

Supplement of

High-resolution sampling and analysis of ambient particulate matter in the Pearl River Delta region of southern China: source apportionment and health risk implications

Shengzhen Zhou et al.

Correspondence to: Xuemei Wang (eeswxm@mail.sysu.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

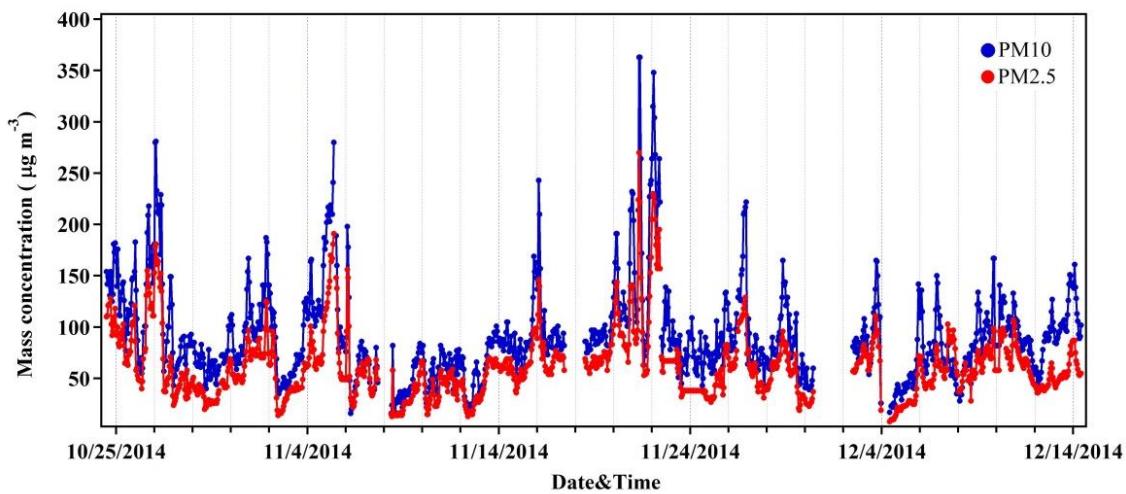
1. Foshan PM_{2.5} and PM_{2.5-10} PMF receptor modelling diagnostics

PMF analyses involve many details about the development of the data, decisions of what data to include/exclude, determination of a solution, and evaluation of robustness of that solution. The following diagnostics for the PMF solutions are reported as recommended by Paatero and co-workers (Paatero et al., 2014; Brown et al., 2015).

Summary of EPA PMF settings for receptor modelling of Foshan PM_{2.5} and PM_{2.5-10}

Parameter	Setting
Data type; averaging timeframe	PM _{2.5} , PM _{10-2.5} , Hourly
N samples	1127
N factors	6
Treatment of missing data	No missing data
Treatment of data below detection limit (BDL)	Data used as reported, no modification or censoring of BDL data
Lower limit for normalized factor contributions gik	-0.2
Robust mode	Yes
Constraints	None
Seed value	Random
N bootstraps in BS	400
r ² for BS	0.6
DISP dQmax	4, 8, 16, 32
DISP active species	SO ₂ , NO ₂ , CO, PM ₁₀ , PM _{2.5} , BC, S, Cl, K, Ca, V, Cr, Fe, Ni, Zn, As, Pb, Al-C, Si-C, S-C, Cl-C, K-C, Ca-C, Fe-C
N bootstraps; r ² for BS in BS-DISP	400; 0.6
BS-DISP active species	BC, S, Cl, K, Ca, V, Cr, Fe, Ni, Zn, As, Pb, Al-C, Si-C, S-C, Cl-C, K-C, Ca-C, Fe-C
BS-DISP dQmax	0.5, 1, 2, 4
Extra modelling uncertainty	15%

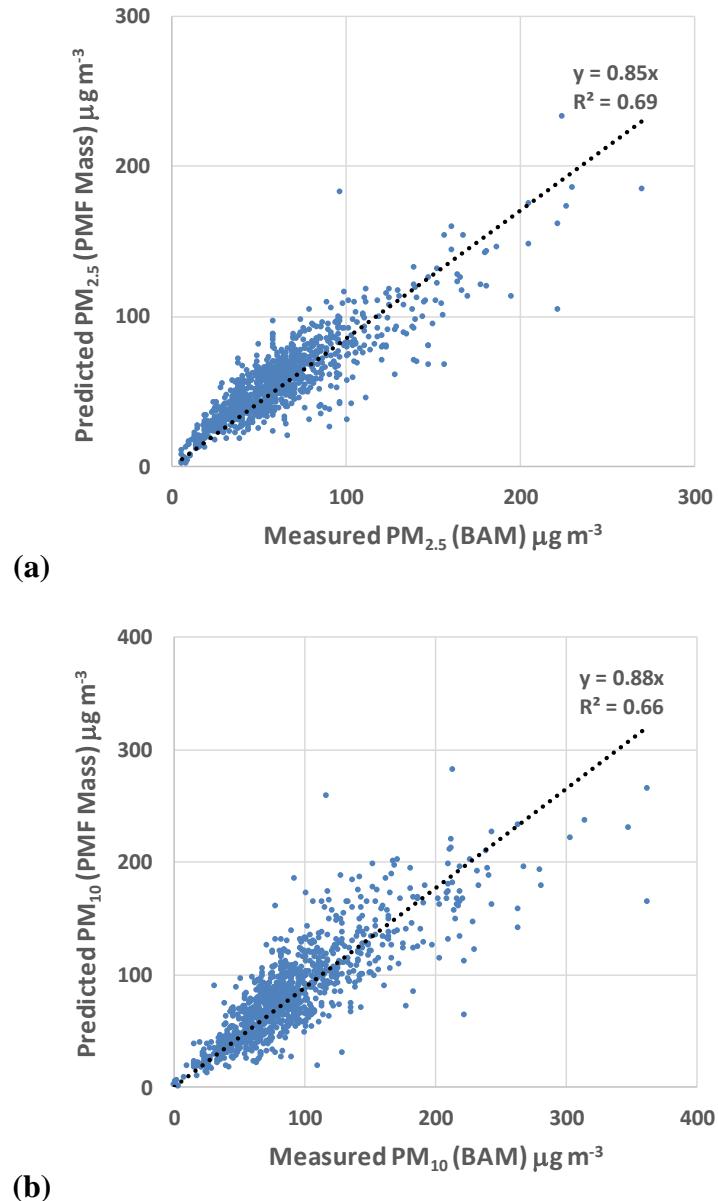
Output diagnostics for receptor modelling of Foshan PM_{2.5} and PM_{2.5-10}

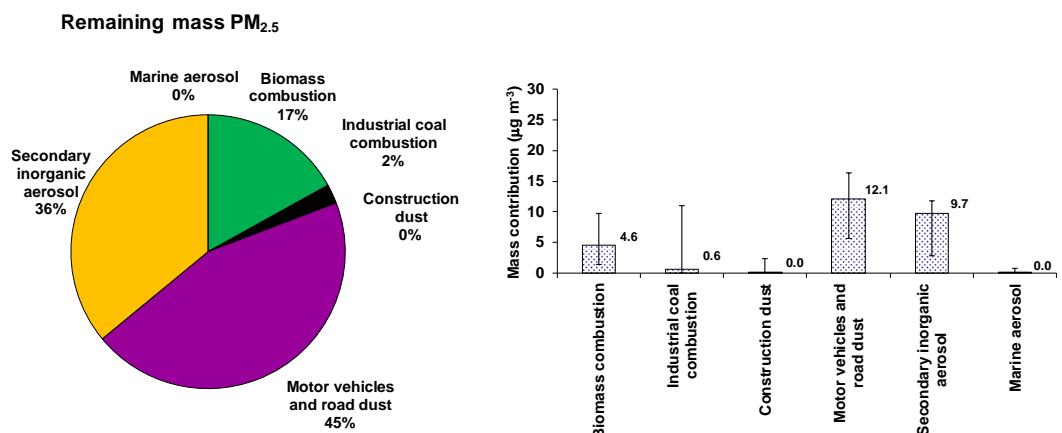

Diagnostic	6 factors
Q _{Theoretical}	23625
Q _{Expected}	21225
Q _{true}	15594
Q _{robust}	15589
Q _{robust} /Q _{expected}	0.735
DISP Diagnostics:	
Error code	0
Largest decrease in Q	0
DISP % dQ	0
DISP swaps by factor	0
BS-DISP Diagnostics:	
BS mapping (Fpeak BS – Unmapped)	92% (99% – 0)
BS-DISP % cases accepted	89%
Largest Decrease in Q:	-39.98
BS-DISP % dQ(Robust)	-0.26
[BS-FPEAK (Strength = -3, %DQ(Robust)]	[2.91]
# of Decreases in Q:	43
# of Swaps in Best Fit:	0
# of Swaps in DISP:	2
BS-DISP swaps by factor	0

References:

Brown, S. G., Eberly, S., Paatero, P., and Norris, G. A.: Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results, *Science of the Total Environment*, 518-519, 626-635, 10.1016/j.scitotenv.2015.01.022, 2015.

Paatero, P., Eberly, S., Brown, S. G., and Norris, G. A.: Methods for estimating uncertainty in factor analytic solutions, *Atmos. Meas. Tech.*, 7, 781-797, 10.5194/amt-7-781-2014, 2014.


2. Figures


Figure S1. The hourly variations of PM_{2.5} and PM₁₀ mass concentrations during the observation.

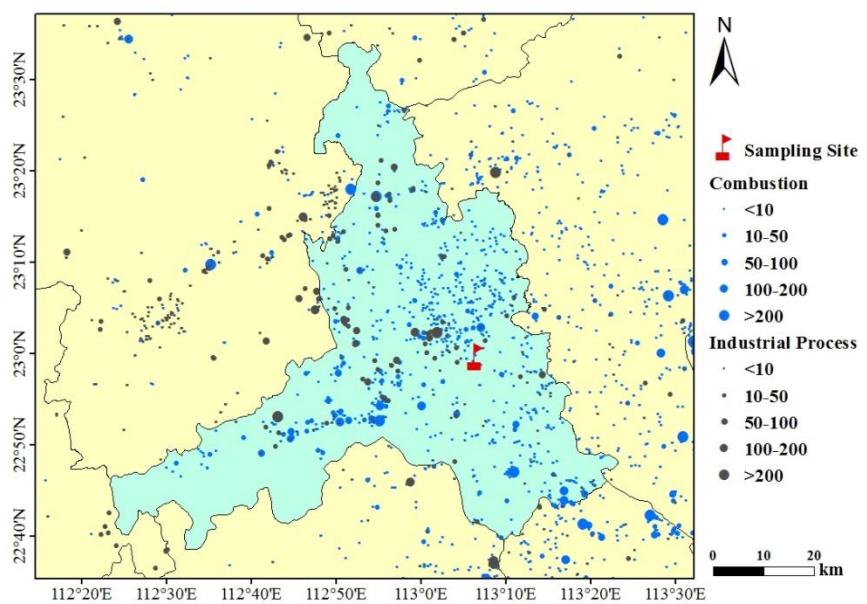

Figure S2. Geographical distribution of fires from November 1 to 31, 2014 over southern China (<https://firms.modaps.eosdis.nasa.gov/firemap/>).

Figure S3. (a) Plot of Foshan PM_{2.5} predicted (PMF mass) against observed PM_{2.5} mass; (b) Plot of Foshan PM₁₀ predicted (PMF mass) against observed PM₁₀ mass.

Figure S4. Source contributions to RMPM_{2.5} at Foshan showing the average concentrations of RMPM_{2.5} (in $\mu\text{g m}^{-3}$) during the monitoring period

Figure S5. Location of PM_{2.5} industrial process and combustion sources in Foshan at the year of 2012 (emissions inventory data in tonnes yr⁻¹ from Yin et al.(2017)).