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S1. KORUS-AQ Overview 34 

Table S1. List of NASA DC-8 research flights and date of take-off. Unless noted, the take-off 35 
dates are different than the local dates since the data was recorded in UTC. We document the 36 
research flights with the UTC dates to correspond with the data repository (Aknan and Chen, 37 
2018). 38 

Research Flight 
Number 

Date of Take-off Regions Sampled Number of Seoul 
Missed Approaches 

01 01/May/2016 Jeju jetway (×2) 3 
02 03/May/2016 Yellow Sea, Jeju jetway 3 
03 04/May/2016 Jeju jetway 2 
04 06/May/2016 Busan jetway (×2) 3 
05 10/May/2016 Jeju jetway, otherb 2 
06 11/May/2016 Yellow Sea, otherc 3 
07 12/May/2016 Yellow Sea, otherd 0 
08 16/May/2016 Jeju jetway, Busan jetway 3 
09 17/May/2016 Yellow Sea, Busan jetway 3 
10 19/May/2016 Busan jetway (×2) 3 
11 21/May/2016 Yellow Sea 3 
12 24/May/2016 Yellow Sea 2 
13 26/May/2016a Jeju Jetway 2 
14 29/May/2016 Yellow Sea, Busan jetway 4 
15 30/May/2016 Yellow Sea, Jeju jetway 3 
16 01/June/2016 Busan jetway, Jeju jetway 3 
17 02/June/2016 Busan jetway, Jeju jetway 3 
18 04/June/2016 Yellow Sea, othere 5 
19 08/June/2016 Busan jetway (×2) 3 
20 09/June/2016 Jeju jetway, otherb 2 

aFor RF13, the DC-8 took-off after 00:00 UTC, corresponding to the date in local time and UTC 39 
time being the same. 40 
bThe DC-8 sampled south of the Korean peninsula. 41 
cThe DC-8 sampled east of Seoul to the Sea of Japan. 42 
dThe DC-8 sampled the Sea of Japan. 43 
eThe DC-8 remained in the greater Seoul area to sample point sources. 44 
 45 
Table S2. Description of the geographical locations used in Figure 1 and throughout the text, and 46 
shown in Figure S1.. 47 

Location Lat Min (°N) Lat Max (°N) Lon Min (°E) Lon Max (°E) 
Seoul 36.8 37.6 124.6a 128.0 
Yellow Sea   124.0 126.0 
Jeju jetway 34.2 36.8 126 127 
Busan jetway 35.2 36.8 128.6 129.9 

aThis value was chosen to include the Seoul outflow observed during RF11 and RF18. 48 
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. 49 

 50 

Figure S1. Geographical regions shown in SI Table 1. Note, the Seoul box is extended into the 51 
Yellow Sea to capture the outflow of Seoul emissions for two flights (RF11 and RF18). 52 
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S2. CU-AMS Sampling and Calibration 54 

 After almost every flight, the ionization efficiency (IE) was calibrated (Figure S3) using 55 

the single particle technique. Briefly, air containing 150 – 250 particles/cm3 of NH4NO3, of 400 56 

nm (mobility diameter, sized with a differential mobility analyzer, TSI model 3080, that was 57 

installed in the same rack as the CU-AMS) was sampled by the AMS. Thresholds of 4 (m/z 30) or 58 

3 (m/z 46) ions per event were selected to produce a low, but detectable background (typically ~7 59 

events/cm3 background). An event would be recorded, after evaporation and ionization of NH4NO3 60 

particle, if at least 4 (m/z 30) or 3 (m/z 46) ions were observed. These values were analyzed using 61 

the ToF AMS Ionization Efficiency Calibration Panel for ET, v1.0.5F 62 

(http://cires1.colorado.edu/jimenez-63 

group/ToFAMSResources/ToFSoftware/index.html#ToF_IE_Cal), to process the data and 64 

calculate IE and IE/AB (AB is air beam). Typical values during KORUS-AQ, for 400 nm (mobility 65 

diameter) NH4NO3 calibrations were the following: 10 baseline segments and minimum and 66 

maximum ions per particle values of 1 and 200. During KORUS-AQ, the average IE/AB was 67 

8.10(±0.64)×10‒13 ions/molecule of nitrate, which leads to an overall 10% variability for this value 68 

during the whole campaign. Further details about using single particle technique for IE/AB 69 

calibrations can be found in Nault et al. (2016). 70 

 These IE calibrations also provided relative ionization efficiency (RIE) calibrations of NH4 71 

after nearly every flight, as well (Figure S3), along with the NO+ and NO2+ ratios of ammonium 72 

nitrate, which are useful to estimate particle organic nitrate concentrations, as detailed in Fry et al. 73 

(2013). The SO4 and Chl RIEs were measured about once every week, and the interpolated values 74 

were used for the SO4 and Chl concentrations. For the organic aerosol, we used an RIE of 1.4 75 

(Jimenez et al., 2016; Xu et al., 2018). Finally, to test the effects of solution mixtures on RIE for 76 

http://cires1.colorado.edu/jimenez-group/ToFAMSResources/ToFSoftware/index.html#ToF_IE_Cal
http://cires1.colorado.edu/jimenez-group/ToFAMSResources/ToFSoftware/index.html#ToF_IE_Cal
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SO4 and NH4, we made calibration solutions ranging from 0 – 100% NH4NO3, with the balance 77 

coming from (NH4)2SO4. We find no effects, both on the calculated NH4 balance (Figure S6), 78 

when using the NH4 and SO4 RIE’s from the pure calibration, and on the recalculated NH4 (SO4) 79 

RIE when keeping a constant SO4 (NH4) RIE from the pure calibrations (Figure S6). The 80 

consistency in the NH4 balance, as observed in prior studies (Docherty et al., 2011; Jimenez et al., 81 

2016), and the high precision (3% precision in all calculations) provides further confidence in the 82 

stability of the RIEs for the species in calculating their mass in mixed particles, and indicates that 83 

there are no effects on the RIE with changing composition, and, thus, CE (Jimenez et al., 2016). 84 

 Also, the IE calibrations performed after each flight provided an opportunity to calculate 85 

the effect of pNO3 on producing a small artifact CO2+ signal, as detailed in Pieber et al. (2016), 86 

and of pNO3 on producing small artifact HCl+ and Cl+ signal, as detailed in Hu et al. (2017a) 87 

(Figure S3). The CU-AMS data has been corrected for these small effects. The corrections were 88 

typically 1% of CO2+ and 0.8% Chl. 89 

 Three different lens transmission calibrations to characterize the high end of the AMS 90 

transmission curve were performed: (1) comparing the NH4NO3 mass measured with the CPC and 91 

the CU-AMS between 200 – 450 nm (mobility diameter, dm); (2) comparing the number of 92 

particles measured with the CPC and the CU-AMS between 300 – 450 nm (dm) using the single 93 

particle vaporization technique detailed above; and (3) comparing the (NH4)2SO4 mass measured 94 

with the CPC and the CU-AMS between 250 – 450 nm (dm), normalizing to the value at 250 nm. 95 

The NH4NO3 diameters were converted to vacuum aerodynamic diameters (dva), as discussed in 96 

DeCarlo et al. (2004). As seen in Figure S4, both techniques show good agreement for the particle 97 

transmission, and this transmission is similar to the recommended transmission curve in the 98 

literature (Knote et al., 2011; Hu et al., 2017b). For this curve, it is assumed that the transmission 99 
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linearly increases from 0 – 100% between 40 – 100 nm (dva) (Zhang et al., 2004), remains 100% 100 

between 100 – 550 nm (aerodynamic diameter), and decreases linearly from 100 – 0% between 101 

550 nm – 1500 nm (dva). This leads to a 50% cut-off of ~900 nm (dva) during KORUS-AQ.  102 

 The particle sizing in the AMS Particle Time-of-Flight (PToF) mode was calibrated with 103 

PSLs, ranging from 70 – 700 nm (geometric diameter) (Figure S5). This calibration was compared 104 

against the velocities calculated from data collected during the NH4NO3 lens transmission 105 

measurements. As seen in Figure S5, these two different methods to calibrate the PToF velocity 106 

show comparable results, falling within the 95% confidence interval of the PSL calibration. The 107 

fact that both PToF calibrations agree, and that the SMPS used for the AN calibrations showed 108 

less than 2 nm deviation from the nominal PSLs diameters at all sizes increases our confidence in 109 

accuracy of the IE calibration described above, and in particular on lack of evaporation of NH4NO3 110 

after its size selection in the DMA.  111 

 Finally, the vaporizer power, and thus, temperature, was calibrated by using monodisperse 112 

NaNO3 particles of dm = 350 nm (Figure S8), as recommended by Williams (2010) and Hu et al. 113 

(2017b). This method is more accurate than relying on the temperature reported by the 114 

thermocouple on the AMS vaporizer, which can often be unreliable (Williams, 2010; Hu et al., 115 

2017b). The general idea is to increase the vaporizer power between ~1 – 7 W and locate where 116 

the NaNO3 full-width half maximum nearly remains constant, indicating that the vaporizer 117 

temperature is ~600°C and allowing for maximum peaks in OA, pNO3, and SO4 while minimizing 118 

the influence of refractory species (Williams, 2010; Hu et al., 2017b).  119 
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 120 

Figure S2. Example time series of the CU-AMS sampling scheme during KORUS-AQ. Though 121 
the final 8 s of each minute are dedicated to ePToF, some of the time is ued by the computer in 122 
saving the 6 s of closed and 46 s of open signal and ePToF signal; therefore, only 3 – 5 s of ePToF 123 
signal is actually recorded. The approximate saving time are shown as white spaces. 124 

 125 
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 126 

Figure S3. Time series of the (a) the Single Ion (SI) at take-off for each flight; (b) the air beam 127 
(AB, dark grey), ionization energy (IE, light grey), and IE/AB (middle grey) for each calibration; 128 
(c) the relative ionization energies (RIE) for ammonium (NH4), sulfate (SO4), and chloride (Chl) 129 
for each calibration; (d) the ratios of different ions for each calibration; and, (e) measured artifact 130 
signal ratios for CO2+/pNO3 “Pieber effect” (Pieber et al., 2016) and (Cl+ + HCl+)/pNO3 “Hu 131 
efffect” (Hu et al., 2017a) effects from each calibration. 132 
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 133 

Figure S4. Measured transmission percentage of ammonium nitrate and ammonium sulfate versus 134 
vacuum aerodynamic diameters (nm) during KORUS-AQ. The green dashed-line is the expected 135 
transmission curve for the CU-AMS from the literature (Knote et al., 2011; Hu et al., 2017b). The 136 
black data represents the ammonium nitrate transmission curve using mass closure, from an 137 
experiment conducted on 09/May/2016. The blue data represents the ammonium nitrate 138 
transmission curve using single particle (“event trigger”) number closure, from an experiment 139 
conducted on 17May/2016. The red data represents the ammonium sulfate transmission curve 140 
using mass, from an experiment conducted on 06/May/2016. Finally, the error bars represent 1σ 141 
variability for the transmission at each size. 142 

 143 
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 144 

Figure S5. Particle velocity (m/s) inside the AMS vacuum chamber (after exiting the aerodynamic 145 
lens) versus vacuum aerodynamic diameter (nm) calibrations for the ePToF mode, using PSLs 146 
(black). Solid red line is the fit to the PSLs. The ammonium nitrate measured for the mass closure 147 
transmission curves (Figure S4) for comparison to the PSL values. 148 
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 149 

Figure S6. Ratio of measured and predicted NH4 from anions versus ratio of nitrate to sulfate 150 
mass. Red points are from Docherty et al. (2011), grey triangles are deciles of the data from 151 
Docherty et al., and blue points are measurements from calibration solutions of varying mixtures 152 
of NH4NO3 and (NH4)2SO4. Such consistency would be unexpected if a major fraction of the 153 
particle NH4+ evaporated as intact salts, as suggested by Murphy (2016) (Hu et al., 2017b) . 154 

 155 
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 156 

Figure S7. (a) Plot of NH4 RIE, keeping SO4 RIE constant, versus the molar fraction of pNO3 157 
measured in the solution, for calibration solutions of varying mixtures of NH4NO3 and (NH4)2SO4. 158 
(b) Same as (a), but for SO4 RIE and keeping NH4 RIE constant. For both figures, the black dots 159 
are the values from the calibrations, the thick red line is the average of all the values, and the 160 
shaded red area is ±1σ.  161 
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 162 

Figure S8. (a) Full-width half-maximum (FWHM) of NaNO3 size distributions in PToF mode (b) 163 
vs. different vaporizer power inputs. See text for further details. 164 

  165 
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S3. Application of Positive Matrix Factorization (PMF) 166 

Positive matrix factorization analysis (PMF, performed using the CU-Boulder PMF 167 

Evaluation Tool PET-Panel v3.00A, http://cires1.colorado.edu/jimenez-168 

group/wiki/index.php/PMF-AMS_Analysis_Guide#PMF_Evaluation_Tool_Software) (Ulbrich 169 

et al., 2009) was used to apportion the total OA aerosol into several components. PMF was run on 170 

the combined CU-AMS 1 min organic ion matrix for all RFs together during KORUS-AQ. A 6-171 

factor solution was derived with an FPEAK value of 0. Based on comparisons with reference mass 172 

spectra from the AMS high-resolution spectral database (http://cires1.colorado.edu/jimenez-173 

group/HRAMSsd/#Ambient), comparisons of time series (Figure S9), and correlations with other 174 

trace species (Figure S11), the factors were recombined into more-oxidized, oxidized organic 175 

aerosol (MO-OOA), less-oxidized, oxidized aerosol (LO-OOA), and hydrocarbon-like organic 176 

aerosol (HOA) (Figure S10). HOA correlated with primary emissions (e.g., NOx, various 177 

hydrocarbons) whereas LO-OOA and MO-OOA correlated with secondary photochemical 178 

products (e.g., CH2O, PAN, pNO3, SO4). Here, primary OA is defined as the HOA factor and total 179 

oxidized OA (OOA) as the LO-OOA plus MO-OOA factors. OOA is assumed to be dominantly 180 

composed of secondary organic aerosol, which is supported by its strong correlation with other 181 

secondary photochemical products as documented in the paper, as well as by many prior studies 182 

(e.g., Jimenez et al., 2009; and references therein). 183 

 184 

http://cires1.colorado.edu/jimenez-group/wiki/index.php/PMF-AMS_Analysis_Guide#PMF_Evaluation_Tool_Software
http://cires1.colorado.edu/jimenez-group/wiki/index.php/PMF-AMS_Analysis_Guide#PMF_Evaluation_Tool_Software
http://cires1.colorado.edu/jimenez-group/HRAMSsd/#Ambient
http://cires1.colorado.edu/jimenez-group/HRAMSsd/#Ambient
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 185 

Figure S9. Example time series of the 3 PMF ((a) HOA, (b) LO-OOA, and (c) MO-OOA) results 186 
(left axes) and some species that correlate with the corresponding PMF results (right axes) from 187 
RF14. The morning and afternoon overpasses over Seoul, South Korea, are shown. 188 

 189 
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 190 

Figure S10. Mass spectra for PMF solution (a) HOA, (b) LO-OOA, and (c) MO-OOA for all of 191 
KORUS-AQ. 192 
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 193 

Figure S11. Pearson correlation coefficients for HOA (grey, top), LO-OOA (light pink, middle), 194 
and MO-OOA (dark pink, bottom) factors versus species listed in x-axis. The background colors 195 
represent the dominant group of sources of the correlating species. The yellow in the far right 196 
indicates other PM1 components measured by the CU-AMS. 197 

  198 
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S4.  Oxidation Flow Reactor (OFR) Sampling 199 

 200 

Figure S12. Schematic of the OFR sampling during KORUS-AQ. UV lamp is represented by the 201 
purple light in the OFR. Size and type of tubing is represented in figure, where ID is internal 202 
diameter and SS is stainless steel. Tubing distances were always as short as feasible and often 203 
shorter than represented, but they are stretched in this drawing for clarity 204 
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 205 

Figure S13. 3D rendition of the computer model of the ½” press fitted stainless steel inlet, coated 206 
in SilcoNert (SilcoTek Co, Bellefonte, PA), used in the inlet of the OFR during KORUS-AQ, to 207 
avoid “short-circuiting” between the inlet and outlet of the OFR. 208 

 209 

Figure S14. (left) Measured OHexp from the decay of CO in ambient air (measured by the DACOM 210 
instrument, see text) and OFR output air (measured by the Picarro instrument) and (right) measured 211 
OHexp from the decay of CO from a calibration cylinder versus calculated OHexp using the 212 
predictive expression in Peng et al. (2015). The calibration factor determined by this analysis was 213 
similar to past studies (Palm et al., 2016) and was applied to all data shown in this paper. 214 

 215 
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 216 

Figure S15. (left) Frequency distribution of water vapor below 2 km during KORUS-AQ. (right) 217 
Normalized histogram of measured OH reactivity (OHR) below 2 km during KORUS-AQ. 218 

 219 

 220 

Figure S16. Frequency distribution of the ambient (black), OFR (blue), and difference between 221 
OFR and ambient temperature (grey) (°C). Vertical lines show the mean (long-dashed) and median 222 
(short-dashed) temperatures for the ambient, OFR, and difference between the two. 223 
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 224 

Figure S17. Comparison of organic (green), sulfate (red), nitrate (blue), and ammonium (orange) 225 
aerosol sampled through the OFR, with lights off, versus ambient aerosol. Under these conditions 226 
the OFR is just acting as a thermal denuder (e.g. Huffman et al., 2009), leading to evaporation of 227 
some aerosols due to increased temperature in the aircraft cabin vs. outside. In addition, small 228 
particle losses in lines and the OFR are observed for sulfate, which is generally non-volatile. See 229 
text for further details and discussion. 230 

 231 
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 232 

Figure S18. (a) Scatter plot of OFR SO4 Enhancement (OFR ‒ Ambient) versus calculated SO4 233 
produced, using SO2 observations, estimated OHexp, and condensation fate correction. (b) Time 234 
series of OFR SO4 (black squares), ambient SO4 (light grey), and calculated SO4 (dark red) for the 235 
RF11 flight.  236 

Analysis of CS Values for KORUS-AQ 237 

If we used the condensational sink from just the ambient data, which neglects the added particle 238 

surface area formed in the OFR as described in Section 2.4 and Eq. 1 (Ortega et al., 2016; Palm et 239 

al., 2016, 2017, 2018), the agreement between calculated and measured SO4 enhancement 240 

decreases to a slope of 0.74 (R2 = 0.28), indicating that the condensational sink is likely too low. 241 

This suggests that, to first order, the aerosol surface area, estimated from observations and Eq. 1 242 

(in the main paper), provides a reasonable estimate of the condensational sink within the OFR 243 

during KORUS-AQ.  Thus, similar to other studies (Ortega et al., 2016; Palm et al., 2016, 2017, 244 

2018), we find, at the typical OHexp in the OFR, that 50 – 60% of the oxidized condensable organic 245 

gases are condensing onto aerosol, with 20 – 25% undergoing further reactions with OH leading 246 

to highly volatile compounds, 8 – 13% exiting the OFR prior to condensing on aerosol, and 12% 247 
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condensing to the wall (Figure S19). Note that the further reactions with OH are not relevant for 248 

H2SO4, and thus they have not been included in the analysis shown in in Fig. SI-18. 249 

 250 

Figure S19. (a) Observed normalized frequency and cumulative frequency of OH Exposure 251 
observed during KORUS-AQ in the OFR. (b) Calculated fate of the SO2 oxidized in the OFR 252 
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versus OFR OH Exposure. (c) Calculated fate of low-volatility condensable vapors (formed from 253 
VOC oxidation) versus OFR OH Exposure. For (b) and (c), the losses include flowing through the 254 
OFR without condensing onto aerosol (black), condensing onto the wall (red), condensing onto 255 
the aerosol (assuming a median value of 85.8 s, green), and reacting with OH enough to make it 256 
too volatile to condense onto aerosol (blue). 257 

  258 
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S5. Calculation of Photochemical Age over Seoul, South Korea 259 

 The photochemical clock calculations used throughout this work are described here. The 260 

rate constants used for these clocks are located in SI Table 3. For the NOx/NOy photochemical 261 

clock (e.g., Kleinman et al., 2007) (herein referred to as the NOx photochemical clock), Eq. S1 is 262 

used, with the updated rate constant from Mollner et al. (2010). 263 

𝑡𝑡 =
𝑙𝑙𝑛𝑛�𝑁𝑁𝑂𝑂𝑥𝑥𝑁𝑁𝑂𝑂𝑦𝑦

�

𝑘𝑘𝑂𝑂𝑂𝑂+𝑁𝑁𝑂𝑂2[𝑂𝑂𝑂𝑂]          (S1)  264 

where t is the time, in days, [OH] is assumed to be 1.5×106 molecules/cm3 (for standarization), 265 

and NOx and NOy are the chemiluminescence measurements. The NOx clock is used for 266 

photochemical ages less than 1 day to (1) reduce the effect of loss of HNO3 and other oxidized 267 

reservoirs due to deposition (lifetime ~6 hours) (Neuman et al., 2004; Nguyen et al., 2015; Romer 268 

et al., 2016) and (2) to ensure that t was still sensitive (and precise) to the NOx and NOy 269 

concentrations (~20% of NOx still remaining at t = 1 day). 270 

 For the aromatic photochemical clock over Seoul, the more reactive aromatics 271 

(ethylbenzene in the denominator) are utilized, which should be more sensitive to the short 272 

photochemical aging observed over Seoul (Parrish et al., 2007), along with Eq. SS2. 273 

𝑡𝑡 = − 1
[𝑂𝑂𝑂𝑂]×�𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑖𝑖−𝑘𝑘𝑒𝑒𝑒𝑒ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦�

× �𝑙𝑙𝑙𝑙 � 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑖𝑖(𝑡𝑡)
𝑒𝑒𝑒𝑒ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑡𝑡)

� − 𝑙𝑙𝑙𝑙 � 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑖𝑖(0)
𝑒𝑒𝑒𝑒ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(0)

��  (S2) 274 

where t is the time, in hours, the k’s are the corresponding OH rate constants for each aromatic 275 

compound (SI Table 3), and the third term (ln � aromatic𝑖𝑖(0)
ethylbenzene(0)

�) corresponds to the emission ratios 276 

for those two aromatic compounds. Similar to the NOx clock, we assume [OH] = 1.5×106 277 

molecules/cm3 for standardization. The aromatics measurements used in this calculation are from 278 

WAS. 279 
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 To evaluate which aromatic compounds to use in the clock, the behavior of the ratios of 280 

each aromatic compound with ethylbenzene versus the three missed approaches (morning, noon, 281 

and afternoon) over Seoul during KORUS-AQ (Figure S20) are compared. The idea is that if the 282 

2 aromatic compounds are co-emitted, the ratios should be removed proportionally to their OH 283 

rate constants. E.g. for faster reacting compounds (e.g., o-xylene), the ratio to ethylbenzene should 284 

decrease with time as more o-xylene was consumed, compared to ethylbenzene, by OH (de Gouw 285 

et al., 2017). On the other hand, for slower reacting compounds (e.g., toluene), the ratio to 286 

ethylbenzene should increase with time as more ethylbenzene was consumed by OH. Also, this 287 

analysis provides an indication of which ratios would provide meaningful results throughout the 288 

entire day (de Gouw et al., 2017). Ideally, there should be a decrease with each later missed 289 

approach, and not a leveling off after two missed approaches (e.g., the trimethylbenzenes and 290 

ethyltoluenes). Only the m+p-xylene/ethylbenzene and o-xylene/ethylbenzene ratios meet this 291 

criterion. Finally, to determine the emission ratios, we calculated what the m+p-292 

xylene/ethylbenzene and o-xylene/ethylbenzene ratio was for observations where the NOx 293 

photochemical was less than 0.07 days (corresponding to less than 10% of either species being 294 

consumed). Comparing these two aromatic clocks to the NOx photochemical clock (Figure S21), 295 

a similar agreement between the two aromatic clocks with the NOx photochemical clock was 296 

observed, providing confidence in using all three clocks to calculate photochemical age to evaluate 297 

OA production over Seoul. For the remainder of the paper, we mainly use the NOx photochemical 298 

clock to eliminate the uncertainty of the emission ratios, unless otherwise noted. 299 

 Finally, for observations over the Yellow Sea, the aromatic clock (Eq. SS2) was used, but 300 

benzene and toluene were used since these air masses are more photochemically processed (Parrish 301 

et al., 2007). For the emission ratios, values reported by Yuan et al (2013) were used.  302 
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 303 

 304 

Figure S20. Comparison of various aromatic compounds/ethylbenzene ratios sampled over Seoul, 305 
South Korea, during KORUS-AQ. The ratios are normalized by the morning ratios.  306 
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 307 

Figure S21. Binned scatter plot of the aromatic photochemical clock ages versus NOx 308 
photochemical clock ages for all observations over Seoul. All ages are normalized to OH = 1.5×106 309 
molecules/cm3.  310 
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Table S3. Rate constants used throughout this study. Unless noted otherwise, rate constants 311 
without temperature dependence only have a value measured at 298 K. 312 

Reaction Rate Constant (cm3/molecules/s) Reference 
Inorganic   
CO 2.28×10‒13,a Sander et al. (2011) 
NO2 1.23×10−11,a Mollner et al. (2010) 
SO2 8.94×10−13,a Atkinson et al. (2004) 
Alkanes   
Ethane 6.9×10‒12×exp(‒1000/T) Atkinson et al. (2006) 
Propane 7.6×10‒12×exp(‒585/T) Atkinson et al. (2006) 
n-Butane 9.8×10‒12×exp(‒425/T) Atkinson et al. (2006) 
i-Butane 1.17×10‒17×T2×exp(213/T) Atkinson (2003) 
n-Pentane 2.52×10‒17×T2×exp(158/T) Atkinson (2003) 
i-Pentane 3.6×10‒12 Atkinson (2003) 
n-Hexane 2.54×10‒14×T×exp(‒112/T) Atkinson (2003) 
Methyl-cyclopentane 7.65×10−12 Sprengnether et al. (2009) 
Cyclohexane 3.26×10−17×T2×exp(262/T) Atkinson (2003) 
Methyl-cyclohexane 9.43×10−12 Sprengnether et al. (2009) 
n-Heptane 1.95×10−17×T2×exp(406/T) Atkinson (2003) 
n-Octane 2.72×10−17×T2×exp(361/T) Atkinson (2003) 
n-Nonane 2.53×10−17×T2×exp(436/T) Atkinson (2003) 
n-Decane 3.17×10−17×T2×exp(406/T) Atkinson (2003) 
Alkenes   
Ethylene 7.84×10−12,a Atkinson et al. (2006) 
Propene 2.86×10−11,a Atkinson et al. (2006) 
1-butene 6.6×10−12×exp(465/T) Atkinson et al. (2006) 
i-butene 9.4×10−12×exp(505/T) Atkinson et al. (2006) 
cis-butene 1.1×10−11×exp(485/T) Atkinson et al. (2006) 
trans-butene 1.0×10−11×exp(553/T) Atkinson et al. (2006) 
1,3-butadiene 1.48×10−11×exp(448/T) Atkinson and Arey (2003) 
Aromatics   
Benzene 2.3×10−12×exp(−190/T) Atkinson et al. (2006) 
Toluene 1.8×10−12×exp(340/T) Atkinson et al. (2006) 
Ethylbenzene 7×10−12 Atkinson and Arey (2003) 
Isopropylbenzene 6.3×10−12 Atkinson and Arey (2003) 
n-propylbenzene 5.8×10−12 Atkinson and Arey (2003) 
Styrene 5.8×10−11 Atkinson and Arey (2003) 
m+p-xylene 1.87×10−11,b Atkinson and Arey (2003) 
o-xylene 1.36×10−11 Atkinson and Arey (2003) 
1,3,5-trimethylbenzene 1.32×10−11×exp(450/T) Bohn and Zetzsch (2012) 
1,2,3-trimethylbenzene 3.61×10−12×exp(620/T) Bohn and Zetzsch (2012) 
1,2,4-trimethylbenzene 2.73×10−12×exp(730/T) Bohn and Zetzsch (2012) 
3-Ethyltoluene 1.2×10‒11 Atkinson and Arey (2003) 
4-Ethyltoluene 1.2×10‒11 Atkinson and Arey (2003) 
S/IVOCs   
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S/IVOC 2×10−11 Ma et al. (2017) 
Biogenics   
Isoprene 2.7×10‒11×exp(390/T) Atkinson et al. (2006) 
α-pinene 1.2×10−11×exp(440/T) Atkinson et al. (2006) 
β-pinene 1.55×10−11×exp(467/T) Atkinson and Arey (2003) 
Radicals   
NO + RO2 2.8×10‒12×exp(300/T) Sander et al. (2011) 
HO2 + RO2 4.1×10‒13×exp(750/T) Sander et al. (2011) 
RO2 + RO2 9.5×10‒14×exp(390/T) Sander et al. (2011) 

aShowing the rate constant at 298 K, 1013 hPa. However, for this study, we used the temperature 313 
and pressure dependent formulation listed in each respective reference. 314 
bThis is the average of m-xylene and p-xylene rate constants. 315 
 316 

S6. Potential SOA Calculations 317 

 To determine the amount of SOA produced from the observed precursors, Eq. S3 was used, 318 

where Y is the stoichiometric aerosol yield for each hydrocarbon (RH) species i, similar to other 319 

studies  (e.g., Zhao et al., 2014). The updated yields from Ma et al. (2017) were used, which 320 

incorporate a correction for the gas-phase partitioning of semi-volatile compounds to chamber 321 

walls (Krechmer et al., 2016). Since there were no direct measurements of S/IVOC concentrations, 322 

an estimated (Robinson et al., 2007; Dzepina et al., 2009) relationship between the amount of gas-323 

phase S/IVOC co-emitted with POA at the typical temperatures (~20°C) and OA mass 324 

concentrations (~10 μg sm−3) observed over Seoul were used. The POA is taken from Figure 5b  325 

and is within the range of values observed in other urban environments (Zhang et al., 2005; Hayes 326 

et al., 2013; Ait-Helal et al., 2014; Kim et al., 2018) (13 μg sm−3 ppmv−1 in Seoul versus 4.5 – 28.8 327 

μg sm−3 ppmv−1 in other studies). 328 

𝑃𝑃(𝑂𝑂𝑂𝑂) =  ∑ 𝑌𝑌𝑖𝑖 × ∆𝑅𝑅𝐻𝐻𝑖𝑖𝑖𝑖          (S3) 329 

∆𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅(𝑡𝑡)
𝑒𝑒(−𝑘𝑘[𝑂𝑂𝑂𝑂]𝑡𝑡) − 𝑅𝑅𝑅𝑅(𝑡𝑡)         (S4) 330 

 The hydrocarbons measured on the DC-8 were the concentrations at time, t; thus, Eq. SS4 331 

was used, which takes into account the amount of OH that oxidized the hydrocarbon (OHexp = 332 
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[OH]t) between emissions and measurement, and k is the OH rate constant for each specific 333 

hydrocarbon (SI Table 3).  334 

 Finally, to determine the fate of the RO2 radical in the reactions over Seoul (high/low NOx 335 

regime), and thus, what aerosol yields to use, the RO2 lifetime with reaction of NO, HO2, and RO2 336 

versus photochemical age was calculated (Figure S22). The measured NO and HO2 was used in 337 

the calculations, we assumed RO2 was approximately the same concentration as HO2 in this 338 

calculation (Thornton et al., 2002), and the rate constants in SI Table 3 were used to calculated the 339 

lifetime and fractional fate of RO2. The fate of RO2 with autoxidation is not included as the rate is 340 

still uncertain (Crounse et al., 2013) and it should be less important in highly polluted 341 

environments such as Seoul, especially at the lower photochemical ages (< 0.5 eq. days) where 342 

most SOA is observed to be formed. The dominant sink of RO2 over Seoul during KORUS-AQ is 343 

the reaction with NO, suggesting that the SOA yields for “high NO” conditions should be used to 344 

describe the production of SOA. 345 
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  346 

 347 

Figure S22. (left) Lifetime of RO2 due to reactions with NO (red), HO2 (blue), and RO2 (grey) 348 
versus NOx photochemical clock, normalized by OH = 1.5×106 molecules/cm3. (right) Fraction of 349 
RO2 reacting with NO (red), HO2 (blue), or RO2 (red) versus NOx photochemical clock, 350 
normalized by OH = 1.5×106 molecules/cm3. Values are calculated using observations over Seoul, 351 
South Korea, during KORUS-AQ, and RO2 is assumed to be approximately equal to HO2 352 
(Thornton et al., 2002).  353 
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S7. FLEXPART Source Analysis 354 

Source contributions have been estimated using Lagrangian backtrajectory calculations with the 355 

FLEXPART-WRF model (Brioude et al., 2013) in version 3.3.1, driven by meteorological output 356 

from NCEP GFS (NCEP) analyses downscaled to 5 km horizontal resolution using the Weather 357 

Research and Forecasting (WRF) model (Skamarock et al., 2008) in combination with 358 

the CREATE emission inventory (Woo et al., 2013). Approximately 20,000 parcels are released 359 

in 1 min intervals from the then-current location of the DC-8 during its research flights and parcel 360 

trajectories are followed back in time for 24 hours. The total time parcels spent in the lowermost 361 

100 m—as surrogate for air having contact with an emission source at the ground—is recorded 362 

(residence time, [s kg−1 m3]) and then folded with the emission fluxes ([kg m−2 s−1]) given by the 363 

CREATE inventory for different compounds and source regions. This delivers an estimate of the 364 

source contribution (as increment in volume mixing ratio at the receptor, i.e., the DC-8 location) 365 

of the emissions of a given compound from a given region, assuming a perfect transport simulation 366 

and an inert compound.   367 
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S8.  Intercomparisons of CU-AMS with Other Measurements on the NASA DC-8 368 

 We evaluate the measurement comparisons of the CU-AMS versus other aerosol 369 

measurements on-board the DC-8 during KORUS-AQ.  We start with the mist chamber / ion 370 

chromatograph instrument (MC/IC), which has a comparable size cut as the AMS. The 371 

comparisons for SO4 show good correlation (R2 = 0.76) and slope close to 1 (0.95) (Figure S23). 372 

The higher scatter for the MC/IC is thought to arise from the lag and smearing in the measurements 373 

that has been observed in prior studies (TAbMET, 2009). For example, the correlation between 374 

instruments without lag and smearing have R2 of 0.87 – 0.91 (CU-AMS versus extinction and CU-375 

AMS vs K-AMS for certain RFs). If the MC/IC and CU-AMS SO4 measurements are averaged to 376 

the sampling frequency of the University of New Hampshire filters (not shown), the R2 improves 377 

(0.82) with no impact on the slope.  378 

The comparison between the UNH filters and CU-AMS SO4 shows higher R2 (0.86) but 379 

lower slope (0.80), compared to MC/IC vs. CU-AMS. The higher R2 is likely due to longer 380 

averaging time and lack of smearing that occurred with the MC/IC. As a comparison, the R2 381 

between MC/IC and filters are 0.84. The lower slope for the filters than the MC/IC is thought to 382 

be due to the different size cut-offs for the two measurements. For the filters, the upper size cut-383 

off is ~4 μm (McNaughton et al., 2007); whereas, the upper size cut-off for the MC/IC is 384 

comparable to the AMS aerosol size cut-off (~ 1 µm aerodynamic). This means that the filter 385 

samples may include SO42‒ from sea salt (sodium and calcium) and dust (calcium) (Heo et al., 386 

2009; Kim et al., 2016; Heim et al., 2018). This is shown in Figure S24 and described in detail in 387 

Heim et al. (2018). Heim et al. (2018) found that dust dominated supermicron aerosol for 388 

approximately half of the campaign, and during these periods, supermicron SO42- accounted for 389 

~50% of the total SO42- (sub plus supermicrong).  Taken together, the comparisons of SO4 mass 390 
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concentrations from the CU-AMS from these two different methods (filter and MC/IC) indicate 391 

that the CU-AMS quantitatively captures the concentrations of SO4. 392 

 Next, we compare the non-refractory species concentrations measured by the CU- and K-393 

AMS. Intercomparisons between these two measurements for a few flights have been presented in 394 

prior publications (Hu et al., 2018a, 2018b). The K-AMS used a capture vaporizer, which leads to 395 

CE of ~1 for all ambient species (Hu et al., 2017a, 2017b; Xu et al., 2017). Here, we investigate 396 

the entire campaign. As shown in Figure S25, R2 > 0.80 for all five species, and all slopes fall 397 

within ±20% of unity, which is within the combined uncertainty of both AMSs (~27%). However, 398 

at high concentrations (greater than ~5 – 10 μg sm−3), the scatter between the two measurements 399 

increases, and for some species (e.g., SO4), there is a slight curvature in the comparisons, where 400 

CU-AMS is greater than K-AMS. We believe this discrepancy originated from differences in 401 

transmission vs. particle size through the aerosol inlet and focusing lens (Figure S26). In-field 402 

calibrations showed that The K-AMS had 50% transmission at 615 nm (vacuum aerodynamic 403 

diameter; DeCarlo et al. (2004)), compared to the CU-AMS 50% transmission occurring at 900 404 

nm. The reasons for the smaller transmission of the K-AMS are likely related to the PCI design 405 

(Bahreini et al., 2008, 2009) or possibly an underperforming aerodynamic lens in K-AMS (Liu et 406 

al., 2007). It was found that, in general, the RFs could be split between RFs generally below the 407 

K-AMS size cut-off (RFs 1 – 9, 11, 15, and 19) and above the size cut-off (RFs 10, 12 – 14, 16 – 408 

18, 20) (Figure S27). The slopes and R2 greatly improves for the observations below the K-AMS 409 

cut-off versus above (for slopes, 1.02 versus 0.84 and for R2, 0.91 versus 0.82). 410 

Finally, the ratios of the total AMS PM1 masses measured by CU-AMS and K-AMS remain 411 

nearly constant about one (within ±11%) for the entire campaign and show no trend with estimated 412 

CE (for the standard vaporizer only) using the Middlebrook et al. (2012) algorithm (Figure S28). 413 
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Thus, when accounting for transmission effects, the two AMSs agree to within 10%, and the CU-414 

AMS agrees to within 20% with the other co-located aerosol mass concentration measurements 415 

(filters and MC/IC) on the DC-8. This provides overall confidence in the calculated CE for the 416 

standard vaporizer (Middlebrook et al., 2012), RIE, and transmission of PM1 for the CU-AMS 417 

measurements. 418 

 Besides directly comparing species mass, another well-established method to investigate 419 

aerosol instrument quantification is to compare the measured PM1 mass (CU-AMS plus BC from 420 

SP2) versus the submicron extinction measured using methods described in Section 2.3.2 421 

(nephlometer for scattering and absorption by PSAP) (e.g., DeCarlo et al., 2008).  During KORUS-422 

AQ, the slope between mass and extinction is 6.00 m2 g−1 (Figure S29) with an R2 of 0.87. The 423 

high correlation and similar slope compared to prior comparisons (Hand and Malm, 2007; DeCarlo 424 

et al., 2008; Dunlea et al., 2009; Shinozuka et al., 2009; Liu et al., 2017) indicates that the CU-425 

AMS was not substantially impacted by the aerosol transmission effects discussed above. Also, 426 

the strong correlation (R2 = 0.87) between the two instruments, which both have comparable, very 427 

high time resolution, indicate that the CU-AMS did not experience any plume recovery artifacts 428 

that were observed with the MC/IC or artifacts in measuring highly concentrated plumes. 429 

 Finally, we compare the PM1 volume concentrations estimated from the LAS PM1 versus 430 

the CU-AMS plus SP2. For this comparison, we use the calibrated AMS transmission curve during 431 

this campaign (Figure S30), which is consistent with those from recent studies (Knote et al., 2011; 432 

Hu et al., 2017b), to correct for particle transmission differences between the instruments. The 433 

LAS diameters were corrected by a factor of 1.115 from the PSL-calibrated values, to account for 434 

the lower refractive index of ambient particles, similar to Liu et al. (2017). To estimate the volume 435 

concentration from the combined AMS and BC measurements, we assume additive species 436 
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volumes (DeCarlo et al., 2004). Species densities of 1.78 g cm-3 for NH4, pNO3, and SO4 (Lide, 437 

1991; Salcedo et al., 2006), 1.52 g cm-3 for Chl (Lide, 1991; Salcedo et al., 2006), 1.77 g cm-3 for 438 

BC (Park et al., 2004), and the OA density is estimated from the CU-AMS O/C and H/C ratios of 439 

OA using the parameterization of Kuwata et al. (2012). The comparison between total PM1 volume 440 

estimated from the CU-AMS plus BC vs. versus LAS shows a correlation (R2) of 0.86. However, 441 

the volume from AMS plus SP2 is higher (slope of 1.56) when comparing all of KORUS-AQ. We 442 

hypothesize that this may be due to saturation of the LAS detector at high particle concentrations 443 

that were frequently observed in this campaign (greater than 1800 particles cm−3 or total CU-AMS 444 

plus SP2 mass greater than 40 μg sm−3), as has been observed in prior comparisons (Liu et al., 445 

2017), or a change in the refractive index when OA becomes dominant at these high concentrations 446 

(Moise et al., 2015). Different filters are tested and shown in Figure S30 and Figure S31, using 447 

both values reported in literature and values that represent a stable ratio between LAS and 448 

calculated CU-AMS plus SP2 volume. If we filter for data when there is less than 20 μg sm−3, the 449 

slope drops to 1.00, showing agreement between within the combined uncertainties (R2 = 0.79), 450 

and providing strong evidence that LAS saturation at higher concentrations is the main reason for 451 

the apparent disagreement when analyzing the entire campaign.  452 

We further investigate (Figure S31) whether the slope could be due to LAS saturation or  a 453 

bias in RIEOA, or in CE, vs. the values used in our analyses (Jimenez et al., 2016; Xu et al., 2018). 454 

There is a slight increase in the ratio of AMS plus SP2 to LAS volumes versus OA/total CU-AMS 455 

mass at high fractions of OA, although still within the combined measurement uncertainties. With 456 

filtered data (less than 1600 particles cm−3 or total CU-AMS mass less than 20 μg sm−3), the 457 

volume ratios remain nearly flat, even at high f(OA). This confirms that LAS saturation is the most 458 

likely cause for the differences. Finally, a recent study (Xu et al., 2018) has reported new laboratory 459 
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measurements of RIEOA = 1.6±0.5, although these authors indicated that it was unclear whether 460 

this value was applicable to ambient particles, and the value of RIEOA = 1.4 used in this study is 461 

well within their reported uncertainty. When using RIEOA = 1.6 in our analysis (not shown) the 462 

slope for the entire dataset decrease by only 6% (1.56 to 1.47), indicating that RIE uncertainties 463 

cannot explain the bulk of the observed difference.  464 

 465 

 466 

Figure S23. (top) Time series of mist-chamber (dark red line) and CU-AMS (red line) SO4 for one 467 
flight (RF17). (bottom) Scatter plot of CU-AMS SO4 versus mist-chamber ion-chromatograph 468 
(MC/IC) SO4 for entire KORUS-AQ campaign.  469 
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 470 

Figure S24. (top) Time series of filter (black squares) and CU-AMS (red line) SO4 for one flight 471 
(RF17). The CU-AMS data has been averaged to the filter sampling time. (bottom) Scatter plot of 472 
CU-AMS SO4 versus filter SO4 for entire KORUS-AQ campaign. The points are colored by the 473 
total sodium (Na+) and calcium (Ca2+) measured by the filters, as indicators of sea salt and dust, 474 
respectively.  475 

 476 
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 477 

Figure S25. Scatter plot of not transmission corrected K-AMS versus CU-AMS mass 478 
concentrations for all of KORUS-AQ for (a) Chl, (b) SO4, (c) pNO3, (d) NH4, (e) OA, and (f) total 479 
AMS mass. The slopes and R2 for all comparisons are shown in each scatter plot. 480 

 481 

 482 
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 483 

Figure S26. (left axis) Transmission curve for CU-AMS (black circle and dark grey square) and 484 
K-AMS (purple diamond). The curve from literature (Knote et al., 2011; Hu et al., 2017b), which 485 
describes the CU-AMS, is shown (grey dotted line). The fit for K-AMS transmission is shown 486 
with the purple dotted line. (right axis) Average mass distributions for OA (green), pNO3 (blue), 487 
SO4 (red), and NH4 (orange) measured by CU-AMS in the boundary layer during KORUS-AQ. 488 
Note that some of the apparent signal at larger particle sizes is caused by the limited time response 489 
of the AMS detection system. 490 

  491 
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 492 

Figure S27. Scatter plot of K-AMS versus CU-AMS total mass concentrations (a) RFs 1 – 9, 11, 493 
15, and 19 and (b) RFs 10, 12 – 14, 16 – 18, and 20. These are flights where the average sizes were 494 
found below (a) and above (b) the K-AMS size cut-off (Figure S26). The slopes and R2 for all 495 
comparisons are shown in each scatter plot. 496 

  497 
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 498 

Figure S28. Binned total PM1 AMS mass ratios, normalized by the average ratio, versus the 499 
calculated CE used for the CU-AMS measurements. The error bars are the standard error about 500 
the mean, and the shaded grey area is the combined uncertainty of the two AMS measurements 501 
(±27%). The data is only for flights where the PM1 sizes were typically below the K-AMS size 502 
cut-off (RFs 1 – 9, 11, 15, and 19). 503 
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 504 

Figure S29. (top) Time series of total submicron mass (black, left axis) and 532 nm extinction 505 
(green, right axis) for one flight (RF19). (bottom) Scatter plot of 532 nm extinction versus total 506 
submicron mass (black carbon + CU-AMS species) for the entire KORUS-AQ campaign.  507 

  508 
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 509 

Figure S30. (top) Time series of total submicron volume from LAS (grey dashed line) and CU-510 
AMS plus black carbon (black) for one flight (RF11). (bottom) Scatter plot of total submicron 511 
volume (black carbon + CU-AMS species) versus LAS volume for entire KORUS-AQ campaign. 512 
The data is colored by total CU-AMS mass. Pink line is a fit to all data, the purple line is a fit to 513 
data where the particle number concentration is less than 1800 particles scm‒3. The red line is a fit 514 
to the data where the CU-AMS plus SP2 total mass is less than 40 μg sm‒3. The black line is a fit 515 
to the data where the particle number concentration is less than 1600 particles scm‒3 and Ca2+ 516 
concentration is less than 0.35 μg sm‒3. Finally, the grey line is a fit to the data where the CU-517 
AMS plus BC total mass is less than 20 μg sm‒3. 518 

 519 
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 520 

Figure S31. (a) Binned volume ratio (CU-AMS plus black carbon volume/LAS Volume) versus 521 
fraction of organic aerosol (OA) to total CU-AMS mass. (b) Binned volume ratio versus LAS 522 
particle number concentration. (c) Binned volume ratio versus CU-AMS total mass. In all figures, 523 
the black data is for all data whereas the blue data is for the volume ratio where the particle number 524 
concentration is less than 1600 particles cm-3 and the orange data is for the volume ratio where the 525 
CU-AMS total mass concentration is less than 20 μg sm-3. Also, the shaded area represents the 526 
combined uncertainty in both measurements (Bahreini et al., 2009). 527 

  528 
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S9. Fractional PM1 Contribution to Vertical Profile 529 

 530 

Figure S32. Fractional contribution of PM1 contribution vertical profile for all of KORUS-AQ. 531 

 532 

  533 
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S10. Observed Aerosol Production over Seoul, South Korea 534 

 535 

Figure S33. Scatter plot of OA versus CO, observed over Seoul, during KORUS-AQ. The points 536 
are colored by the NOx photochemical clock. The fit is for the decile binned data. 537 

 538 

 539 

Figure S34. Comparison of ΔOA/ΔCO observed over Seoul with different CO backgrounds. 540 
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Table S4. Compilation of slopes used to convert from ΔOA/ΔCO to ΔOA/ΔCO2 used in this study. 541 

Location Slope (ppmv CO/ppmv CO2) Study 
Mexico City 0.045 Vay et al. (2009) 
Los Angeles 0.009 Peischl et al., (2013) 

Beijing 0.02 Wang et al. (2010)  
Silva et al. (2013) 

Tohjima et al. (2014) 
Outflow China 0.02 Wang et al. (2010)  

Silva et al. (2013) 
Tohjima et al. (2014) 

Seoul 0.01 Silva et al. (2013)  
Tang et al. (2018) 

 542 

 543 

Figure S35. Same as Figure 4(a), but comparing results using three different photochemical 544 
clocks (Figure S21). 545 

 546 

  547 
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S11. Oxidation of OA 548 

 549 

Figure S36. Same as Figure 6b, but speciated for MO-OOA, LO-OOA, and HOA. (a) is over the 550 
Yellow Sea (RF12) and (b) is over Seoul.  551 

First, we briefly discuss how the AMS OA source tracers typically used to investigate OA 552 

chemistry evolved over Seoul (Figure S37). During KORUS-AQ, there was no appreciable 553 

influence from isoprene production of IEPOX-SOA (Hu et al., 2015), as the ion indicative of 554 

isoprene IEPOX-SOA (C5H6O+) remained at background values typical of air without isoprene 555 

SOA influence.  556 

Similarly, biomass burning OA (BBOA) appeared to be present but dilute in its 557 

contribution to OA. Most of the OA had fC2H4O2
, an ion indicative of biomass burning and 558 

levoglucosan (Schneider et al., 2006; Aiken et al., 2010), below 0.1 over Seoul, and the PMF 559 

factors fall near the limit of detection for BBOA (Cubison et al., 2011) and lower than the values 560 

that typically indicate ambient and laboratory BBOA emissions at various stages of chemical 561 

evolution (Cubison et al., 2011; Ortega et al., 2013). We speculate that the limited BBOA is highly 562 
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mixed into the OA from the numerous, small agricultural fires that were observed during the 563 

campaign and have been observed during this time period, during other years, in South Korea 564 

(Kang et al., 2006). However, the amount of fresher BBOA was not high enough, nor as strong of 565 

a feature as observed in prior studies (Aiken et al., 2010; DeCarlo et al., 2010; Cubison et al., 2011; 566 

Hu et al., 2016), to  reliably resolve a separate BBOA PMF factor. As shown in Figure S11, typical 567 

gas-phase biomass burning tracers (CO, NOx, acetonitrile, HCN, and black carbon) do not show a 568 

consistent strong correlation with any of the PMF factors, further suggesting that BBOA is not a 569 

major contributor, and any BBOA present is highly mixed with HOA and the oxidized OA. 570 

Consistent with our results, Kim et al. (2017) did not resolve a BBOA factor from a ground site in 571 

Seoul during the KORUS campaign.  572 

Similar to other studies over urban areas or for chamber studies oxidizing urban VOCs 573 

(e.g., benzene, xylenes, etc.) (Ng et al., 2010; Freney et al., 2014; Ortega et al., 2016), marked 574 

chemical evolution was observed as tracked by the C2H3O+ and CO2+ ions. The evolution of these 575 

two ions, as a fraction of total OA, fall in the same space as has been observed in these prior 576 

studies, indicating consistent photochemical evolution of SOA over urban locations.  577 

Finally, unlike Kim et al. (2017), we did not observe clear indication for cooking organic 578 

aerosol (COA) in our PMF results. The COA was at a minimum (less than 1 μg m−3) at the surface 579 

in Seoul during the times the DC-8 overpassed (Kim et al., 2018); thus, we speculate the amount 580 

of COA sampled was a small fraction of OA and was mostly lumped into the HOA factor. This 581 

does not affect our characterization of HOA as POA, since COA is also a primary aerosol emission. 582 

 583 
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 584 

Figure S37.  Plots of (a) fCO2
versus fC2H3O, (b)  fCO2

versus fC2H4O2
, and (c) fCO2

versus fC5H6O. 585 
Points highlighted in color refer to observations over Seoul, South Korea, during KORUS-AQ. In 586 
(a), the triangle is from Ng et al. (2010); in (b), the triangle is from Cubison et al. (2011), and the 587 
vertical line is the typical “background” values for fC2H4O2

 from Cubison et al. (2011); and, in (c), 588 
the vertical line is the typical “background” values for fC5H6O from Hu et al. (2015). The PMF 589 
results for each triangle plot are shown in squares, where grey is HOA, light green is LO-OOA, 590 
and dark green is MO-OOA. The light orange dots in (b) are the observations from ARCTAS forest 591 
fires (Cubison et al., 2011), as an example for data strongly impacted by biomass burning. The 592 
quantile average values (averaged the x variables according to quantiles of the y variables) for 593 
each comparison are shown in light red circles. 594 

 595 

  596 
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S12. Particle organic nitrates 597 

 598 

Figure S38. Time series of the fractional contribution of organic nitrates (pRONO2) to the total 599 
pNO3 signal during KORUS-AQ. (b) Fractional contribution of organic nitrates versus pNO3 600 
during KORUS-AQ. 601 

  602 
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