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Abstract. Chemical composition, size distributions, and de-
gree of oligomerization of secondary organic aerosol (SOA)
from α-pinene (C10H16) ozonolysis were investigated for
low-temperature conditions (223 K). Two types of experi-
ments were performed using two simulation chambers at the
Karlsruhe Institute of Technology: the Aerosol Preparation
and Characterization (APC) chamber, and the Aerosol Inter-
action and Dynamics in the Atmosphere (AIDA) chamber.
Experiment type 1 simulated SOA formation at upper tropo-
spheric conditions: SOA was generated in the AIDA cham-
ber directly at 223 K at 61 % relative humidity (RH; experi-
ment termed “cold humid”, CH) and for comparison at 6 %
RH (experiment termed “cold dry”, CD) conditions. Exper-
iment type 2 simulated SOA uplifting: SOA was formed in
the APC chamber at room temperature (296 K) and < 1 %
RH (experiment termed “warm dry”, WD) or 21 % RH (ex-
periment termed “warm humid”, WH) conditions, and then
partially transferred to the AIDA chamber kept at 223 K, and
61 % RH (WDtoCH) or 30 % RH (WHtoCH), respectively.
Precursor concentrations varied between 0.7 and 2.2 ppm α-
pinene, and between 2.3 and 1.8 ppm ozone for type 1 and
type 2 experiments, respectively. Among other instrumenta-
tion, a chemical ionization mass spectrometer (CIMS) cou-
pled to a filter inlet for gases and aerosols (FIGAERO), de-
ploying I− as reagent ion, was used for SOA chemical com-
position analysis.

For type 1 experiments with lower α-pinene concentra-
tions and cold SOA formation temperature (223 K), smaller
particles of 100–300 nm vacuum aerodynamic diameter (dva)

and higher mass fractions (> 40 %) of adducts (molecules
with more than 10 carbon atoms) of α-pinene oxidation prod-
ucts were observed. For type 2 experiments with higher α-
pinene concentrations and warm SOA formation temperature
(296 K), larger particles (∼ 500 nm dva) with smaller mass
fractions of adducts (< 35 %) were produced.

We also observed differences (up to 20 ◦C) in maximum
desorption temperature (Tmax) of individual compounds des-
orbing from the particles deposited on the FIGAERO Teflon
filter for different experiments, indicating that Tmax is not
purely a function of a compound’s vapor pressure or volatil-
ity, but is also influenced by diffusion limitations within the
particles (particle viscosity), interactions between particles
deposited on the filter (particle matrix), and/or particle mass
on the filter. Highest Tmax were observed for SOA under
dry conditions and with higher adduct mass fraction; low-
est Tmax were observed for SOA under humid conditions
and with lower adduct mass fraction. The observations in-
dicate that particle viscosity may be influenced by intra- and
inter-molecular hydrogen bonding between oligomers, and
particle water uptake, even under such low-temperature con-
ditions.
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Our results suggest that particle physicochemical proper-
ties such as viscosity and oligomer content mutually influ-
ence each other, and that variation in Tmax of particle desorp-
tions may have implications for particle viscosity and parti-
cle matrix effects. The differences in particle physicochem-
ical properties observed between our different experiments
demonstrate the importance of taking experimental condi-
tions into consideration when interpreting data from labora-
tory studies or using them as input in climate models.

1 Introduction

Atmospheric aerosols have adverse impacts on human health
(Nel, 2005; Rückerl et al., 2011) and rank among the main
drivers of anthropogenic climate change (IPCC, 2013). Or-
ganic compounds make up a large fraction (20–90 %) of
submicron particulate mass (Zhang et al., 2007; Murphy
et al., 2006; Jimenez et al., 2009; Ehn et al., 2014). Or-
ganic aerosol (OA) particles can be directly emitted into
the atmosphere from sources such as fossil fuel combus-
tion and forest fires (primary organic aerosol, POA), or be
formed in the atmosphere from the oxidation of gas-phase
precursors (secondary organic aerosol, SOA). Secondary or-
ganic aerosol dominates the global budget of OA (Shrivas-
tava et al., 2015), and its gaseous precursors (volatile or-
ganic compounds, VOCs) can be of both biogenic and an-
thropogenic origin. In the atmosphere, VOCs are oxidized
by the hydroxyl radical (OH), ozone (O3), or the nitrate radi-
cal (NO3) into semi-volatile, low-volatility, and/or extremely
low-volatility organic compounds (SVOC, LVOC/ELVOC),
which can partition into the particle phase and lead to the for-
mation of SOA (Jimenez et al., 2009; Hallquist et al., 2009;
Jokinen et al., 2015; Ehn et al., 2014). Due to the wealth of
precursors and formation mechanisms in both the gas and
particle phase, SOA is very complex and can contain thou-
sands of compounds with a wide range of functionalities,
volatilities, and other physicochemical properties (Hallquist
et al., 2009; Nozière et al., 2015).

Global estimates indicate that biogenic VOC emissions
(539 Tg C a−1) dominate over anthropogenic VOC emissions
(16 Tg C a−1), and that the global SOA production from
biogenic VOCs (22.9 Tg C a−1) outpaces that from anthro-
pogenic VOCs (1.4 Tg C a−1) as well (Heald et al., 2008). An
important class of biogenic VOCs is monoterpenes (C10H16),
emitted in substantial amounts (43 Tg C a−1; Heald et al.,
2008) by vegetation (e.g., many coniferous trees, notably
pine). One of the most abundant monoterpenes is α-pinene
(24.8 % mass contribution to global monoterpenes emis-
sions; Kanakidou et al., 2005). Secondary organic aerosol
from monoterpenes is very important in the boreal regions
in summertime, and the fraction of total SOA mass from
monoterpene oxidation products is estimated to be ∼ 15 %
globally (Heald et al., 2008).

SOA formation from α-pinene has been studied exten-
sively in smog chambers (e.g., Kristensen et al., 2016; Den-
jean et al., 2015; McVay et al., 2016), although studies cov-
ering a wide temperature range are rare (Saathoff et al.,
2009; Donahue et al., 2012). The reactions of α-pinene with
O3 as well as radicals OH and NO3 lead to a large suite
of oxygenated reaction products including aldehydes, oxy-
aldehydes, carboxylic acids, oxy-carboxylic acids, hydroxy-
carboxylic acids, dicarboxylic acids, organic nitrates, etc.
(Winterhalter et al., 2003; Kanakidou et al., 2005). Aerosol
yields vary for the different oxidants, and the most important
process with regard to aerosol mass formation from the oxi-
dation of α-pinene is the reaction with O3 (Kanakidou et al.,
2005).

The molecular formulae of organic species account-
ing for ∼ 58–72 % of SOA mass from α-pinene ozonoly-
sis have been identified, and can largely be grouped into
monomers (C8−10H12−16O3−6, oxidation products from one
α-pinene molecule) and dimers (C14−19H24−28O5−9, oxida-
tion products from two α-pinene molecules; Zhang et al.,
2015). Major dimers of the α-pinene SOA system have
been structurally elucidated as a cis-pinyl-diaterpenyl es-
ter (C17H26O8; MW 358; Yasmeen et al., 2010) and a cis-
pinyl-hydroxypinonyl ester (C19H28O7; MW 368; Müller
et al., 2008). Autoxidation processes can form highly oxi-
dized molecules (HOM; elemental oxygen-to-carbon ratios
of 0.7–1.3; Ehn et al., 2012), monomers and dimers, which
have been shown to play an important role in atmospheric
new particle formation (Ehn et al., 2014). Less oxygenated
dimers (e.g., esters and other accretion products), some of
which have similarly low volatility as HOM, and for many of
which formation mechanisms are still not known, are major
products in aerosol particles from α-pinene ozonolysis, and
have been proposed to be key components in organic particle
growth in field and laboratory (Kristensen et al., 2014, 2016;
Tröstl et al., 2016; Zhang et al., 2015; Mohr et al., 2017).

SOA is highly dynamic and continually evolves in the at-
mosphere, becoming increasingly oxidized, less volatile, and
more hygroscopic (Jimenez et al., 2009). As a consequence,
SOA residence time in the atmosphere at different tempera-
ture (T ) and relative humidity (RH) conditions strongly in-
fluences the particles’ physicochemical properties such as
phase state, and thus their effects on air quality and climate
(Tsigaridis et al., 2006; Jimenez et al., 2009; Shiraiwa et
al., 2017). Biogenic SOA has been shown to exist in phase
states ranging from liquid to amorphous (semi-)solid in the
atmosphere (Virtanen et al., 2010; Bateman et al., 2016; Shi-
raiwa et al., 2017). The phase state can affect gas uptake,
gas–particle partitioning, diffusion, the particles’ ability to
act as cloud condensation nuclei (CCN) and/or ice nuclei
(IN), and the particles’ lifetime in the atmosphere (Shiraiwa
et al., 2011; Price et al., 2015; Lienhard et al., 2015). Wa-
ter diffusion coefficients in the water-soluble fraction of α-
pinene SOA were measured for temperatures between 240
and 280 K. The results showed that water diffusion slowed
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down as temperature decreased, indicating increasing vis-
cosity of SOA particles (Price et al., 2015). Diffusivity of
organic molecules in SOA particles can show similar behav-
ior, leading to large equilibration times under dry conditions
(Shiraiwa et al., 2011) and/or cool conditions (Bastelberger
et al., 2017). Observations of particle shape transformations
(Järvinen et al., 2016), coalescence times (Pajunoja et al.,
2014), and the particle bounce factor (BF; Virtanen et al.,
2010; Pajunoja et al., 2015) are other parameters used to in-
dicate the phase state and viscosity of particles. At dry con-
ditions and at temperatures close to room temperature, the
viscosity of α-pinene SOA is assumed to range from 105

to (higher than) 108 Pa s (Song et al., 2016; Renbaum-Wolff
et al., 2013; Pajunoja et al., 2014), which corresponds to a
semisolid state (Shiraiwa et al., 2011), whereas at an RH of
about 90 % and room temperature its consistency is compara-
ble to that of honey (∼ 10 Pa s: Renbaum-Wolff et al., 2013).
Generally, SOA is more viscous in cool and dry conditions
(shown, e.g., for α-pinene SOA at temperatures ranging from
235 to 295 K and RH ranging from 35 to 90 %; Song et al.,
2016; Järvinen et al., 2016; Shiraiwa et al., 2011; Wang et
al., 2015; Kidd et al., 2014).

Differences in α-pinene SOA chemical composition were
observed for different SOA formation temperatures and RH
conditions, such as lower oligomer content at higher RH (up
to 87 %, Kidd et al., 2014) or lower temperature (285 K,
Zhang et al., 2015). Given that the differences in physico-
chemical properties of SOA particles observed as a function
of temperature and RH only cover part of the range of atmo-
spheric values, it is of great importance for our understanding
of SOA climate effects to expand the investigation of SOA
evolution to atmospherically relevant conditions, especially
at low temperature. More knowledge on SOA at temperature
and RH conditions that are representative of the upper tropo-
sphere, where SOA particles can be transported to or formed
in situ, is required in order to understand their potential im-
portance for phase state, morphology, chemical composition,
and thus ultimately SOA cloud formation potential (Zhang et
al., 2015; Virtanen et al., 2010; Lienhard et al., 2015; Frege
et al., 2018). However, such studies, particularly of SOA at
low temperature, are still scarce.

In the present work, we investigate the chemical com-
position, size distributions, and degree of oligomerization
of α-pinene SOA formed at four different conditions cor-
responding to temperatures of 223 and 296 K and RH be-
tween < 1 and 61 % in order to simulate SOA uplifting to and
SOA formation in the upper troposphere. Samples for chem-
ical ionization mass spectrometric analysis were taken from
the Aerosol Interaction and Dynamics in the Atmosphere
(AIDA) chamber at 223 K and collected on Teflon filters at
two different times after starting the experiments. We discuss
differences in these mass spectra and corresponding molec-
ular desorption profiles when heating the filters from room
temperature to 200 ◦C as well as possible implications for

Figure 1. Simple schematic and conditions for the two types of ex-
periments (modified from Wagner et al., 2017). Both chambers at
IMK (APC and AIDA) were used in this study. Instruments are an-
notated in green, blue, and orange, and precursor gases in red. More
detailed information on the instruments and precursor gases are ex-
plained in the text.

mutual interactions between particle chemical composition
and viscosity.

2 Methodology

2.1 Environmental chambers and experimental design

The data for this study were acquired during a 2-month
measurement campaign (SOA15) in October and Novem-
ber 2015 at environmental chambers of the Institute of Mete-
orology and Climate Research (IMK) at the Karlsruhe Insti-
tute of Technology (KIT). The measurement campaign inves-
tigated yields, physical properties, and chemical composition
of SOA from α-pinene ozonolysis as a function of precursor
concentration, temperature, RH, and the ice nucleation abili-
ties of the SOA particles (Wagner et al., 2017). The focus on
ice cloud formation allowed for the investigation of the par-
ticles’ physicochemical properties at temperatures as low as
223 K (representative of conditions in the upper troposphere
at 8–12 km altitude at the mid-latitudes), a range where de-
tailed characterization is largely missing. Here, we discuss a
subset (Table 1) of the large dataset of the SOA15 campaign
that is based on experiments investigating the influence and
mutual interaction of particle chemical composition and vis-
cosity shortly after SOA formation and after a residence time
of ∼ 3.5 h. Particles were formed at different temperatures
(223–296 K) and RH (< 1–61 %) conditions using both envi-
ronmental chambers available at IMK (see Fig. 1).

The AIDA (Aerosol Interaction and Dynamics in the At-
mosphere) aerosol and cloud chamber is an 84.3 m3 sized
aluminum vessel. It can be operated in the temperature range
of 183 to 333 K, pressure range of 1 to 1000 hPa, RH from
close to 0 to 200 %, and at different warming and cooling
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Table 1. Experimental conditions and precursor concentrations for the four experiments discussed in this study: CH and CD (type 1);
WDtoCH and WHtoCH (type 2). Total organic mass (Total org.), CHOI mass concentrations, and elemental oxygen to carbon (O : C) ratios
are given for t0 and t1. RH values (with respect to water) from the APC chamber were measured at room temperature (296 K).

Exp. name SOA position T (K) RH (%) α-Pinene added O3 added Total org. Total CHOI O : C
(ppm) (ppm) (µg m−3) (µg m−3)

CH AIDA 223 61.0 0.714 2.3 67.5/319.5 97.8/247.6 0.26/0.30
CD AIDA 223 6.0 0.714 2.3 260.1/440.1 110.6/160.4 0.28/0.29
WDtoCH APC→AIDA 296→ 223 < 1→ 60.6 2.2 1.8 50.9/48.5 40.7/39.3 0.34/0.34
WHtoCH APC→AIDA 296→ 223 21→ 30.3 2.2 1.8 64.2/58.4 23.4/23.3 0.36/0.37

rates (Schnaiter et al., 2016; Möhler et al., 2003; Saathoff et
al., 2009).

The APC (Aerosol Preparation and Characterization)
chamber (Möhler et al., 2008) is a 3.7 m3 sized stainless steel
vessel, situated at a distance of 3 m from AIDA and con-
nected to it with a 7 m stainless steel tube of 24 mm inner
diameter. The APC chamber can only be operated at room
temperature (296 K) and was used to prepare SOA particles
in a reproducible manner (Wagner et al., 2017).

We present two types of chamber experiments (Fig. 1): for
the first type, SOA from α-pinene ozonolysis was directly
formed at 223 K in the AIDA chamber. For the second type,
SOA was first produced in the APC chamber kept at room
temperature and then transferred to the AIDA chamber kept
at 223 K. The second type of experiment thus represents a
simplified simulation of particle formation in the boundary
layer and subsequent uplifting of particles to higher altitudes
with lower temperature conditions. We stress here that for
both types of experiments, the particles were sampled from
the cold AIDA chamber for chemical analysis. The detailed
conditions for these two types of experiments are listed in
Table 1. During the first type of chamber experiment, SOA
was formed by reaction of an excess of O3 (initially 2.3 ppm
generated by silent discharge in pure oxygen, Semozon 030.2
discharge generator, Sorbios GmbH) with α-pinene (initially
0.714 ppm, 99 %, Aldrich) in the dark AIDA chamber at
223 K at 61 % RH (experiment termed “cold humid”, CH)
or 6 % RH (experiment termed “cold dry”, CD) conditions.
For the second type of chamber experiment, SOA was first
formed with an excess of O3 (initially 1.8 ppm) and 2.2 ppm
α-pinene in the dark APC chamber at room temperature
(296 K), < 1 % RH (experiment termed “warm dry”, WD) or
21 % RH (experiment termed “warm humid”, WH) condi-
tions. After a residence time of 1–1.5 h in the APC chamber,
its pressure was increased by 5 hPa compared to AIDA, and
a fraction of the SOA particles was then transferred to the
dark AIDA chamber kept at 223 K at 61 % RH (WDtoCH) or
30 % RH (WHtoCH), respectively, resulting in particle num-
ber concentrations ranging between 1500 and 2200 cm−3 in
the AIDA chamber. No OH scavenger was used during SOA
formation, and RH was kept constant in AIDA during the
course of the experiments. The time series of total parti-

cle mass for experiment type 1 (particles formed in situ in
AIDA, CH) and experiment type 2 (aerosols formed in APC
and transferred to AIDA, WDtoCH) are shown in Fig. 2. The
times t0 (right after SOA formation in CD and CH, or SOA
transfer in WDtoCH and WHtoCH) and t1 (∼ 3.5 h later) in-
dicate the points in experiment time which were used for the
investigation of the physicochemical evolution of α-pinene
SOA.

2.2 Temperature and relative humidity measurements

Temperature (T ) in the AIDA chamber was measured by in-
house thermocouples (NiCrNi) and in-house PT 100 temper-
ature sensors with an accuracy of ±3 %, which are regularly
calibrated with reference sensors traceable to standards of the
National Institute of Standards and Technology (NIST). Un-
der static conditions, gas temperature in the AIDA chamber
deviated by less than 0.3 K in time and in space. Water vapor
concentrations in the AIDA chamber were measured by a in-
house tunable diode laser (TDL) spectrometer with an accu-
racy of ±5 % (Fahey et al., 2014; Skrotzki et al., 2013) and
by a dew point mirror hygrometer (MBW373LX, MBW Cal-
ibration Ltd.) with an accuracy of±1 % traceable to different
national metrology standards including Federal Institution of
Physical Technology (PTB), National Physical Laboratory
(NPL), Federal Office of Metrology and Surveying (BEV)
and NIST. Both instruments agree within ±2 %. RH in the
AIDA chamber was calculated using the measured water va-
por concentrations and temperature based on the saturation
water vapor pressures given by Murphy and Koop (2005),
resulting in an accuracy of ±5 %.

2.3 Particle and gas measurements

Number concentrations of SOA particles formed in APC or
AIDA were recorded with two condensation particle coun-
ters (CPC3022, CPC3010; TSI Inc.) outside the temperature-
controlled housing of the chambers via stainless steel tubes
extending 35 cm into the AIDA chamber. The absolute un-
certainty of the number concentrations is estimated to be
±20 % by comparison of the different CPCs with each other
and with an electrometer (3068, TSI Inc.). Particle size dis-
tributions were sampled in the same way from both cham-
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Figure 2. (a) Particle mass concentrations derived from SMPS size distributions (blue circles), CHOI mass concentrations measured by CIMS
(red triangles), and organic mass concentrations measured by AMS (green circles) representative of type 1 experiments (here CH), (b) rep-
resentative of type 2 experiments (here WDtoCH). Data were not wall-loss-corrected. t0 and t1 indicate points in time used for comparisons
in this study. Averaged size distributions measured by AMS at t0 (c) and (d) t1 for the four experiments.

bers with scanning mobility particle sizers (SMPS; differ-
ential mobility analyzer (DMA) 3071 connected to a CPC
3010, TSI Inc.). Mass concentrations were derived from in-
tegrated number size distributions and their conversions to
mass using their corresponding calculated particle density
(1.3–1.5 kg m−3). Particle densities were calculated using
the ratio of vacuum aerodynamic diameter (dva) measured
by a high-resolution time-of-flight aerosol mass spectrome-
ter (HR-ToF-AMS, hereafter AMS; Aerodyne Research Inc.)
and mobility diameter (dm) measured by the SMPS, assum-
ing particle sphericity (shape factor= 1). O3 concentrations
were measured by an O3 monitor (O3 41M, Environment
S.A.). The AMS was connected to the AIDA chamber by a
stainless steel tube of 1.35 m length (flow rate 0.1 L min−1,
residence time 1.6 s). It was equipped with a high-pressure
lens (HPL; Williams et al., 2013) and continuously mea-
sured total organic particle mass as a function of size (up to
2.5 µm particle dva) at a time resolution of 0.5 min. Elemen-
tal oxygen-to-carbon (O : C) and hydrogen-to-carbon (H : C)
ratios were derived using the EALight_1_06 procedure in
the AMS data analysis software package SQUIRREL (ver-
sion 1.57H; Canagaratna et al., 2015). An AMS collection
efficiency (CE) of 0.4–0.5 was used, except for the CH ex-
periment where CE was 0.7, likely due to higher particle
water content (Middlebrook et al., 2012). AMS mass con-
centrations compare well with the total mass derived from
SMPS (slopes are between 0.87 and 1.04 except for the
slope of 2.2 in the CD experiment, possibly due to the lower
transmission efficiency in the aerodynamic lens of the AMS

for sub-100 nm particles; Pearson’s correlation coefficients
are between 0.87 and 0.98 for the experiments presented
here). Individual organic compounds in both the gas and
particle phase were measured with a Filter Inlet for Gases
and AEROsols coupled to a high-resolution time-of-flight
chemical ionization mass spectrometer (FIGAERO-HR-ToF-
CIMS, Aerodyne Research Inc., hereafter CIMS) deploying
iodide ions (I−) as reagent ions (Lopez-Hilfiker et al., 2014;
Lee et al., 2014). During the gas-phase measurement, gases
were sampled via a fluorinated ethylene propylene (FEP)
tube of 0.83 m length, while particles were simultaneously
collected on a Teflon (Polytetrafluoroethylene, PTFE) filter
via a separate sampling port (stainless steel tube of 0.66 m
length, flow rate 5 L min−1, residence time 0.9 s). At regu-
lar intervals (5–20 min; see Table S1 in the Supplement), the
gas-phase measurement was switched off and particles on the
filter were desorbed by a flow of ultra-high-purity (99.999 %)
nitrogen heated from room temperature to 200 ◦C over the
course of 35 min. The resulting mass spectral signal evolu-
tions as a function of desorption temperature are termed ther-
mograms (Lopez-Hilfiker et al., 2014). Single-mode thermo-
grams of a compound with signal maxima occurring at dis-
tinct desorption temperatures (Tmax), which correlate with
the compound’s enthalpy of sublimation, can be used to in-
fer its saturation vapor pressure (Lopez-Hilfiker et al., 2015;
Mohr et al., 2017). Multi-mode thermograms indicate con-
tributions from isomers having different vapor pressures, or
thermal fragmentation of larger molecules during the heating
of the filter (Lopez-Hilfiker et al., 2015). Integration of ther-
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mograms of individual compounds yielded their total signal
in counts per deposition, which were converted to mass con-
centrations using a sensitivity of 22 counts s−1 ppt−1 (col-
lisional limit; Lopez-Hilfiker et al., 2016). For each exper-
iment, backgrounds were determined by sampling from the
AIDA chamber before adding any precursor gases. For type 2
experiments, backgrounds were negligible with initial parti-
cle number concentrations below 1 cm−3. For type 1 experi-
ments, we observed a small increase in both gas mixing ratio
and particle mass (< 0.01 µg m−3) after O3 addition, which
was subtracted from the mass loadings presented here. How-
ever, the background and the increase induced by O3 addition
were negligible compared to the increase by the SOA mass
(> 1000-fold for particle mass).

All instruments were set up at room temperature, outside
the temperature-controlled housing of AIDA. Despite inlet
insulation with Armaflex, we calculated a theoretical tem-
perature increase (Fitzer and Fritz, 1989) of ∼ 15 K for the
particle inlet of the CIMS (the FIGAERO filter was thus pre-
sumably at 238 K during deposition), and cannot entirely rule
out partial evaporation of water or semivolatile organic com-
pounds, which is taken into account in our interpretation of
results.

3 Results and discussion

3.1 Organic particle mass and size distribution

Figure 2a–b show the time series of total particle mass de-
rived from SMPS size distributions, total organic particle
mass measured by AMS, and total mass of particulate oxy-
genated hydrocarbons (Cx>1Hy>1Oz>1 detected as clustered
with I−, termed CHOI compounds) measured by CIMS for
both types of experiments. Figure 2a depicts the CH exper-
iment, representative of experiment type 1, where particles
were directly formed in AIDA. Figure 2b shows experiment
type 2, where aerosol was formed in the APC and trans-
ferred to AIDA (here the WDtoCH example; see Table 1).
Note that the data were not wall-loss-corrected. Gaps in the
AMS time series were due to filter measurements. To inves-
tigate the evolution of the SOA particles’ physicochemical
properties with time, we chose two points in time during the
experiments, t0 and t1. t0 is the first FIGAERO filter deposi-
tion from AIDA after particle formation (experiment type 1)
or particle transfer (experiment type 2), while t1 is approxi-
mately 3.5 h later. Averaged concentrations of total organics
and total CHOI compounds, elemental O : C ratios at t0 and
t1, and an overview of the experimental conditions includ-
ing temperature (T ), RH, and added precursor (α-pinene and
O3) concentrations for all experiments discussed here (WD-
toCH, WHtoCH, CH, and CD) are listed in Table 1. Particle
size distributions measured by AMS for all four experiments
at t0 and t1 are shown in Fig. 2c–d.

For SOA formed in AIDA (type 1 experiments), at t0 and
t1, mean total organic mass concentrations and mean to-
tal concentrations of CHOI compounds were in the range
of 67.5–440.1 µg m−3 and 97.8–247.6 µg m−3, respectively.
When particles were transferred from the APC chamber
(type 2 experiments), organic and CHOI mass concentra-
tions in AIDA reached values of 48.5–64.2 µg m−3 and 23.3–
40.7 µg m−3, respectively. We stress here that even though
particle mass concentrations in AIDA were higher for the
experiments of type 1 (particles formed at 223 K directly
in AIDA), the α-pinene concentration for the type 2 exper-
iments was higher by a factor of∼ 3 (Fig. 2a–b and Table 1).
This also led to larger particle sizes for the type 2 experi-
ments. Due to additional α-pinene addition between t0 and
t1 only for the CH experiment, we observed a step increase
of total particle mass for this experiment (Fig. 2a).

The discrepancies between AMS and CIMS concentra-
tions are likely due to the CIMS with I− as reagent ion being
more sensitive to more polar oxygenated organic compounds
(Lee et al., 2014), and thus only a potential subset of or-
ganic compounds are measured by CIMS. Evaporation losses
of particulate compounds during filter deposition in the FI-
GAERO may play a minor role. In addition, by using the
collisional limit for the CIMS data, we apply maximum sen-
sitivity and thus present lower limits of CHOI compounds.
The differences between the AMS- and SMPS-derived mass
concentrations in Fig. 2a are likely due to the lower trans-
mission of sub-100 nm particles in the aerodynamic lens of
the AMS used here. The AMS measured lower concentra-
tions than the SMPS at the beginning of the CH experi-
ment (Fig. 2a), when the newly formed particles were much
smaller (see Fig. 2c), compared to later in the experiment
when they had grown in size (see Fig. 2d). For the WDtoCH
experiment (Fig. 2b) with larger particles transferred from
the APC to the AIDA chamber, AMS- and SMPS-derived
mass concentrations agree very well. The slightly decreas-
ing trend observed during both experiments was due to wall
losses (Donahue et al., 2012).

3.2 Chemical characterization of SOA particles

3.2.1 Elemental oxygen-to-carbon ratios

Elemental O : C ratios were calculated using both AMS and
CIMS data. The mean AMS O : C ratios for SOA formed in
APC and AIDA were 0.34–0.36 and 0.26–0.30, respectively
(Table 1). This is representative of O : C ratios for relatively
fresh SOA measured in ambient studies (Mohr et al., 2012;
Ge et al., 2012; Canagaratna et al., 2015). For CHOI com-
pounds measured by CIMS, the calculated mean O : C ra-
tios for SOA formed in APC and AIDA were 0.59–0.66 and
0.56–0.61, respectively. The AMS O : C ratio is expected to
be lower than that of the CHOI compounds measured by io-
dide CIMS, as the latter is selective towards polar oxygenated
compounds. The potential loss of semivolatiles from the filter
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Figure 3. CIMS mass spectra (normalized to the sum of signal of all detected CHOI compounds) of experiments WDtoCH and CD (a),
WHtoCH and CD (b), and CH and CD (c) at t0. Inserts show enlarged regions of dimers (left) and trimers (right).

during FIGAERO deposition may additionally increase the
mass-averaged O : C ratio of compounds measured with this
instrument. The O : C ratios of SOA formed in the APC were
slightly higher than those formed in AIDA, likely a result
of the difference in precursor concentrations and tempera-
ture and thus partitioning behavior of semivolatile SOA com-
pounds during formation between the particles and chamber
walls. We rule out a dilution effect when transferring parti-
cles from APC to AIDA since the dilution factor was orders
of magnitude smaller than the decrease in saturation vapor
pressure due to the temperature reduction from APC (296 K)
to AIDA (223 K), and this was confirmed by the absence of

a change in particle size after transfer. For all experiments,
O : C ratios remained largely constant from t0 to t1.

3.2.2 CIMS mass spectra

Mass spectra of integrated desorptions from the CIMS are
compared for the four experiments and two points in time, t0
and t1. Mass spectra shown were normalized to the sum of
signal of all detected CHOI compounds. The corresponding
mass loadings and sampling times (particle collection on fil-
ter) for the four experiments are listed in Table S1. Figure 3a,
b, and c show a comparison of mass spectral patterns for the
experiments WDtoCH and CD, for WHtoCH and CD, and
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for CH and CD, respectively, all at t0 (the same comparisons
for t1 are to be found in Fig. S1). Overall, the mass spectral
patterns across all experimental conditions and points in time
were relatively similar. Monomers (CmHyOz compounds,
m≤ 10), dimers (CnHyOz compounds, 11≤ n≤ 20), and
even trimers (CpHyOz compounds, 21≤ p ≤ 30) clustered
with I− were observed in the mass spectra at t0 and t1 for all
occasions.

Monomers dominated the overall signal of detected
compounds, with the largest signal at m/z 327 (mainly
C10H16O4I−1 , likely hydroxy-pinonic acid clustered with I−).
As we can see from Fig. 3, relatively higher contributions
of monomers were measured at t0 for experiments WD-
toCH and WHtoCH compared to CD. The difference in rela-
tive monomer contributions for experiments CH and CD was
less distinct. At the same time, relatively larger contributions
from dimers and trimers (inserts in Fig. 3) were observed for
the experiment CD (and to a lesser extent for the CH). This
was also the case for t1 (Fig. S1).

Figure 4 shows the relative mass contributions of
monomers and adducts (this definition includes dimers,
trimers, and oligomers in general) for the four experiments
at both time points. As already observed in the mass spectral
patterns, larger relative mass contributions from monomers
were measured for the type 2 experiments (WDtoCH, WH-
toCH), and larger relative mass contributions from adducts
for the type 1 experiments (CH, CD). There was no sig-
nificant change for the relative contributions and absolute
concentrations of adducts (Fig. S2) between t0 and t1 for
type 2 experiments (WDtoCH, WHtoCH). For type 1 experi-
ments (CH and CD), absolute concentrations of monomers
and adducts (Fig. S2) increased from t0 to t1 due to the
addition of α-pinene after t0 and hence the continuing pro-
duction of oxidation products and particle mass (compare to
Fig. 2). However, the relative contributions of monomers for
type 1 experiments increased from t0 to t1, which may be
partially influenced by smaller FIGAERO sampling time and
thus less evaporation losses of semivolatiles at t1 (see Ta-
ble S1 and Supplement), but mostly by increased conden-
sation of semivolatiles or lower-molecular-weight products
with increasing particle size (compare Fig. 2c–d).

Figure 5 shows the average mass-weighted number of car-
bon atoms (numC) and oxygen atoms (numO) for CHOI
compounds for the four experiments at t0 and t1. The corre-
sponding average mass-weighted compounds’ formulae for
SOA generated in APC and AIDA were C10−12HyO6−7 and
C11−13HyO6−7, respectively. Slightly bigger numC were ob-
served for type 1 experiments (CH, CD) than type 2 experi-
ments, with the largest value for experiment CD, followed by
CH and WHtoCH. numC was smallest for WDtoCH. There
was no obvious trend for numO.

In summary, smaller particles with slightly lower O : C ra-
tios, bigger carbon numbers, and relatively more mass from
adducts were observed for type 1 experiments (CH, CD),
which had lower α-pinene concentrations and colder for-

Figure 4. Relative mass contributions of monomers and adducts
with error bars at t0 (blue) and t1 (red).

mation temperature (223 K) compared to the type 2 experi-
ments. For type 2 experiments (WDtoCH, WHtoCH), higher
α-pinene concentrations (by a factor of∼ 3) and warmer for-
mation temperature (296 K) produced larger particles with
slightly higher O : C ratios, smaller carbon numbers, and
relatively more mass from monomers. The slightly higher
O : C ratio in type 2 experiments is thus not due to big-
ger oxygen numbers, but due to smaller carbon numbers
(Fig. 5), indicating that relatively more small oxygenated
molecules were formed for type 2 experiments. This is likely
due to higher α-pinene concentrations and faster oxidation
at 296 K leading to rapid condensation of monomers, pro-
viding enough gaseous oxidation products for the equilib-
rium of semivolatiles to be shifted into the particle phase.
Type 1 experiments, on the other hand, were performed with
lower α-pinene concentrations, and particles were formed in
situ, favoring higher contributions of larger ELVOC/LVOC
compounds, especially at the early stages of particle growth
(Tröstl et al., 2016). At the same time, the low-temperature
conditions may also have shifted equilibrium to the particle
phase and led to condensation of compounds with a relatively
lower degree of oxygenation (compared to warm tempera-
ture conditions). Overall, the differences observed in mass
spectral patterns between the two types of experiments are
a consequence of both temperature and precursor concentra-
tion differences. They underline the importance of experi-
ment conditions when interpreting laboratory data or using
them for modeling.

3.3 Thermograms: variation in Tmax of SOA
compounds for different experiments

In addition to information on mass spectral patterns and mass
loadings when peaks are integrated, the FIGAERO also pro-
vides signal curves as a function of desorption temperature
(referred to as thermograms). Although Tmax can be used
to infer the compound’s saturation vapor pressure (Lopez-
Hilfiker et al., 2015; Mohr et al., 2017), evaporative behavior
and inferred volatility of a particle-bound compound are also
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Figure 5. (a) Average mass-weighted number of carbon atoms (numC) and (b) oxygen atoms (numO) with error bars at t0 (blue) and t1 (red).

Figure 6. Thermograms of monomer C10H16O4 (a) and adduct C17H26O8 (b), both clustered with I− at t0, and sum thermograms of
monomers (c) and adducts (d) at t0. Dashed lines refer to the corresponding Tmax.

influenced by the particles’ physical phase state, particle-
phase diffusivity, and viscosity (Yli-Juuti et al., 2017). Here
we show that thermograms may also be used for qualitative
information on particle viscosity.

Thermograms resulting from the thermal desorption of
deposited SOA particles from the four experiments CH,
CD, WDtoCH, and WHtoCH at both time points t0 and t1
were analyzed. Examples of the thermograms of a monomer
(C10H16O4, molecular formula corresponding to hydroxy-
pinonic acid identified by Zhang et al., 2017) and an adduct
(C17H26O8, molecular structure identified in SOA from α-
pinene ozonolysis as a cis-pinyl-diaterpenyl ester by Yas-
meen et al., 2010; molecular formula identified in SOA from
α-pinene ozonolysis by, e.g., Zhang et al., 2015; Mohr et al.,
2017), both clustered with I− at t0 are shown in Fig. 6a–b.
Figure 6c shows the sum of thermograms of all monomers,
Fig. 6d shows the sum of all adduct thermograms at t0. The
same plots for t1 can be found in Fig. S3. Thermograms

and sums of thermograms were normalized to their max-
imum values. The corresponding mass loadings and sam-
pling times (particle collection on filter) for the four ex-
periments are listed in Table S1. For experiment CD, the
C10H16O4I−1 thermograms exhibited a multi-modal shape,
indicative of contributions from isomers having different va-
por pressures, or thermal decomposition of larger molecules.
Different isomeric hydroxypinonic acids were found in α-
pinene SOA (Zhang et al., 2017) and the decomposition of
cis-pinyl-hydroxypinonyl diester could have a residue of cis-
pinic acid and 7-hydroxypinonic acid (Müller et al., 2008).
Based on previous FIGAERO data analyses (Lopez-Hilfiker
et al., 2015; D’Ambro et al., 2017; Wang et al., 2016), we
can safely presume that the first mode corresponds to the
monomer.

Figure 6a–b show that Tmax of an individual compound
varied by up to 20 ◦C, depending on experimental condi-
tions. It has been shown earlier that thermograms and cor-
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Figure 7. Tmax distribution for individual CHOI compounds of WDtoCH (a) and CD (b) experiments at t0 according to number of
oxygen atoms (numO) vs. number of carbon atoms (numC). Dashed boxes specify the compounds with nominal molecular formulae
C5−10HyO1−10I− and C15−25HyO11−20I− that had bigger Tmax differences.

responding Tmax are highly reproducible for stable condi-
tions (Lopez-Hilfiker et al., 2014). In our instrument, Tmax
varied by 2 ◦C at most for the monomer, C10H16O4, and for
another adduct, C16H24O6 (molecular formula identified in
SOA from α-pinene ozonolysis by, e.g., Zhang et al., 2015)
both clustered with I−, for six subsequent thermograms un-
der stable conditions (Fig. S4). The variation in Tmax as a
function of experiment types observed here thus indicates
that the shape of a thermogram for a given compound and
given FIGAERO configuration is not only defined by the
compound’s enthalpy of evaporation. For both C10H16O4I−1
and C17H26O8I−1 thermograms, Tmax was highest for exper-
iment CD, followed by WHtoCH, CH, and WDtoCH. Simi-
lar trends were observed for all compounds measured by the
CIMS, as shown by the sums of thermograms of all monomer
compounds (Fig. 6c), and by the sums of thermograms of all
adduct compounds (Fig. 6d). Sum Tmax of monomers and
adducts varied from 46 ◦C (experiment WDtoCH) to 74 ◦C
(experiment CH) to 93 ◦C (experiment WHtoCH) to 104 ◦C
(experiment CD).

Variation in Tmax of the sum of CHOI compounds was
larger for monomers (Fig. 6c) than for adducts (Fig. 6d).
Monomers are thus the more important contributors to the
shifts in Tmax, likely because at the higher temperatures
where adducts desorb, particle matrix effects may become
less important. Since the sum of thermograms and its Tmax is
highly influenced by compounds with large signal, we also
show a box and whisker diagram of Tmax for monomers
and adducts (Fig. S5). The median Tmax values showed
similar variation as the Tmax values based on thermogram
sums. Examples of the Tmax distribution of individual CHOI
compounds in numO vs. numC space at t0 are shown in
Fig. 7 for the WDtoCH and CD experiments. Points were
color-coded by Tmax. Compounds with nominal molecu-
lar formula C8−10HyO4−6I− were the main contributors to
mass concentrations (data not shown), and thus also aggre-
gated Tmax values. Generally, Tmax for CHOI compounds
ranged from 25 to 165 ◦C, and increased with carbon num-

bers and oxygen numbers of compounds, as is to be ex-
pected given the relationship between enthalpy of evapo-
ration and volatility of a compound (Lopez-Hilfiker et al.,
2015; Mohr et al., 2017). The comparison between WDtoCH
(Fig. 7a) and CD (Fig. 7b) experiments, however, showed dif-
ferences in Tmax values for most compounds. Tmax values, es-
pecially of many compounds with nominal molecular formu-
lae C5−10HyO1−10I− and C15−25HyO11−20I−, were higher
for the CD experiment. The similar behavior in the variation
of Tmax of most compounds measured by CIMS indicates that
Tmax is not purely a function of a compound’s vapor pressure
or volatility, but is influenced by diffusion limitations within
particles (particle viscosity; Vaden et al., 2011; Yli-Juuti et
al., 2017), interactions between particles deposited on the fil-
ter (particle matrix), and/or particle mass on the filter. In the
following we will discuss these implications in more detail.

Mass transport limitations within SOA particles, often
measured or modeled as evaporation rates of specific com-
pounds (Yli-Juuti et al., 2017; Wilson et al., 2015; Roldin et
al., 2014), have been related to the particle viscosity (Vaden
et al., 2011; Yli-Juuti et al., 2017). Particle viscosity is highly
influenced by temperature and RH (Shiraiwa et al., 2017;
Kidd et al., 2014), with higher viscosities at cool and/or dry
conditions (Shiraiwa et al., 2011). Since the temperature was
223 K in AIDA for all experiments discussed here, the ob-
served differences in Tmax, and presumed viscosity, cannot
be directly explained by differences in temperature. In ad-
dition, during desorption of compounds with the FIGAERO,
particles are actively heated (with heat transfer assumed to be
immediate), and are not evaporating under equilibrium con-
ditions. Presumed variations in particle viscosity based on
observed variations in Tmax must therefore be due to vari-
ations in particle chemical composition, and/or RH differ-
ences.

The biggest Tmax difference in Fig. 6 was between WD-
toCH and CD experiments, which was in accordance with the
largest differences in mass spectra as discussed above (see
Figs. 3a and 4). This is indicative of a relationship between
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Tmax in the thermograms and particle chemical composition.
It has been shown earlier that the chemical properties of par-
ticulate compounds influence particle viscosity (Kidd et al.,
2014; Hosny et al., 2016). Viscosity is expected to be higher
with higher oligomer content, due to inter-component hydro-
gen bonding, especially at low RH (Kidd et al., 2014). This
is in accordance with our results, which showed highest Tmax
values for the CD experiment, which also had the highest
contribution from adducts.

RH is an additional parameter that greatly influences parti-
cle viscosity (Kidd et al., 2014; Hosny et al., 2016; Renbaum-
Wolff et al., 2013). Despite the fact that the SOA particles
might be dried very quickly by the dry heated nitrogen during
particle desorption, we suppose that RH might have a “mem-
ory effect” and still influence Tmax. RH conditions during
the four experiments presented here ranged from 6 % (CD)
to 30 % (WHtoCH) to 61 % (WDtoCH and CH). Note that
these were the conditions of the measurement time in the
AIDA chamber; for WDtoCH and WHtoCH, the RH con-
ditions during SOA formation in the APC chamber were
1 and 21 %, respectively. We thus need to differentiate be-
tween RHformation and RHmeasurement. As shown in Fig. 8,
there was no trend between RHformation and Tmax, indicat-
ing that the RH during particle formation did not play an
important role in the observed viscosity variation. However,
we observed a negative correlation of RHmeasurement and Tmax
of all monomer compounds at t0, indicating that even under
low-temperature conditions of 223 K there is particle water
uptake, and an influence of RH on viscosity. Particle water
uptake thus seems to influence particle viscosity even at such
low temperature and on such short timescales (few hours).
To what extent RH and particle water uptake, or chemical
properties and adduct content, and their respective influence
on water uptake via increased hygroscopicity, contribute to
the observed differences in Tmax and presumed viscosity, we
can only speculate. In the CH and WDtoCH experiments,
RHmeasurement was ∼ 60 % for both. The adduct mass frac-
tion was only slightly higher for SOA in the CH experiment,
and so was Tmax and thus potentially particle viscosity. More
controlled studies at low temperature are needed to separate
these effects.

We also noticed that different mass loadings on the filter
due to different sampling times and/or sample concentrations
influenced the shape of thermograms and thus Tmax. Tmax in-
creased as a function of mass loading on the filter, likely due
to the increase in heat capacity of the increasing mass of the
particle matrix, and potential interactions between the parti-
cles. The dependency of Tmax on filter mass loading was not
linear, and for our FIGAERO, it reached a plateau at mass
loadings of 2–4 µg. Our results are therefore not affected by
the mass loading effect, but we recommend taking it into ac-
count in analyses that involve Tmax. A detailed discussion can
be found in the Supplement.

Figure 8. Relationship of RHformation (gray), RHmeasurement (red),
and Tmax of all CHOI monomer compounds for four experiments at
t0.

4 Conclusions and atmospheric implications

In this study, α-pinene SOA physicochemical properties
such as chemical composition, size distributions, and de-
gree of oligomerization were investigated at low temperature
(223 K) and different relative humidity (RH) using two simu-
lation chambers (APC and AIDA). Two types of experiments
were performed: for type 1 experiments, SOA was directly
generated in the AIDA chamber kept at 223 K at 61 % RH
(experiment termed “cold humid”, CH) or 6 % RH (experi-
ment termed “cold dry”, CD) conditions. For type 2 experi-
ments, SOA was formed in the APC chamber at room tem-
perature (296 K), < 1 % RH (experiment termed “warm dry”,
WD) or 21 % RH (experiment termed “warm humid”, WH)
conditions, and then partially transferred to the AIDA cham-
ber kept at 223 K at 61 % RH (WDtoCH) or 30 % RH (WH-
toCH) conditions, respectively, to simulate SOA uplifting.

For type 1 experiments (CH, CD) with lower α-pinene
concentrations and cold SOA formation temperature (223 K),
smaller particles with relatively more mass from adducts
were observed. For type 2 experiments (WDtoCH, WHtoCH)
with higher α-pinene concentrations (by a factor of ∼ 3) and
warm SOA formation temperature (296 K), larger particles
with relatively more mass from monomers were produced.
The differences observed in mass spectral patterns between
the two types of experiments are likely a consequence of both
temperature and precursor concentration differences. Higher
α-pinene concentrations and faster oxidation at 296 K dur-
ing SOA formation in the APC chamber shifted the gas–
particle equilibrium to the particles, resulting in larger mass
fractions of semivolatile and/or monomer compounds. Low-
temperature conditions in the AIDA chamber during SOA
formation on the other hand may result in condensation of
compounds with a relatively lower degree of oxygenation.
Our results show that depending on where SOA formation
takes place in the atmosphere (e.g., boundary layer or upper
troposphere), chemical properties can vary, and with it, reac-
tivity and lifetime.
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In addition to the differences in mass spectral patterns
for the different experiments, we also observed differences
in the shape of thermograms resulting from the desorption
of SOA particles collected on the FIGAERO filter: Tmax of
an individual compound in the thermograms varied by up
to 20 ◦C depending on experimental conditions, indicating
that Tmax is not only influenced by a compound’s vapor pres-
sure or volatility, but also by diffusion limitations within
the particles (particle viscosity). For both C10H16O4I−1 and
C17H26O8I−1 thermograms, Tmax was highest for experiment
CD, followed by WHtoCH, CH, and WDtoCH. We ob-
served higher Tmax for α-pinene SOA particles with higher
oligomer mass fractions, indicating the potential role of intra-
and inter-molecular hydrogen bonds between these large and
highly functionalized molecules for the increase in particle
viscosity (Kidd et al., 2014). Furthermore, Tmax was nega-
tively correlated with RH in the particle reservoir and parti-
cle water content, suggesting that hygroscopic properties and
water uptake are important factors even at such low temper-
ature. We also demonstrated an effect of mass deposited on
the FIGAERO filter on Tmax, which needs to be taken into
account for further studies relying on Tmax.

The results suggest that particle physicochemical proper-
ties such as viscosity and oligomer content mutually influ-
ence each other. More controlled experiments at low tem-
perature are needed to separate the direct effects of RH and
particle water uptake as well as chemical properties such as
adduct content (i.e., oligomer content), and the indirect ef-
fects of chemical properties on water uptake via changes
in hygroscopicity on the observed differences in Tmax and
presumed viscosity. The differences in SOA physicochemi-
cal properties observed in our set of experiments as a func-
tion of temperature, RH, and precursor conditions demon-
strate the importance of ambient and laboratory measure-
ments at a wide range of atmospherically relevant conditions,
and of taking experimental conditions into careful consider-
ation when interpreting laboratory studies or using them as
input in climate models.
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