroneous estimations
of the carbon uptake. Typically, in atmospheric inversions
the model–data mismatch error (measurement error covari-
ance) also accounts for uncertainties due to the transport
(i.e., wrong representation of the nocturnal boundary layer).
The set of network stations includes seven mountain stations,
for which we use nighttime observations (daytime for non-
mountain stations) as these measurements are considered to
be representative for the free troposphere. Errors can be in-
troduced if the measurement height assumed in the transport
model is within the modeled nocturnal stable boundary layer
while in the real world it is not, which would lead to an over-
estimation in the simulated CO2 signals from respiration or
vice versa. In the inversion this would be compensated for
by introducing stronger uptake fluxes to match the observed
CO2 time series. In order to investigate whether our results
are influenced by the use of mountain stations, we performed
an additional inversion using the nBV error structure, but ex-
cluding all these stations. The resulting sink in Europe was
found to be −0.41± 0.17 GtC yr−1, which is fully in line
with the nBV inversion using all sites, suggesting that our es-
timates are not biased due to misrepresentation of the moun-
tain stations, at least on annual and domain-wide aggregation
scales.
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However, the spatial flux distribution seems to depend on
the site selection and in particular on the mountain sites used
in a given inversion. Ambiguous carbon fluxes, e.g., carbon
sinks over nonproductive areas like the Alps, Great Britain
and western Czech Republic, as well as carbon sources over
cultivated lands like western France, Poland and Ukraine,
were derived from the inversions (Fig. 3). Figure 4 presents
the annual spatial flux distribution by using a network of sta-
tions with no mountain sites (MS0 case) and using an error
structure that does not contain a bias term. This sensitivity
test is equivalent to the nBB case in which we also used
the GBIOME-BGC model as prior. Subsequently, we plot
the flux distribution by adding one mountain site at a time
(cases 1–7 in which the number denotes how many mountain
sites are being used). The add-one mountain site sequence
is as follows: CMN, OXK, PTR, JFJ, KAS, SIL, PUY. For
the MS0 case, we observe that in the region around the Alps,
and the neighboring countries, the sink is smaller compared
to the other inversions. The OXK and the KAS sites seem
to be responsible for the sink over the Czech Republic. The
KAS site also seems to be the driver for the high carbon flux
sources around Poland, Ukraine and the Black Sea coasts.

Using an error structure that allows for a bias term as the
one in BVR case seems to moderate the spatial flux misrep-
resentation. Comparing the subplots nBV (without bias term)
and BVR (with bias term) in Fig. 3, we see that the above-
mentioned highly productive regions (according to the simu-
lation) show somewhat weaker sinks for the BVR case com-
pared to the nBV case (indicated by the less bluish contours).
Subsequently, regions that appear to be strong carbon sources
(in the nBV case) show a weaker flux signal when the bias
term is used (BVR).

Although this study uses as much information as possible,
in terms of the available atmospheric observations, large ar-
eas, e.g., western France, the whole eastern European part,
are still poorly or not constrained at all from the atmospheric
network. Hence, the spatial flux distribution in those areas is
prone to large uncertainties.

4.3.4 Retrieved fluxes and comparison to previous
inverse estimates

The retrieved spatially resolved fluxes showed a sensitivity
in their spatial patterns to the a priori error structure, specif-
ically to the inclusion of a bias component, as indicated
by differences between the nBV and BVR cases. Such dif-
ferences were not identified in the synthetic experiment in
Ko16; however, in Ko16 a much larger spatial correlation
length scale was assumed. In the synthetic inversions the long
correlation length (766 km in the zonal direction and 411 km
in the meridional direction) drastically reduces the effec-
tive number of degrees of freedom, forcing the fluxes to be
smoothly corrected, regardless of the use of the bias compo-
nent. In the real-data inversions the shorter correlation length
(around 100 km), combined with the required larger error in-

flation (compared to the synthetic inversions) for the nBV
and nBB cases, increases the effective number of degrees of
freedom. By using a bias component (BVR, BVN, BVRT
cases) or by using the hyperbolic correlation shape (nBVH)
with stronger large-scale correlation, instead of inflating the
spatiotemporal error component, fluxes remain less flexible
on a grid scale.

Our knowledge regarding annual CO2 flux estimates for
Europe is still highly uncertain, in part due to the lim-
ited number of regional inversions focusing on this domain.
Flux estimates from previous studies, mainly global inver-
sions, show a wide range (Fig. 8). We estimated an annual
European carbon sink (ranging between −0.23± 0.13 and
−0.38± 0.17 GtC yr−1 for the different inversion scenarios,
Fig. 5d), which is however representative for a smaller Eu-
ropean region compared to the TransCom European region
typically used in other studies. The upscaled flux estimates
(see also Sect. 2.4) for the TransCom EU region have a
range of −0.39 to −0.71 GtC yr−1. Ciais et al. (2000) esti-
mated a European sink of −0.3± 0.8 GtC yr−1 for the tar-
get period 1985–1995. However, in contrast to our study
they used a global system and a gap-filling algorithm since
42 % of the observational data were missing. A recent study
from Peylin et al. (2013) computed the mean European sink
for the period 1998–2001 to be −0.44± 0.45 GtC yr−1 by
utilizing 11 different global inversion systems. Gurney et
al. (2004) also performed global inversions and found the
mean European annual fluxes for the 1992–1996 period to
be −0.98± 0.4 GtC yr−1, which is larger compared to our
estimations. Moreover, our results for the mean net monthly
fluxes over Europe agreed very well with Rivier et al. (2010),
who estimated for the 1998–2001 time frame using five dif-
ferent transport models in their inversion that the maximum
seasonal uptake occurs in July and lies between −10 and
−80 gCm−2 month−1, while our results show maximum up-
take in June with a range of −33 to −37 gCm−2 month−1

for the different inversion cases. We note that the annual
flux differences between our flux estimates and those from
other studies may also be caused due to the interannual flux
variability. Nevertheless, this should not be expected to crit-
ically drive those differences since posterior uncertainties
were found to be larger than interannual variations (Broquet
et al., 2013), making the significance of the variations ques-
tionable.

A recent study from Reuter et al. (2014) based on inver-
sions using satellite observations estimated the carbon bud-
get for the TransCom European region. For the year 2007
the sink was found to be −1.1± 0.30 GtC yr−1, much larger
compared to most other inversion estimates using ground
observations. However, Feng et al. (2016) tried to investi-
gate why atmospheric inversions using satellite observations
show an elevated European uptake through a series of sen-
sitivity tests. They linked the increased uptake when using
satellite measurements to potential observation biases and
to the emission spatial patterns. Further, Feng et al. (2016)
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Figure 8. Annual European biogenic CO2 fluxes in GtC yr−1 for
the different inversions and comparison to previous studies. Fluxes
are upscaled to the TransCom EU domain. Labels of the references
are as follows: Ci: Ciais et al. (2000); Gu: Gurney et al. (2004); Ri:
Rivier et al. (2010); Pe: Peylin et al. (2013); Re: Reuter et al. (2014).
Periods for the inverted fluxes are given below the flux estimates.

highlighted that the large European uptake is related to up
to 60–90 % from systematically higher modeled CO2 fluxes
transported into Europe from regions outside of the domain.
While this looks to be a problem related to column measure-
ments, this is not the case in our study since ground obser-
vations were used. In addition, we use the two-step inversion
scheme, which limits the influence from the far field as we
calculate the concentration signal from outside the domain
and subtract that from the observations. Whilst the flux un-
certainties outside the domain are not propagated, they can
still be expressed as uncertainties in the observation space.
However, if biases were introduced from the global inversion
to the fluxes outside of the domain, then regional flux esti-
mations may differ.

On a national scale we can compare our results to those
for the Netherlands obtained by Meesters et al. (2012),
who estimated the annual national carbon sink to be about
−0.017± 0.004 GtC yr−1. Our estimations are very close,
with a range of −0.012± 0.004 GtC yr−1 (BVR inversion)
to −0.014± 0.005 for the nBB inversion. Of note is that
the carbon budget estimates for the Netherlands agree re-
markably well despite the substantial differences between the
two studies: Meesters et al. (2012) used an inversion scheme
that solves for scaling factors of the gross prior fluxes. Spa-
tial correlations of 100 km were assumed but only for pho-
tosynthetic fluxes within the same land use class. In addi-
tion, the domain of interest (Netherlands) has a stronger con-
straint as four stations located within the domain were used,
while our inversion only uses one station (CBW), with the
rest of the stations being at least 360 km away (WES). Both
studies assume approximately the same fossil fuel emissions
(0.051 GtC yr−1 vs. 0.053 GtC yr−1 in Meesters et al., 2012).

5 Conclusions

An inverse modeling framework, based on the system de-
scribed in Ko16, and using real atmospheric data from 16
stations in Europe was deployed to infer biospheric carbon
fluxes. Different prior error structures were assumed to in-
vestigate how sensitive posterior fluxes are. The results are
validated and compared on different temporal and spatial
scales. Satisfactory agreement was found when posterior in-
verse flux estimates were compared against eddy covariance
observations on a local scale, as well as against previous
studies on national and continental scales, which gives us
confidence for our carbon flux estimations. We calculated a
sink for the European continent with amounts ranging from
−0.23± 0.13 to−0.38± 0.17 GtC yr−1 depending on the as-
sumed prior error structure.

A special effort was also made to avoid potential biased
flux estimations due to site selection (i.e., heavily polluted
sites, or sites that are within the nocturnal boundary layer
such as mountain stations) by performing inversions using
different network configurations. We did not observe any sig-
nificant impact for domain-wide aggregated fluxes, at least
for monthly and annual scales. However, changes in spatial
flux patterns on a pixel scale should be expected, when net-
work configuration is then changed. Further, we also stud-
ied how sensitive biospheric carbon fluxes are, when incor-
rect fossil fuel emissions are assumed. We found that due to
the network sparseness the fossil fuel emissions are not fully
captured in the simulated mole fractions, which may bias the
flux estimates.

What do we learn or what should we expect then from
the top-down approach? The current analysis, including the
technical note in Ko16, suggests that aggregated fluxes on
monthly (temporally) and country (spatially) scales can be
successfully retrieved from the inversion system. However,
retrieving spatially resolved fluxes on finer scales is still
rather challenging. A lack of observations for extended Euro-
pean regions, complexity of the terrain, especially in moun-
tainous regions, and the absence of fossil fuel measurements
that would otherwise allow the separation of fossil fuel sig-
nals from biospheric signals in observed CO2 time series
are the current problems that regional inversions are fac-
ing. Whilst ICOS (Integrated Carbon Observing System) will
introduce more stations in the European continent, inver-
sions should use all the available information; this could be
achieved by assimilating multiple data streams like contin-
uous and flask measurements in combination with satellite-
derived information, aiming to constrain the European conti-
nent as tightly as possible. Further, new stations should also
aim to measure combustion tracers. It would be of great help
in future inversion systems to be able to update the anthro-
pogenic emission maps and subsequently to more accurately
compute the biogenic signal.
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