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Abstract. Atmospheric inversions are widely used in the op-
timization of surface carbon fluxes on a regional scale us-
ing information from atmospheric CO2 dry mole fractions. In
many studies the prior flux uncertainty applied to the inver-
sion schemes does not directly reflect the true flux uncertain-
ties but is used to regularize the inverse problem. Here, we
aim to implement an inversion scheme using the Jena inver-
sion system and applying a prior flux error structure derived
from a model–data residual analysis using high spatial and
temporal resolution over a full year period in the European
domain. We analyzed the performance of the inversion sys-
tem with a synthetic experiment, in which the flux constraint
is derived following the same residual analysis but applied
to the model–model mismatch. The synthetic study showed
a quite good agreement between posterior and “true” fluxes
on European, country, annual and monthly scales. Posterior
monthly and country-aggregated fluxes improved their cor-
relation coefficient with the “known truth” by 7 % compared
to the prior estimates when compared to the reference, with
a mean correlation of 0.92. The ratio of the SD between the
posterior and reference and between the prior and reference
was also reduced by 33 % with a mean value of 1.15. We
identified temporal and spatial scales on which the inversion
system maximizes the derived information; monthly tempo-
ral scales at around 200 km spatial resolution seem to maxi-
mize the information gain.

1 Introduction

The continuous rise of the abundance of greenhouse gases
in the atmosphere, especially due to fossil fuel combustion,
alerted the scientific community to systematically monitor
these emissions. The challenge is not limited only to reveal-
ing the spatial distribution of CO2 sources and sinks on con-
tinental scales; it also accurately quantifies CO2 emissions
and their uncertainties on country scales. In situ atmospheric
measurements of the atmospheric CO2 variability combined
with inverse atmospheric models are used as an independent
method to provide top-down flux estimates for comparison
with estimates from bottom-up methods. The latter use local
observations (e.g., eddy covariance, EC) and combine these
with ancillary data, e.g., soil maps, satellite data, and terres-
trial ecosystem models, in order to spatially scale up local
flux estimates to larger regions (Jung et al., 2009). Both ap-
proaches act complementarily, for optimal comprehension of
carbon sources and sinks in a multiple constraint (Schulze
et al., 2010) approach and emission inventory assessments.
As these inventories are used to deduce national emission
estimates, in compliance with the Kyoto Protocol require-
ments, accuracy is essential.

An atmospheric inverse modeling system provides the link
from atmospheric concentrations to surface fluxes. However,
the limited number of observations available for solving the
system for quite a number of unknowns (spatially and tem-
porally resolved fluxes) makes the inverse problem strongly
under-determined. To solve the inverse problem, the system
incorporates Bayes’ theorem and uses a priori knowledge,
provided by biosphere models and emission inventories ac-
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companied by corresponding uncertainty estimates. Then,
the system optimizes the a priori fluxes by minimizing the
difference between model predictions and observed concen-
trations. For the current study only the biospheric fluxes were
optimized, and emissions from fossil fuel combustion are as-
sumed to be known much better, as is the case in almost all
published regional inversion studies. Inversion systems have
been extensively used to derive spatiotemporal flux patterns
on global (e.g., Enting et al., 1995; Kaminski et al., 1999a;
Gurney et al., 2003; Mueller et al., 2008) and regional scales
(e.g., Gerbig et al., 2003a; Peylin et al., 2005; Lauvaux et al.,
2012; Broquet et al., 2013).

The challenge in regional inversions is to reconstruct, at
high resolution, the spatiotemporal flux patterns, usually of
the net ecosystem exchange (NEE). For that purpose cur-
rently deployed global or regional inverse modeling schemes
use different state spaces (i.e., the set of variables to be op-
timized through the inversion process). Peters et al. (2007)
split the domain of interest into regions according to ecosys-
tem type. Subsequently, fluxes are optimized by using lin-
ear multiplication factors to scale NEE for each week and
each region. The pitfall of this system is that a zero prior
flux has no chance to be optimized and remains zero. Zu-
panski et al. (2007) divided the NEE into two components,
i.e., the gross photosynthetic production (GPP) and ecosys-
tem respiration (R). Then multiplicative factors for the gross
fluxes were derived on the grid scale, under the assumption
of being constant in time. A step further made by Lokupi-
tiya et al. (2008) used the same approach but with an 8-week
time window, allowing for temporal variations in the multi-
plicative factors. A different approach introducing the carbon
cycle data assimilation system (CCDAS) was implemented
by Rayner et al. (2005) and Kaminski et al. (2012) by con-
straining global parameters within a biosphere model able
to control surface–atmosphere exchange fluxes, against ob-
served atmospheric CO2 mole fractions, instead of the fluxes
themselves; this CCDAS approach also allows for nonlin-
ear dependencies of the fluxes on the parameters. Lauvaux
et al. (2012) used a Bayesian approach based on matrix in-
version, separately optimizing day and nighttime fluxes on
a weekly timescale for a limited simulation period and do-
main. An attempt to assess which of these approaches better
reproduces NEE was made by Tolk et al. (2011). This study
investigated the impact of different inversion approaches via
a synthetic experiment utilizing an ensemble Kalman filter
technique and the same transport model for all cases. They
found that inversions that separately optimize gross fluxes
within a pixel inversion concept perform better at recon-
structing the NEE, although they fail to obtain the gross
fluxes. Taking into consideration these findings, we also
choose the pixel-based inversions but optimizing the net bio-
genic fluxes as we are mainly interested in the total carbon
flux budget.

Introducing proper prior flux uncertainties is crucial for
meaningful posterior estimates, as these uncertainties weight

the prior knowledge between different locations and times,
as well as with respect to the data constraint. The uncertain-
ties have the form of a covariance matrix and can be catego-
rized into uncertainties of the prior fluxes and uncertainties
of the observational constraint, which includes measurement
and transport model uncertainties. While the measurement
uncertainty in the observational constraint is usually defined
with the main diagonal of the covariance matrix representing
the uncertainty of the observations and the model at a specific
time and location, our knowledge for the prior uncertainty
is limited, especially regarding temporal and spatial corre-
lations that effectively control the state space. Early inver-
sions assumed fully uncorrelated flux uncertainties (Kamin-
ski et al., 1999b), while spatial and temporal correlations
were used later by Rödenbeck et al. (2003), who investi-
gated the autocorrelation of monthly CO2 fluxes calculated
using a set of terrestrial and ocean models. In Rödenbeck
(2005), spatial correlations for land fluxes were assigned to
a state space of 4◦ latitude× 5◦ longitude resolution. Slightly
different correlation length scales were considered for the
meridional and zonal direction, assuming that the climate of
the latter varies less than of the former. Flux correlations on
land were determined by assuming an exponential pulse re-
sponse function with a length of 1275 km. This leads to cor-
relation lengths approximately 2 times larger compared to
the pulse length. Typically the spatial correlations are con-
sidered more as a tool to regularize the inverse problem,
rather than as an uncertainty feature. Schuh et al. (2010) ob-
tained correlation lengths from Rödenbeck et al. (2003) but
with a much higher state space resolution of 200 km. Lau-
vaux et al. (2008) neglected the spatial correlations to en-
large the impact of the data. Carouge et al. (2010a) inferred
spatial and temporal correlation lengths based on the agree-
ment between posterior and “true” fluxes in the framework
of a synthetic experiment, where the “truth” is known. A dif-
ferent approach was used in the study of Peters et al. (2007)
in which they interpret the length scale from a climatologi-
cal and ecological perspective and use it to spread informa-
tion within regions, which the network is incapable of con-
straining. In particular, correlations are applied such that the
same ecosystem types in different TransCom regions (ba-
sis function regions; see also http://transcom.project.asu.edu/
transcom03_protocol_basisMap.php) decrease exponentially
with distance (L= 2000 km), and thus a coupling between
the behavior of the same ecosystem is assumed. Ad hoc so-
lutions have also been used, assuming that daily fluxes have
smaller correlation lengths than monthly fluxes, which are
used by other studies (Peylin et al., 2005). More specifi-
cally, Peylin et al. (2005) assumed 500 km for daily temporal
resolution compared to the much larger correlation lengths
used by Rödenbeck for monthly flux resolution. Michalak
et al. (2004) implemented a geostatistical approach to de-
scribe the prior error structure. Specifically, the prior error
covariance describes which degree deviations of the surface
fluxes from their mean behavior at two different locations
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or times are expected to be correlated as a function of the
distance in space or in time. They simultaneously estimate
posterior fluxes as well as parameters controlling the model–
data mismatch uncertainty and the prior flux uncertainty, in-
cluding variance as well as spatial and temporal correlation
lengths. Although this approach may be considered as an ob-
jective way to infer spatial and temporal correlation lengths,
it forces the structural parameters of the error covariance to
be statistically consistent with the atmospheric data. In other
words, flux parameters are optimized from atmospheric con-
centration data, and they are forced to have values that can
reproduce the atmospheric data. In a similar approach, Gane-
san et al. (2014) and Lunt et al. (2016) applied a hierarchical
Bayesian model using atmospheric concentrations, to esti-
mate both fluxes, and a set of hyper-parameters (e.g., mean
and SD of a priori emissions probability density function
(PDF) as well as model–measurement SD and autocorrela-
tion scales). However, the covariance parameters depend on
the atmospheric data and on the transport model (Michalak
et., 2005). Those studies are focused on the sulfur hexafluo-
ride (SF6) and methane (CH4) and a direct comparison is not
possible. However, Michalak et al. (2004), who applied the
same approach to CO2, reported spatial decorrelation lengths
of around 1000 km, which is 1 order of magnitude larger than
our estimates. In addition, Lunt et al. (2016) report that due
to the computational costs, they performed the inversion with
no temporal dependence, assuming that the fluxes are con-
stant over a fixed time period. EC stations can provide a more
direct method to infer spatial and temporal flux correlations.
Chevallier et al. (2006) and Chevallier et al. (2012) intro-
duced autocorrelation analysis of the residual between fluxes
simulated by biosphere models and fluxes measured by EC
to infer spatial and temporal error correlations. The derived
error statistics were implemented in a regional CO2 inversion
by Broquet et al. (2013).

Daily NEE flux residuals from model–data compar-
isons showed temporal correlations of up to 30 days but
very short spatial correlations of up to 40 km (Kountouris
et al., 2015). In such a case, the a priori integrated uncer-
tainty over time and space, e.g., annually and European-
wide domain integrated, according to the error propaga-
tion will be exceptionally small. For example, a variance
of 1.82 µmolem−2 s−1 (from model–data differences) com-
bined with the abovementioned correlation scales yields an
uncertainty of 0.12 GtCyr−1 for the total flux over Europe.
This value is significantly smaller than the assumed uncer-
tainty, which is typically used by the inversion systems. For
comparison, we refer to studies from Rivier et al. (2010)
and Peylin et al. (2005) (for a slightly larger domain than
ours) in which an a priori uncertainty of approximately
1.4 and 1 GtCyr−1, respectively, was used. Further, Peylin
et al. (2013) found that the variance of the posterior NEE
fluxes integrated over the European domain among 11 global
inversions is also 3 to 4 times larger (0.45 GtCyr−1). Al-
though it is not yet entirely clear what would be the “cor-

rect” value for the prior uncertainty, it seems that in our study
it should be increased not only to give enough flexibility to
the system to adjust but also to be at least comparable with
other posterior uncertainty estimates. A typical method is to
inflate the spatiotemporal component by accordingly scaling
the prior error covariance. In a study by Lauvaux et al. (2012)
two correlation lengths were used at 300 and 50 km, and
for the shorter scale the uncertainty was inflated by increas-
ing the RMS of the prior error covariance. The model–data
analysis (Kountouris et al., 2015) justifies neither the use of
large correlation scales nor largely inflated variances that ex-
ceed the model–data flux mismatches; however, it is con-
sistent with an additional overall bias error that cannot be
captured from the estimated spatiotemporal error structure.
Hence, an appropriate approach would be to introduce two
adjustable terms into the inversion system. One term to re-
flect the data-derived error structure without error inflation
(prior error covariance matrix that describes the spatiotem-
poral component) and one term to represent a bias compo-
nent. To the best of our knowledge such an approach has not
yet been used in inversion systems.

This study primarily aims to use the information ex-
tracted from the model–EC data residuals (spatiotemporal er-
ror structure) to define a data-driven error covariance rather
than simply assuming one, adopting a conservative one or an
expert knowledge solution. For that, we implement our previ-
ous methodology and findings regarding the prior uncertainty
to atmospheric inversions following Kountouris et al. (2015).
As explained above, we implement two uncertainty terms:
the first one to reflect the true spatiotemporal error struc-
ture and the second term to reflect a bias term. We use the
Jena inversion system (Rödenbeck, 2005; Rödenbeck et al.,
2009) for the regional scale consisting of a fully coupled sys-
tem as described in Trusilova et al. (2010) that couples the
global three-dimensional atmospheric tracer transport model
TM3 (Heimann and Körner, 2003) and the regional stochas-
tic Lagrangian transport model STILT (Lin et al., 2003). This
scheme allows the retrieval of surface fluxes at a much finer
resolution (0.25◦) compared to global models. The first part
of this study details the methodology of the prior error imple-
mentation and evaluates the system’s performance through
a synthetic data experiment. The system evaluation is an ex-
tension of Trusilova et al. (2010) in which the evaluation was
limited to the observation space only. We extend that to the
flux space by comparing flux retrievals on various spatial and
temporal scales against synthetic true fluxes. Station loca-
tions and observation times (including gaps) were created as
in the real observation time series presented in a follow-up
study (Kountouris et al., 2018). That way we can use the syn-
thetic experiment to evaluate to what extent we can trust the
results, if a real-data inversion is performed. In the follow-up
study (Kountouris et al., 2018) the regional inversion system
is applied to real observations of atmospheric CO2 mole frac-
tions from a network of 16 stations.
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This paper is structured as follows. In Sect. 2 we present
the inversion scheme and introduce the settings of the at-
mospheric inversions. In Sect. 3 we present the results from
a synthetic inversion experiment aimed to assess the prior er-
ror setup, considering it as a step towards atmospheric inver-
sions using real atmospheric data with an objective, state-of-
the-art prior error formulation. Discussion and conclusions
follow in Sects. 4 and 5, respectively.

2 Methods

2.1 Inversion scheme

The Jena inversion system (Rödenbeck 2005; Rödenbeck
et al., 2009) was used for the current study. The scheme is
based on the Bayesian inference and uses two transport mod-
els, the TM3 model (Heimann and Körner, 2003) for global
simulations and the STILT model (Lin et al., 2003) for re-
gional simulations. The advantage of the system is that it
combines a global transport model with a regional one with-
out the need of a direct coupling along the boundaries. The
global transport model is used to calculate fluxes from the
far field (outside of the regional domain of interest), and
subsequently this information can be used to provide lateral
boundary information for the regional model. The primary
input of the system is the observed mixing ratios cmeas. This
vector contains all measured mixing ratios at different times
and locations. The modeled mixing ratios cmod given from
a temporally and spatially varying discretized flux field f
are computed from an atmospheric transport model and can
be formally expressed as

cmod = Af + cini, (1)

where cini is the initial concentration and A the transport ma-
trix that maps the flux space to the observation space. For
the regional domain, the transport matrix A has been pre-
computed using the STILT transport model. The system cal-
culates the modeled concentrations when and where a mea-
surement exists in the cmeas vector. The initial concentration
is assumed to be well mixed and remains constant throughout
the simulation. The assumption of the well mixed initial con-
centration is considered to be valid since any spatial structure
would be lost during the spin-up period.

In the following, we briefly describe the inverse modeling
approach. For more details the reader is referred to Röden-
beck (2005).

In grid-based atmospheric inversions the number of un-
knowns (spatially and temporally resolved fluxes) is larger
than the number of measurements (hourly dry mole fractions
at different sites), making the inverse problem ill-posed. In
the Bayesian concept this can be remedied by adding a priori
information. This information can be written as

f = ffix+F×p, (2)

where ffix is the a priori expectation value of the flux, matrix
F contains all the a priori information about flux uncertainties
and correlations (implicitly defining the covariance matrix),
and p is a vector representing the adjustable parameters. The
parameters p are uncorrelated with zero mean and unit vari-
ance. This flux model represents just a different way to define
the a priori probability distribution of the fluxes, than the tra-
ditional way in which the a priori error covariance matrix is
explicitly specified. The cost function describing the obser-
vational constraint is expressed as

Jc =
1
2
(cmeas− cmod)

T
×Q−1

c × (cmeas− cmod), (3)

where Qc is the observation error covariance matrix. This
diagonal matrix weights the mixing ratio values considering
measurement uncertainty, location-dependent model uncer-
tainty and a data density weighting. The data density inflates
the uncertainty over weekly intervals by a factor of the square
root of the measurement number within a given time interval.
This ensures that the higher number of data from continu-
ous measurements compared to the data from flask measure-
ments would not lead to a considerably stronger impact of
these corresponding sites (Rödenbeck, 2005). This can also
be formally interpreted as a temporal correlation scale, which
ensures that the model–data mismatch error is not indepen-
dent within a week, corresponding roughly to timescales of
synoptic weather patterns.

The inversion system seeks to minimize the following cost
function that combines the observational constraint (Eq. 3)
and the prior flux constraint

J = Jc+
1
2
×pT ×p. (4)

The minimization of the cost function is performed itera-
tively with respect to the parameters p by using a conju-
gate gradient algorithm with re-orthogonalization (Röden-
beck, 2005).

2.2 Characteristics of the inversion setup

2.2.1 A priori information and uncertainties

The a priori CO2 flux fields were derived from the Vege-
tation Photosynthesis and Respiration Model, VPRM (Ma-
hadevan et al., 2008). VPRM uses ECMWF (European Cen-
tre for Medium-Range Weather Forecasts) operational mete-
orological data for radiation (downward shortwave radiative
flux) and temperatures (T2m), the SYNMAP land cover clas-
sification (Jung et al., 2006), and EVI (enhanced vegetation
index) and LSWI (land surface water index) derived from
MODIS. Model parameters were re-optimized for Europe us-
ing eddy covariance measurements made during 2007 from
47 sites (a full site list is given in Kountouris et al. (2015); we
excluded some sites due to insufficient temporal data cover-
age or lack of representativeness). To mediate the impact of
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Figure 1. Domain of the inversions (dashed rectangle). Locations of
the atmospheric measurement stations are shown with blue marks.

Table 1. Optimized VPRM parameters SW0, λSW, α and β for dif-
ferent vegetation classes.∗

SW0 λSW α β

Evergreen forest 275 0.226 0.288 −1.10
Deciduous forest 254 0.215 0.181 0.84
Mixed forest 446 0.163 0.244 −0.49
Open shrub 70 0.293 0.055 −0.12
Crop 1132 0.086 0.092 0.29
Grass 528 0.119 0.125 0.017

∗ Units are as follows: SW0: W m−2; λSW:
µmole CO2 m−2 s−1 (Wm−2)−1; α: µmole CO2 m−2 s−1 (0C)−1; β:
(µmole CO2 m−2 s−1).

data gaps, a data density weighting was introduced that takes
into account the coverage of different times of the day (us-
ing 3 h bins) in the different seasons. Optimized parameters
are shown in Table 1. The NEE on an hourly scale and at
0.25◦×0.25◦ spatial resolution for 2007 was simulated with
the optimized parameters for the European domain shown
in Fig. 1. The domain-wide aggregated biospheric carbon
budget for 2007 derived that way from VPRM was found
to be −0.96 GtCyr−1 (i.e., uptake by the biosphere). Note
that without the density weighting an even stronger flux of
−1.35 GtCyr−1 was derived, indicating the importance of
proper treatment of data gaps by either gap filling or by the
inclusion of weights.

Additionally, biogenic CO2 fluxes were simulated with the
BIOME-BGC model, specifically its global implementation
as GBIOME-BGCv1 (Trusilova and Churkina, 2008) at the
same 0.25◦× 0.25◦ spatial and hourly temporal resolution.
The purpose of the second flux field is to provide a per-
fectly known flux distribution as true fluxes that can be used
to generate synthetic observations. The BIOME-BGC model
is a terrestrial ecosystem process model, which requires
only standard meteorological data such as daily maximum–

minimum temperature, precipitation, incoming shortwave
solar radiation, vapor pressure deficit, and the day length.
How accurate the modeled fluxes are is difficult to say since
this would require a validation against observed fluxes from
EC stations. Nevertheless, biospheric models still suffer from
large uncertainties. The remarkably diverse results between
models confirm how uncertain models are (see Friedlingstein
et al., 2014). However, in the current experiment the accuracy
of the true fluxes is not of concern since we aim only to create
a synthetic flux field that we know perfectly.

The a priori flux in a real-data inversion would have three
components including fossil fuel and ocean fluxes:

fpr = fpr,nee+ fpr,ff+ fpr,oc. (5)

We note that for the synthetic case the last two a priori terms
are set to zero. Similarly the deviation term (the data-derived
correction to the a priori fluxes) of the flux model (Eq. 6)
consists of the terms referring to NEE, fossil fuel and ocean
fluxes. Here in the synthetic case the last two terms are set to
zero (i.e., they are not optimized).

Fδs = (Fnee,Foc,Fff)

δsnee
δsoc
δsff

 (6)

The total prior uncertainty was chosen according to the mis-
match between VPRM and BIOME-BGCv1, calculated as
the annual and domain-wide integrated flux mismatch. Prior
fluxes and the fluxes representing the synthetic truth are
strongly different (−0.96 and−0.31 GtCyr−1 for VPRM and
GBIOME-BGCv1, respectively). The error structure used for
the synthetic study is estimated according to the method ap-
plied in Kountouris et al. (2015). Time series of daily fluxes
were extracted for both biosphere models at grid cell loca-
tions where an EC station exists. Fluxes from GBIOME-
BGCv1 can also be regarded as synthetic EC fluxes. Then
spatial and temporal autocorrelation analysis was performed
on the daily model–model flux residuals, yielding a spatial
correlation length scale of 566 km and a temporal correla-
tion scale of 30 days. We note that the current study does
not directly make use of the error structure derived in Koun-
touris et al. (2015) since this is applicable for real-data in-
versions. Instead we use the same methodology to derive the
actual model–model error structure since here we perform
a synthetic data inversion, exploring, amongst other things,
the accuracy of this method.

The EC station locations used for this analysis were ex-
actly the same as in Kountouris et al. (2015), ensuring simi-
larity in the derivation of the error structure for the synthetic
data inversions. Following this approach, apart from the sim-
ilarity, we also ensure that results from the synthetic exper-
iment would be informative for a real-data inversion by us-
ing exactly the same information to characterize the prior un-
certainties. Of note is that for the synthetic data inversions,
prior fluxes from VPRM model were not optimized against
GBIOME-BGCv1 true fluxes.
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The implicitly defined prior error covariance matrix con-
tains diagonal elements of 1.45 µmolm−2 s−12 that reflect the
variance from model–model flux mismatches at the 50 km
spatial resolution of the state space. Exponentially decay-
ing spatial correlations were implemented with a correla-
tion scale of 766 km at the zonal direction and 411 km
at the meridional direction, roughly corresponding to the
566 km correlation scale yielded from the model–model
residual autocorrelation analysis and preserving the same
zonal /meridional ratio as in the global inversion. Tempo-
ral autocorrelation was set to 31 days, which is consistent
with the Kountouris et al. (2015) analysis. These scales re-
sult in an annually integrated and domain-wide uncertainty
for the spatiotemporal component (Est) of 0.44 GtCyr−1. We
chose two different approaches to increase the prior uncer-
tainty on a domain-wide and annually integrated scale such
that it matches the mismatch of 0.65 GtCyr−1 between the
two biosphere models. First we inflate the error by scaling
the error covariance matrix; this case is referred to as base
case B1 hereafter. The second approach, referred to as sce-
nario S1, could be considered as a more formal approach:
we introduce an additional degree of freedom to the inver-
sion system by allowing for a bias term. This term is spa-
tially distributed according to the annually averaged VPRM
respiration component and is kept constant in time. The idea
behind the implementation of this term is that on large scales
a bias might exist that cannot be captured in the model–data
residual autocorrelation analysis (EC measurements are rep-
resentative on scales of ∼ 1 km). This assumption avoids the
artificial inflation of the uncertainty on a pixel scale and re-
stricts the pixel-to-pixel corrections to be statistically consis-
tent with the actual error structure. The bias shape selection
(respiration shape) was preferred over the NEE fluxes, as oth-
erwise a priori neutral pixels (with zero NEE) could not be
bias corrected. Further, allowing bias to have a spatial shape
might be sound since regions with stronger fluxes might also
be more biased. The error EBT of the bias component was
adjusted such that the total prior error Etot for annually and
domain-wide integrated fluxes matches the targeted total un-
certainty:

E2
tot = E

2
ST+E

2
BT. (7)

This resulted in an overall uncertainty Etot of 0.65 GtCyr−1,
which is identical to the mismatch between the two biosphere
models.

2.2.2 State space

The inversion system optimizes additive corrections to 3-
hourly fluxes in a sense that the posterior flux estimate can
be given by the sum of a fixed a priori term (first term of the
right-hand side in Eq. 8) and an adjustable term (second term
in Eq. 8). The latter has a priori a zero mean. The biogenic

fluxes can be defined as follows:

f (x,y, t)= ffix(x,y, t)+ fsh(x,y, t) (8)

×

Nt∑
mt

Ns∑
ms

Gtcor,mt (t)×Gxycor,ms (x,y)×pinv,mt ,ms ,

where fsh is a shape function that defines the adjustable term.
The spatial and temporal correlation structures of the uncer-
tainty are described by the pulse response functions Gxycor
andGtcor, respectively. The term pinv contains the adjustable
parameters that a priori have a Gaussian distribution with
zero mean and unit variance.

Note that the a priori error covariance matrix (Qf,pr) does
not explicitly appear in the inversion, but it is included
through the second term in Eq. (8). According to this for-
mulation the columns of Gtcor and Gxycor contain the spa-
tiotemporal extents of the individual NEE pulses (range of
values between 0 and 1), and the diagonal matrix fsh(x,y, t)

contains the pixel-wise a priori uncertainties. These uncer-
tainties were chosen to be flat (constant) in space and time.
For more detailed information the reader is referred to Rö-
denbeck (2005).

For the S1 case the posterior flux estimates can be ex-
pressed by adding the optimized bias flux field to Eq. (8)

f (x,y, t)= ffix(x,y, t)+ fsh(x,y, t) (9)

×

Nt∑
mt

Ns∑
ms

Gtcor,mt (t)×Gxycor,ms (x,y)×pinv,mt ,ms

+ f BT
sh (x,y)×

Nt∑
mt

Gtcor,mt (t)×pBT.

The bias term f BT follows a flux shape (here we used annu-
ally averaged respiration, with no temporal variation).

Following Rodgers (2000), the posterior flux uncertainties
are contained in the covariance matrix of the posterior prob-
ability distribution, which can be estimated from Eq. (10):

Qf,post = ((A×F)
T
×Q−1

c × (A×F)+Q−1
f,pr)
−1, (10)

where Qc is the measurement error covariance matrix.

2.2.3 Observation vector and uncertainties

The observation vector cmeas contains mixing ratio observa-
tions at all site locations and sampling times. A common
procedure to derive synthetic observations is to create a true
flux field by adding some error realizations to the a priori
fluxes (Schuh et al., 2009; Broquet et al., 2011) or to per-
turb the resulting synthetic observations (Wu et al., 2011).
Instead, for the current study we use a different biosphere
model, the GBIOME-BGCv1 model, to derive biogenic CO2
fluxes on an hourly scale. Such an approach is also used by
Tolk et al. (2011). Then a forward transport model run was
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Figure 2. Monthly data coverage plot for the atmospheric stations
used in the regional inversions. The left column shows the code
name and the right columns show the station class and the assigned
uncertainty in units of ppm. “C” stands for continental sites near the
surface, “T” for continental tall towers, “S” for stations near shore,
“M” for mountain sites, “MU” for mountain sites with diurnal ups-
lope winds and “UP” for urban pollutant.

performed to create synthetic mixing ratios at hourly resolu-
tion for each station location. We note that the synthetic data
were derived without adding error realizations. This choice
of using two different biosphere models for deriving the a
priori and the true fluxes is expected to increase the real-
ism of the synthetic data study, given the fact that the real
spatiotemporal flux distribution is highly unknown (though
the model-to-model difference may not accurately reflect the
model errors either). The use of two different biosphere mod-
els assures that the prior simulated CO2 time series will never
match with the pseudo-observations (the known truth). For
the synthetic study, observations were created for the same
station locations and observation times as in the real obser-
vation time series that are used in the follow-up study (Koun-
touris et al., 2018). An overview of the atmospheric stations
is given in Table 2 and Fig. 1. The data coverage per station is
shown in Fig. 2. Only daytime observations were considered
(11:00–16:00 LT) since the transport model is expected to
perform worse at night when a stable boundary layer forms.
An exception is made for mountain stations that measure the
free troposphere, where only nighttime observations (23:00–
04:00 LT) were considered, as this time can be better repre-
sented by the transport model (Geels et al., 2007). In total,
20 273 hourly observations from the year 2007 were used.

The model–data mismatch uncertainty associated with
each measurement is expressed as a diagonal covariance ma-

trix and contains measurement errors and errors from dif-
ferent components describing the modeling framework (i.e.,
model errors due to imperfect transport, aggregation errors)
(Gerbig et al., 2003b). For the current study, all sites are
classified according to their characteristics (e.g., tall tower,
mountain sites), and uncertainties were defined depending on
the site class (Fig. 2, legend on the right). The uncertainties
are considered as representative for current inverse modeling
systems. Although the measurement error covariance is a di-
agonal matrix, transport error correlations might be present.
Although we do not explicitly introduce off-diagonal terms
in the measurement error covariance matrix, we do consider
for temporal correlations via a data density weighting func-
tion that inflates the uncertainty. (see Sect. 2.1 and more in-
formation in Rödenbeck, 2005).

2.2.4 Atmospheric transport

For the synthetic data study only the regional atmospheric
model STILT was used to create the observations with a for-
ward run and to perform the inversion. This was feasible
since the synthetic CO2 observations are only influenced by
fluxes occurring within the domain of interest; hence, global
runs to retrieve boundary conditions at the edge of the do-
main of interest are not necessary. The transport matrix for
the regional inversions was generated in the form of pre-
calculated footprints (sensitivities of atmospheric observa-
tions to upstream fluxes) at 0.25◦ spatial and hourly temporal
resolution for the full year 2007. STILT trajectory ensembles
were driven by ECMWF meteorological fields (Trusilova
et al., 2010) and computed for 10 days backwards in time,
ensuring that nearly all trajectories have left the domain of
interest.

With respect to the assumed model height, STILT uses
surface elevation maps from ECMWF (European Centre
for Medium-Range Weather Forecasts) with a resolution of
0.25◦×0.25◦. As the model orography represents an average
over the whole grid cell, it is, in particular at steep mountain
sites, significantly smaller compared to the real orographic
height at the station location. In order to better represent the
location of the station in the large-scale flow, a model height
that more closely represents the real height (a.s.l.) of the mea-
surements is usually assumed. However, using exactly the
measurement height (a.s.l.) in the model would decouple the
CO2 signal too strongly from the surface fluxes and hence
lead to a systematic underestimation of the surface influence
on the concentrations (Geels et al., 2007). A compromise was
reached by adjusting the model height (above ground) by half
the distance between the model orographic height and the
real station height.
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Table 2. Information on the stations used for the regional inversions. Same network applied for the synthetic data inversions and the real-data
inversions in Kountouris et al. (2018). In the first column the term “type” stands for continuous (C) or flask (F) data.

Site code/type Name Latitude Longitude Height Measurement height Model height
(◦) (◦) (m a.s.l.; m) (above ground; m)

BAL/F Baltic Sea, Poland 55.50 16.67 8 57 28
BIK/C Białystok, Poland 53.23 23.03 183 90 90
CBW/C Cabauw, Netherlands 51.58 4.55 −2 200 200
CMN/C Monte Cimone, Italy 44.18 10.7 2165 12 670
HEI/C Heidelberg, Germany 49.42 8.67 116 30 30
HPB/F Hohenpeissenberg, Germany 47.80 11.01 934 50 10
HUN/C Hegyhátsál, Hungary 46.95 16.65 248 115 96
JFJ/C Jungfraujoch, Switzerland 46.55 7.98 3572 10 720
KAS/C Kasprowy Wierch 49.23 19.93 1987 5 480
LMU/C La Muela, Spain 41.36 −1.6 570 79 80
MHD/C Mace Head, Ireland 53.33 −9.90 25 10 15
OXK/C Ochsenkopf, Germany 50.03 11.81 1022 163 163
PRS/C Plateau Rosa, Italy 45.93 7.71 3480 – 500
PUY/C Puy de Dôme, France 45.77 2.97 1465 10 400
SCH/C Schauinsland, Germany 47.92 7.92 1205 8 230
WES/C Westerland, Germany 54.93 8.32 12 – 15

3 Results

The purpose of the synthetic study is to evaluate the system
setup with a realistic approach. To evaluate the ability of the
system to retrieve the synthetic true fluxes, we visualize spa-
tially distributed fluxes and we study spatially integrated (do-
main and national scale) as well as temporally (annual and
monthly scale) integrated fluxes.

3.1 CO2 mole fractions

A comparison of true and modeled CO2 dry mole fractions
from forward runs of the optimized fluxes can reveal the
goodness of fit, realized through the optimization process.
Such a comparison is presented in Fig. 3 for the Schauins-
land (SCH) continuous station. Both B1 and S1 inversions
significantly reduce the misfit between the synthetic (truth)
and the a priori mole fractions. As expected from the opti-
mization (i.e., minimization of the cost function), the RMSD
between the prior and posterior from the true time series for
all stations (Table 3) shows an average reduction of around
74 and 76 % for the S1 and B1 inversions, respectively. Prior
correlations (prior vs. true dry mole fractions) have an aver-
aged value of 0.46, which is increased to 0.93 for both in-
versions. Significant differences between the two inversions
were not found apart from a slightly larger decrease in the
RMSD for the B1 case. Figure 4 summarizes the capabil-
ity of the inversions to capture the true signal at each station
location in the form of a Taylor diagram, indicating that the
inversions showed a significant increase in the correlation for
all sites. Further, the variance of the modeled time series is
significantly closer to the variance of the true signal.

Figure 3. Daily nighttime (23:00–04:00 UTC) averages for prior,
true and posterior CO2 dry mole fraction time series for the moun-
tain site Schauinsland. Time starts at 1 January 2007. Note that due
to the almost perfect fit, posterior and true time series overlap.

To estimate the goodness of fit we consider the
station-specific χ2

c values (Eq. 11) following Rödenbeck
et al. (2003). Here we use 7-day aggregated residuals instead
of hourly residuals to match the temporal scale of 1 week of
the observation error. With 68 % probability, the modeled dry
mole fractions should be within the ±1σ range from the ob-
served mole fractions. This is equivalent to the requirement
that the dry mole fraction part of the cost function defined
as the sum of hourly squared differences, divided by the un-
certainty interval and the number of observations n (Eq. 11),
should be close to unity.

χ2
c =

∑
t

(1ct )
2

σ 2
t

n
(11)
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Figure 4. Taylor diagram for daily averaged modeled and measured
time series (annual basis) of CO2 dry mole fractions. Prior (black),
true (green, the perfect match of modeled and true time series) and
the different inversion cases (B1 blue; S1 red) are displayed. Differ-
ent symbols denote different atmospheric stations. The normalized
SD was calculated as the ratio of the SD of the modeled time series
to the SD of observations.

Values smaller than 1 are found for most of the stations, with
a mean value of 0.28 and 0.32 for the B1 and S1 cases, re-
spectively, suggesting a good fitting performance for all sta-
tions and for both inversions. The results are comparable with
those found in the Rödenbeck et al. (2003) study.

Another important aspect is the reduced χ2
r metric, which

we use to assess the model performance. By definition the
reduced χ2

r can be obtained by dividing the squared residuals
of optimized dry mole fractions minus observed dry mole
fractions by the squared specified uncertainties. This is also
equivalent to 2 times the cost function at its minimum divided
by the number of degrees of freedom (effective number of
observations) (Tarantola, 2005):

χ2
r = 2

Jmin

n
. (12)

Again, a correct balance should be close to unity. The re-
duced chi square (Eq. 12) was found to be 0.21 for both cases,
indicating that the error variance is overestimated, making
the error assumption rather conservative.

3.2 Flux estimates and uncertainties

In flux space, we evaluate the inversion performance by com-
paring the retrieved flux estimates against the synthetic fluxes
(true) on different temporal and spatial scales: annually and

Table 3. RMSD (first column in ppm) and correlation coefficients
(second column) between known truth and prior and posterior CO2
dry mole fractions for daily daytime or nighttime averaged values
and for each station. The third column shows χ2, the normalized dry
mole fraction mismatch per degree of freedom for 7-day averaged
residuals, as a measure of how well the data were fitted. The format
for each station is as follows: RMSD | r2 |χ2.

Prior B1 S1

BAL 4.78 | 0.07 | 18.44 0.89 | 0.97 | 0.48 1.02 | 0.96 | 0.37
BIK 5.28 | 0.43 | 15.50 1.20 | 0.97 | 0.18 1.29 | 0.97 | 0.25
CBW 8.60 | 0.04 | 74.29 0.99 | 0.99 | 1.31 1.06 | 0.99 | 1.34
CMN 2.68 | 0.33 | 6.31 0.74 | 0.93 | 0.08 0.78 | 0.92 | 0.10
HEI 11.39 | 0.37 | 12.97 1.83 | 0.98 | 0.36 1.84 | 0.98 | 0.37
HPB 7.73 | 0.35 | 26.58 1.01 | 0.99 | 0.21 1.19 | 0.99 | 0.31
HUN 6.50 | 0.63 | 31.89 1.36 | 0.98 | 0.21 1.46 | 0.98 | 0.25
JFJ 3.12 | 0.21 | 3.93 1.24 | 0.86 | 0.24 1.31 | 0.84 | 0.27
KAS 4.00 | 0.32 | 10.67 0.73 | 0.98 | 0.11 0.80 | 0.97 | 0.15
LMU 3.42 | 0.19 | 6.5 0.79 | 0.95 | 0.12 0.86 | 0.94 | 0.16
MHD 1.53 | 0.0002 | 0.83 0.65 | 0.09 | 0.16 0.68 | 0.06 | 0.17
OXK 6.10 | 0.21 | 38.50 3.35 | 0.76 | 0.76 3.40 | 0.75 | 0.80
PRS 2.32 | 0.15 | 2.46 0.70 | 0.92 | 0.30 0.74 | 0.91 | 0.33
PUY 4.27 | 0.15 | 12.06 0.68 | 0.97 | 0.06 0.73 | 0.96 | 0.09
SCH 4.76 | 0.26 | 21.17 0.90 | 0.97 | 0.07 0.95 | 0.97 | 0.09

monthly integrated fluxes, domain-wide and on a country
scale. In particular we are interested in capturing the true
fluxes down to country scale. For that we assess monthly pos-
terior retrievals, which we compare to reference data (true
fluxes), country aggregated, using a Taylor diagram. This di-
agram provides a concise statistical summary of how well
patterns match each other in terms of their correlation and
the ratio of their variances.

The spatial distributions of the annual biosphere–
atmosphere exchange fluxes for the prior, the known truth
and the posterior cases are presented in Fig. 5. Note
that annual fluxes between the two biosphere models used
for prior fluxes and true fluxes are substantially differ-
ent. The inversion significantly adjusts the spatial flux dis-
tribution mainly in central Europe and in southern Scan-
dinavia, where a denser atmospheric network exists. The
absolute annual mean difference in fluxes (|mean(true−
prior)| and |mean(true− posterior)|) is greatly reduced from
70.8 gCm−2 yr−1 to 14.7 and 24.6 gCm−2 yr−1 for the B1
and S1 inversions, respectively. Detailed patterns, however,
are not well reproduced: the fraction of explained spatial
variance in the true fluxes (measured as squared Pearson cor-
relation coefficient) decreases from the prior (0.17) to the
posterior (0.07 and 0.06 for the cases B1 and S1, respec-
tively). When evaluating this on monthly scales, the fraction
of explained spatial variance increases in the posterior esti-
mates compared to the prior for winter months from around
0–15 % to about 15–50 %, while during the growing season
a decrease from around 10–35 % to about 0–34 % is typi-
cally found. The accumulated footprint of the atmospheric
network is shown in Fig. 6, clearly indicating the strongest
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Figure 5. Annual spatial distribution for the prior, true and posterior biogenic flux estimates for the two synthetic inversions S1 and B1 (a,
b), and flux innovation defined as the difference of posterior minus prior (c). Fluxes are given in units of gCm−2 yr−1.

Figure 6. Annual integrated influence for 2007 of the current atmo-
spheric network. Footprint influence is presented on a logarithmic
scale and units are in log10 [ppm (µmolm−2 s−1)−1]

constraint on fluxes in central Europe. Interestingly, both
error structures from S1 and B1 inversions produce poste-
rior fluxes that have approximately the same spatial distri-

Figure 7. Monthly and annual carbon flux budget, integrated over
the European domain. Note that both inversions share the same an-
nual prior uncertainty but monthly uncertainties differ. Blue and red
error bars denote the prior uncertainty for the B1 and S1 scenarios,
respectively.
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bution. When separating the spatiotemporal component from
the bias component (in S1 case), we can identify differences
between the two inversions. Significant deviations of the spa-
tial flux distribution between the spatiotemporal components
were found: the spatiotemporal component in the S1 case
has a domain-wide annual flux correction of 0.39 GtCyr−1

(prior – posterior) while the corresponding term in the B1
case has a correction of 0.78 GtCyr−1. Nevertheless, SDs of
the corrections with respect to the true spatial flux distribu-
tion (true – posterior) were found to have no significant dif-
ference (6.88×10−5 and 7.38×10−5 GtCyr−1 cell−1 for S1
and B1, respectively). We do not observe any strong correc-
tion in the southeastern part of Europe as it cannot be “seen”
from the atmospheric network due to the distance to the ob-
serving sites and the prevailing westerly winds. This could
also be inferred from the flux innovation plots (see Fig. 5)
defined as the difference between prior and posterior fluxes.
Only very small or even no corrections occurred in this area.

We are specifically interested in the ability of the in-
version system to capture integrated fluxes over time and
space. Figure 7 shows an overview of the domain-integrated
fluxes on monthly and annual scales. Despite the remarkably
larger a priori (VPRM) sink compared to the synthetic truth
(GBIOME-BGCv1) during the growing season, both inver-
sions, with and without the bias term, produce posterior flux
estimates that fully capture the true monthly and annually in-
tegrated fluxes. While the monthly posterior estimates give
no clear evidence on which inversion performs better, re-
trievals on an annual scale slightly favor the inversion with-
out the bias term (B1 case). A difference was observed in the
prior uncertainties between the two inversions. While both
were scaled to have the same prior annual uncertainty, the B1
inversion has systematically larger prior monthly uncertain-
ties than the S1 as a result of the inflated spatiotemporal com-
ponent of the prior error covariance. Posterior uncertainties
were found to be similar and include or are close to including
(S1 case) the true flux estimates. The uncertainty reduction
for annually and domain-wide integrated fluxes, defined as
the difference between prior and posterior uncertainties nor-
malized by the prior uncertainty, was found to be 73 and 69 %
for S1 and B1, respectively. Note that whilst the prior uncer-
tainty refers only to the flux space, the posterior uncertainty
depends on the uncertainty of prior fluxes, measurements and
transport.

In order to assess how well the posterior estimates agree
with the true fluxes, RMSD between true and posterior
monthly integrated gridded fluxes was computed (Table 4).
Both B1 and S1 inversions show a similar reduction in
the RMSD values compared to the prior. The same picture
emerges for the annually integrated fluxes.

Of particular interest is the performance of the system on
a regional scale, specifically at national level. Figure 8 shows
monthly fluxes for selected European countries, including the
prior, true and posterior estimates with the corresponding un-
certainties. Both error structures show a similar performance.

Despite the large prior misfit, the system succeeded in re-
trieving monthly fluxes at country level. Better constrained
regions mainly located in central Europe show the ability
to broadly capture the temporal flux variation on a monthly
scale. Figure 9 summarizes in a Taylor diagram the inver-
sion performance for the S1 case and for each EU-27 coun-
try, showing the improvement of monthly and country ag-
gregated fluxes (a perfect match would be if the head of the
arrow were to coincide with the reference point marked as a
green bullet). It is worth mentioning that for regions that are
less constrained by the network, such as Great Britain, Spain,
Poland and Romania, the inversions also still improved the
posterior estimates compared to the prior estimates (see also
Fig. 9).

3.3 Evaluation with synthetic eddy covariance data

In order to investigate the potential of using EC measure-
ments for evaluating the retrieved CO2 fluxes, monthly fluxes
from the prior (VPRM), the truth (GBIOME-BGCv1) and
the posterior for cases B1 and S1 were extracted at the grid
cell locations where EC stations exist, using the same 53
sites as in Kountouris et al. (2015). The corresponding fluxes
were then aggregated over all sites, using a weight that com-
pensates for the asymmetry between number of flux towers
for specific vegetation types and the fraction of land area
covered by the specific vegetation type. Prior fluxes show
a systematically larger uptake compared to the truth, pre-
dominantly during the growing season with maximum dif-
ferences of 0.8 gCm−2 day−1 (Fig. 10). Posterior estimates
for both cases captured the magnitude of the true fluxes, with
maximum differences of around 0.3 gCm−2 day−1 during
June–July. A significantly larger correction is apparent dur-
ing spring and summer compared to winter and fall.

4 Discussion

4.1 Performance in flux space

Results from the synthetic experiment showed the strengths
but also the weaknesses of the system to retrieve the true spa-
tial flux distribution. Although the error structure applied to
this experiment was statistically coherent with the mismatch
between prior and true fluxes, we note a limited ability of
the current atmospheric network to retrieve fluxes on local
scales. For coarser spatial scales (country level) the carbon
budget estimates in the synthetic inversion showed a quite
good performance on monthly and annual temporal scales.
Further, we observed an average reduction of the monthly
uncertainties of 65 % for the B1 case and 64 % for the S1
case. In combination with the fact that the flux estimates re-
produce the truth within the posterior uncertainties, this gives
us confidence in the accuracy of our estimates.

The current study does not focus on the transport error
quantification but rather includes it as diagonal elements in
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Table 4. Performance of the two error structures expressed as the spatial RMSD of the optimized monthly and annual NEE fluxes compared
to the truth for the whole domain in µmolem−2 s−1.

Annual Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Prior 0.38 0.61 0.53 0.55 1.06 1.26 1.56 1.17 0.94 0.65 0.57 0.63 0.63
B1 0.33 0.46 0.40 0.45 0.84 0.99 1.21 1.00 0.86 0.63 0.43 0.46 0.44
S1 0.34 0.48 0.41 0.45 0.86 1.01 1.24 1.03 0.86 0.63 0.45 0.47 0.45

Figure 8. Temporal evolution of monthly NEE for selected European countries for the synthetic data inversion.

the measurement error covariance, which is typical in atmo-
spheric inversions. The chi square values confirm that there
is no underestimation of the uncertainties. We note though
that erroneous flux estimates are likely to be estimated, es-

pecially on finer spatial scales on which the transport model
is not able to resolve the real transport (e.g., individual ed-
dys, complicated terrain). However, for coarser spatial scales
transport models are expected to perform better, which seems
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Figure 9. Overview of the model performance (S1 case) summarized in a Taylor diagram. Posterior and prior monthly- and country-scale
aggregated biospheric fluxes are compared against the reference fluxes (true). Each line corresponds to a different country. The starting point
of each arrow shows the prior and reference comparison and the ending point shows the posterior and reference comparison. Ideally the
ending point should coincide with the green point, which represents the reference model.

to be in line with comparisons of the prior and posterior with
the true flux estimates, which better agree on largely aggre-
gated scales.

Prior error correlation in time and space limits the scale
on which information can be retrieved from the inversion.
The spatial correlation of several hundreds of kilometers im-
plies that fluxes on scales smaller than this cannot be sig-
nificantly improved by the inversion, as the results clearly
showed. To assess this more quantitatively, the spatial corre-
lation between a priori or retrieved and true monthly fluxes
is calculated for different spatial aggregation scales (start-
ing at 0.25◦, fluxes were aggregated to 0.5 and then in 1◦

steps up to 8◦). Results shown in Fig. 11a indicate a nearly
monotonous increase in the spatial correlation of prior and
posterior fluxes with increasing aggregation scale. The ad-
ditional explained variance brought about by the inversion,
i.e., the difference between posterior (red or blue line) and

prior (grey line) flux correlation (r square) with the truth,
starts at low values around 0.1 and reaches values around
0.2 for scales larger or equal to 2◦. Similarly, the spatial
correlation between a priori and true fluxes for a given spa-
tial aggregation of 2◦ but for different temporal aggregation
scales ranging from 1 to 128 days (Fig. 11b) shows a con-
tinuous increase from about 0.23 to 0.42 (r square), while
the spatial correlation between retrieved and true fluxes only
varies slightly between 0.4 and 0.53 (Fig. 11b, red and blue
lines). Here, the additional spatial variance explained by the
retrieved fluxes is largest on around monthly timescales (dif-
ferences between prior and posterior r square around 0.2),
while on seasonal scales this additional explained variance
is only around 0.1. Overall, this analysis confirms that there
are preferred spatial and temporal scales on which the inver-
sion retrieves the flux distribution best and where thus most
information is gained. This is not dependent on whether or
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Figure 10. Mean monthly NEE averaged over the 53 different eddy
covariance site locations as reported in Kountouris et al. (2015).
A priori (black), true (green) and posterior fluxes for scenarios B1
(blue) and S1 (red) are shown. Units are in gCm−2 day−1.

not a bias term is included in the state vector, as results for
cases B1 and S1 do not differ in this regard. It is important to
realize that all other scales on which the inversion does not
provide much information need to be properly represented
by the a priori flux distribution. Thus, the a priori fluxes need
to be realistic on short spatial scales below about 200 km, on
seasonal temporal scales and of course on hourly timescales
that are not retrieved by the inversion.

The annual spatial flux distribution of the B1 and S1 cases
was found to be quite similar, indicating that inflating the un-
certainty by a factor of 1.5 (B1 case, see also Sect. 2.2.1)
or adding a bias component to compensate for the inflation
(S1 case) lead to a similar flux constraint. This could be ex-
plained due to the long correlation length (566 km), which
drastically reduces the effective number of degrees of free-
dom, forcing the fluxes to be smoothly corrected, regardless
of the use of the bias component.

The true fluxes were used to validate the posterior flux es-
timates. In this synthetic experiment, both fluxes share the
same spatial resolution (25 km), which makes the validation
straightforward. In a real-data inversion, EC measurements
will substitute the true fluxes, making the spatial scales not
directly comparable. Despite the scale mismatch, Broquet
et al. (2013) compared the posterior flux estimates against
EC data with promising results, showing that posterior mis-
matches are in good agreement with the theoretical uncer-
tainties.

4.2 Performance in observation space

The high RMSD reduction in combination with the high cor-
relation values and the captured variability between posterior
and true dry mole fractions in the synthetic experiment sug-
gest a good performance of the inversion system to retrieve
the true mixing ratios. Nevertheless, this is not surprising,
as the atmospheric data are fitted by the inversion. Further-

more, the forward and the inverse runs used identical trans-
port, without any impact from imperfections in transport sim-
ulations.

The uncertainties in the flux space are statistically con-
sistent with the model–model flux mismatch. However the
reduced χ2

r values obtained from the inversions were rather
small (around 0.21). This indicates that overall conservative
uncertainties were assumed, and the small χ2

r values are a re-
sult from the assumed uncertainties in the observation space.
Indeed, uncertainties in the observation space also include
transport uncertainties; however, given that the same trans-
port is used to create synthetic observations and to perform
the inversion, there is no actual model–data mismatch related
to transport uncertainties, and thus the assumed uncertainties
are overestimated. In the current study we assumed a diag-
onal measurement error covariance matrix. Concerns might
rise that the observational uncertainties are underestimated
due to the absence of the error correlations. However, we do
implicitly consider this transport errors might by correlated
over time, and we do consider that via the data density func-
tion. Further, for the synthetic study the χ2

r values prove to
be a fair treatment of the observational uncertainties.

5 Conclusions

This technical note describes the setup and the implementa-
tion of prior uncertainties as derived from model–eddy co-
variance data comparisons into an atmospheric CO2 inver-
sion. The inversion system assimilates hourly dry air mole
fractions from 16 ground stations to optimize 3-hourly NEE
fluxes for the study year 2007. Two different error structures
were introduced to describe the prior uncertainty by either
inflating the error or by adding an additional degree of free-
dom allowing for a long-term bias. The need of this error
inflation comes from the fact that the spatiotemporal model–
data error structure alone underestimates prior uncertainties
typically assumed for inversion systems on continental and
annual scales. In this study we evaluate the Jena inversion
system by performing a synthetic experiment and expanding
the evaluation to the retrieved fluxes, whilst only the obser-
vation space was evaluated in Trusilova et al. (2010). Further,
we assess the impact when adding a bias term in the flux error
structure. This study is a preparatory step to retrieving Euro-
pean biogenic fluxes using a data-driven error structure con-
sistent with model–flux data mismatches, which is described
in a follow-up study (Kountouris et al., 2018).

Significant flux corrections and error reductions were
found for larger aggregated regions (i.e., domain-wide and
countries), giving us confidence on the reliability of the re-
sults for a real-data inversion at least for aggregated scales up
to the country level. We found a similar performance for both
error structures. A more detailed analysis of the spatial and
temporal scales, on which the inversion provides a significant
gain in information on the distribution of fluxes, clearly con-
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Figure 11. (a) Mean spatial correlation of monthly fluxes with true fluxes as functions of the spatial flux aggregation scale for prior fluxes
(grey) and for posterior fluxes from scenarios B1 (blue) and S1 (red). (b) Mean spatial correlation of fluxes with true fluxes at 2◦ spatial
resolution as functions of temporal flux aggregation scale for prior fluxes (grey) and for posterior fluxes from scenarios B1 (blue) and S1
(red).

firms that (a) fluxes on spatial scales much smaller than the
spatial correlation length used for the a prior uncertainty can-
not be retrieved; (b) the inversion performs best on around
monthly temporal scales; and (c) especially the small spa-
tial scales need to be realistically represented in the a priori
fluxes.

Data availability. The Jena Inversion system is available from
Christian Roedenbeck upon request (christian.roedenbeck@bgc-
jena.mpg.de). The prior terrestrial fluxes (VPRM and GBIOME-
BGC models) are available from Christoph Gerbig upon request
(cgerbig@bgc-jena.mpg.de).
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Appendix A

The exponentially decaying temporal autocorrelations are
a feature newly implemented into the Jena inversion system.
Temporal correlations are not directly defined as off-diagonal
elements in the a priori error covariance, as the latter does
not appear explicitly in the inversion. Rather, the inversion
system involves time series filtering in terms of weighted
Fourier expansions. More specifically, the columns of ma-
trix Gtcor contains Fourier modes, weighted according to the
frequency spectrum that corresponds to the desired autocor-
relation function. The reader is referred to Rödenbeck (2005)
for more information. Following Rödenbeck (2005) we de-
fine the following spectral weight w:

w =
νlow√

v2
low+ (2πν)

2
, (A1)

where νlow is the characteristic frequency. The characteristic
frequency νlow can be calculated from the desired temporal
autocorrelation time (30 days) of the exponential decay and
is expressed in years:
νlow = 1/(1/12), where 1/12 is the autocorrelation time

in years. Hence, the characteristic frequency corresponding
to a monthly autocorrelation is 12.

To test numerically whether the implemented autocorre-
lation decay shape approximates an exponential decay, an
error realization of the characteristic frequency was added
to the prior fluxes, and the autocorrelation function as de-
scribed in Kountouris et al. (2015) was calculated numeri-
cally simultaneously for the flux time series of all grid cells.
Then an exponentially decaying function was fitted (Fig. A1)
to derive the autocorrelation scale for the corresponding fre-
quency. The resulting autocorrelation shape indeed approxi-
mates very well an exponential decay, with an e-folding time
of precisely 30 days. The tight confidence bounds of the fitted
parameter (29.3 and 30.6 days within the 95 % confidence in-
terval), in combination with the small residual sum of squares
(0.14), suggest a very good approximation of the exponential
decay.

Figure A1. Autocorrelation function for a characteristic frequency
of the exponential filter. The autocorrelation is calculated simulta-
neously for all the domain grid cells. The numerical realization of
the autocorrelation does not decay to zero because of the flux sea-
sonality.
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