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Abstract. A great challenge in climate modeling is how to
parameterize subgrid cloud processes, such as autoconver-
sion and accretion in warm-rain formation. In this study, we
use ground-based observations and retrievals over the Azores
to investigate the so-called enhancement factors, Eauto and
Eaccr, which are often used in climate models to account
for the influence of subgrid variance of cloud and precipi-
tation water on the autoconversion and accretion processes.
Eauto and Eaccr are computed for different equivalent model
grid sizes. The calculated Eauto values increase from 1.96
(30 km) to 3.2 (180 km), and the calculated Eaccr values in-
crease from 1.53 (30 km) to 1.76 (180 km). Comparing the
prescribed enhancement factors in Morrison and Gettleman
(2008, MG08) to the observed ones, we found that a higher
Eauto (3.2) at small grids and lower Eaccr (1.07) are used in
MG08, which might explain why most of the general cir-
culation models (GCMs) produce too-frequent precipitation
events but with too-light precipitation intensity. The ratios of
the rain to cloud water mixing ratio (qr/qc) at Eaccr = 1.07
and Eaccr = 2.0 are 0.063 and 0.142, respectively, from ob-
servations, further suggesting that the prescribed value of
Eaccr = 1.07 used in MG08 is too small to simulate precipi-
tation intensity correctly. Both Eauto and Eaccr increase when
the boundary layer becomes less stable, and the values are
larger in precipitating clouds (CLWP> 75 gm−2) than those
in non-precipitating clouds (CLWP< 75 gm−2). Therefore,
the selection of Eauto and Eaccr values in GCMs should be
regime- and resolution-dependent.

1 Introduction

Due to their vast areal coverage (Warren et al., 1986, 1988;
Hahn and Warren, 2007) and strong radiative cooling effect
(Hartmann et al., 1992; Chen et al., 2000), small changes in
the coverage or thickness of marine boundary layer (MBL)
clouds could change the radiative energy budget significantly
(Hartmann and Short, 1980; Randall et al., 1984) or even off-
set the radiative effects produced by increasing greenhouse
gases (Slingo, 1990). The lifetime of MBL clouds remains
an issue in climate models (Yoo and Li, 2012; Jiang et al.,
2012; Yoo et al., 2013; Stanfield et al., 2014) and repre-
sents one of the largest uncertainties in predicting future cli-
mate (Wielicki et al., 1995; Houghton et al., 2001; Bony and
Dufresne, 2005).

MBL clouds frequently produce precipitation, mostly in
the form of drizzle (Austin et al., 1995; Wood, 2005a, 2012;
Leon et al., 2008). A significant amount of drizzle evaporates
before reaching the surface, for example, about ∼ 76 % over
the Azores region in the northeast Atlantic (Wu et al., 2015),
which provides a water vapor source for MBL clouds. Due
to their pristine environment and their proximity to the sur-
face, MBL clouds and precipitation are especially sensitive
to aerosol perturbations (Platnick and Twomey, 1994). Thus,
accurate prediction of precipitation is essential in simulating
the global energy budget and in constraining aerosol indirect
effects in climate projections.

Due to the coarse spatial resolutions of the general cir-
culation model (GCM) grid, many cloud processes cannot
be adequately resolved and must be parameterized. For ex-
ample, warm-rain parameterizations in most GCMs treat the
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condensed water as either clouds or rain from the collision–
coalescence process that is partitioned into autoconver-
sion and accretion subprocesses in model parameterizations
(Kessler, 1969; Tripoli and Cotton, 1980; Beheng, 1994;
Khairoutdinov and Kogan, 2000; Liu and Daum, 2004). Au-
toconversion represents the process of drizzle drops being
formed through the self-collection of cloud droplets and ac-
cretion represents the process where raindrops grow by col-
lecting cloud droplets. Autoconversion mainly accounts for
precipitation initiation, while accretion primarily contributes
to precipitation intensity. Autoconversion is often param-
eterized as functions of cloud droplet number concentra-
tion (Nc) and cloud water mixing ratio (qc), while accre-
tion depends on both cloud and rain water mixing ratios (qc
and qr) (Kessler, 1969; Tripoli and Cotton, 1980; Beheng,
1994; Khairoutdinov and Kogan, 2000; Liu and Daum, 2004;
Wood, 2005b). The majority of previous studies suggested
that these two processes can be represented by power–law
functions of cloud and precipitation properties (see Sect. 2
for details).

In conventional GCMs, the lack of information on the sub-
grid variance of clouds and precipitation leads to the un-
avoidable use of the grid-mean quantities (Nc, qc, and qr,
where the overbar henceforth denotes grid mean) in calcu-
lating autoconversion and accretion rates. MBL cloud liquid
water path (CLWP) distributions are often positively skewed
(Wood and Hartmann, 2006; Dong et al., 2014a, b); that is,
the mean value is greater than the mode value. Thus, the
mean value only represents a relatively small portion of sam-
ples. Also, due to the nonlinear nature of the relationships,
the two processes depend significantly on the subgrid vari-
ability and co-variability of cloud and precipitation micro-
physical properties (Weber and Quass, 2012; Boutle et al.,
2014). In some GCMs, subgrid-scale variability is often ig-
nored or hard coded using constants to represent the vari-
abilities under all meteorological conditions and across the
entire globe (Pincus and Klein, 2000; Morrison and Gettle-
man, 2008; Lebsock et al., 2013). This could lead to sys-
tematic errors in precipitation rate simulations (Wood et al.,
2002; Larson et al., 2011; Lebsock et al., 2013; Boutle et
al., 2014; Song et al., 2018), where GCMs are found to pro-
duce too-frequent but too-light precipitation compared to ob-
servations (Zhang et al., 2002; Jess, 2010; Stephens et al.,
2010; Nam and Quaas, 2012; Song et al., 2018). The bias is
found to be smaller when using a probability density func-
tion (PDF) of cloud water to represent the subgrid-scale vari-
ability in autoconversion parameterization (Beheng, 1994;
Zhang et al., 2002; Jess, 2010), or more complexly, by inte-
grating the autoconversion rate over a joint PDF of liquid wa-
ter potential temperature and total water mixing ratio (Cheng
and Xu, 2009).

Process rate enhancement factors (E) are introduced when
considering subgrid-scale variability in parameterizing grid-
mean processes and they should be parameterized as func-
tions of the PDFs of cloud and precipitation properties within

a grid box (Morrison and Gettleman, 2008; Lebsock et al.,
2013; Boutle et al., 2014). However, these values in some
GCM parameterization schemes are prescribed as constants
regardless of surface or meteorological conditions (Xie and
Zhang, 2015). Boutle et al. (2014) used aircraft in situ mea-
surements and remote sensing techniques to develop a pa-
rameterization for clouds and rain, in which they not only
consider the subgrid variabilities under different grid scales
but also consider the variation of cloud and rain fractions.
The parameterization was found to reduce the precipita-
tion estimation bias significantly. Hill et al. (2015) mod-
ified this parameterization and developed a regime- and
cloud-type-dependent subgrid parameterization, which was
implemented to the Met Office Unified Model by Walters
et al. (2017), who found that the radiation bias is reduced
when using the modified parameterization. Using ground-
based observations and retrievals, Xie and Zhang (2015) pro-
posed a scale-aware cloud inhomogeneity parameterization
that they applied to the Community Earth System Model
(CESM) and found that it can recognize spatial scales with-
out manual tuning and can be applied to the entire globe.
The inhomogeneity parameter is essential in calculating en-
hancement factors, since they affect the conversion rate from
clouds to rain liquid. Xie and Zhang (2015), however, did
not evaluate the validity of CESM simulations from their pa-
rameterization; the effect of Nc variability or the effect of
covariance of clouds and rain on the accretion process was
not assessed. Most recently, Zhang et al. (2018) derived the
subgrid distribution of CLWP andNc from the MODIS cloud
product. They also studied the implication of subgrid cloud
property variations for the simulation of autoconversion, in
particular the enhancement factor, in GCMs. For the first
time, the enhancement factor due to the subgrid variation of
Nc was derived from satellite observation, and results reveal
several regions downwind of biomass burning aerosols (e.g.,
Gulf of Guinea, east coast of South Africa), air pollution (i.e.,
East China Sea), and active volcanos (e.g., Kilauea in Hawaii
and Ambae in Vanuatu) where the enhancement factor due
to Nc is comparable or even larger than that due to CLWP.
However, one limitation of Zhang et al. (2018) is the use of
passive remote sensing data only, which cannot distinguish
cloud and rain water.

Dong et al. (2014a, b) and Wu et al. (2015) reported
MBL cloud and rain properties over the Azores and pro-
vided the possibility of calculating the enhancement fac-
tors using ground-based observations and retrievals. In this
study, a joint retrieval method to estimate qc and qr profiles
is proposed based on existing studies (Appendix A). Most of
the calculations and analyses in this study are based on the
Morrison and Gettelman (2008, MG08 hereafter) scheme.
The enhancement factors in several other schemes are also
discussed and compared with the observational results, and
the approach in this study can be repeated for other micro-
physics schemes in GCMs. This paper is organized as fol-
lows: Sect. 2 includes a summary of the mathematical for-
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mulas from previous studies that can be used to calculate en-
hancement factors. Ground-based observations and retrievals
are introduced in Sect. 3. Section 4 presents results and dis-
cussions, followed by a summary and conclusions in Sect. 5.
The retrieval method used in this study is in Appendix A.

2 Mathematical background

Autoconversion and accretion rates in GCMs are usually
parameterized as power–law equations (Tripoli and Cotton,
1980; Beheng, 1994; Khairoutdinov and Kogan, 2000; Liu
and Daum, 2004):(
∂qr

∂t

)
auto
= Aqc

a1Nc
a2
, (1)

(
∂qr

∂t

)
accr
= B(qcqr)

b, (2)

where A, a1, a2, B, and b are coefficients in different
schemes listed in Table 1. qc, qr, and Nc are grid-mean cloud
water mixing ratio, rain water mixing ratio, and droplet num-
ber concentration, respectively. Because it is widely used
in model parameterizations, the detailed results from the
Khairoutdinov and Kogan (2000) parameterization that has
been used in the MG08 scheme will be shown in Sect. 4,
while a summary will be given for other schemes.

Ideally, the covariance between physical quantities should
be considered in the calculation of both processes. How-
ever, qc and Nc in Eq. (1) are arguably not independently
retrieved in our retrieval method, which will be introduced in
this section and Appendix A. Thus, we only assess the indi-
vidual roles of qc and Nc subgrid variations in determining
the autoconversion rate. qc and qr, on the other hand, are re-
trieved from two independent algorithms, as shown in Dong
et al. (2014a, b), Wu et al. (2015), and Appendix A. The
effect of the covariance of qc and qr on accretion rate will
be assessed.

At the subgrid scale, the PDFs of qc andNc are assumed to
follow a gamma distribution based on observational studies
of optical depth in MBL clouds (Barker et al., 1996; Pincus
et al., 1999; Wood and Hartmann, 2006):

P (x)=
αν

0(ν)
xν−1e−αx , (3)

where x represents qc or Nc with grid-mean quantity qc or
Nc, represented by µ, α = ν/µ is the scale parameter, σ 2 is
the relative variance of x (= variance divided by µ2), and
ν = 1/σ 2 is the shape parameter. ν is an indicator of cloud
field homogeneity, with large values representing homo-
geneous and small values indicating inhomogeneous cloud
fields.

By integrating autoconversion rate, Eq. (1), over the grid-
mean rate, Eq. (3), with respect to subgrid-scale variation of

qc and Nc, the autoconversion rate can be expressed as(
∂qr

∂t

)
auto
= Aµa1

qc
µa2
Nc

0(ν+ a)

0 (ν)νa
, (4)

where a = a1 or a2. Comparing Eq. (4) to (1), the autocon-
version enhancement factor (Eauto) can be given with respect
to qc and Nc:

Eauto =
0(ν+ a)

0 (ν)νa
. (5)

In addition to fitting the distributions of qc and Nc, we also
tried two other methods to calculateEauto. The first is to inte-
grate Eq. (1) over the actual PDFs from observed or retrieved
parameters and the second is to fit a lognormal distribution
for subgrid variability as has been done in other studies (e.g.,
Lebsock et al., 2013; Larson and Griffin, 2013). It is found
that all three methods provide similar results. In this study,
we use a gamma distribution that is consistent with MG08.
Also, note that, in the calculation of Eauto from Nc, the neg-
ative exponent (−1.79) may cause singularity problems in
Eq. (5). When this situation occurs, we perform direct calcu-
lations by integrating the PDF ofNc rather than using Eq. (5).

To account for the covariance of microphysical quantities
in a model grid, it is difficult to apply a bivariate gamma dis-
tribution due to its complex nature. In this study, the bivariate
lognormal distribution of qc and qr is used (Lebsock et al.,
2013; Boutle et al., 2014) and can be written as

P (qc,qr)=
1

2πqc qrσqcσqr

√
1− ρ2
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{
−

1
2

1
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)
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(
lnqr−µqr

σqr

)2
]}

, (6)

where σ is standard deviation and ρ is the correlation coeffi-
cient of qc and qr.

Similarly, by integrating the accretion rate in Eq. (2) from
Eq. (6), we get the accretion enhancement factor (Eaccr) of

Eaccr =

(
1+

1
νqc

) 1.152
−1.15
2

(
1+

1
νqr

) 1.152
−1.15
2

exp(ρ1.152

√
ln
(

1+
1
νqc

)
ln(1+

1
νqr

)). (7)

3 Ground-based observations and retrievals

The datasets used in this study were collected at the Depart-
ment of Energy (DOE) Atmospheric Radiation Measurement
(ARM) Mobile Facility (AMF), which was deployed on the
northern coast of Graciosa Island (39.09◦ N, 28.03◦W) from
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Table 1. The parameters of autoconversion and accretion formulations for four parameterizations. NA – not available.

A a1 a2 B b

Khairoutdinov and Kogan (2000) 1350 2.47 −1.79 67 1.15

Liu and Daum (2004) 1.3× 10β6
6 ,

where β6
6 =

[
(rv+ 3)/rv

]2 and rv is the
mean volume radius;
modification was made by Wood (2005b)

3 −1 NA NA

Tripoli and Cotton (1980) 3268 7/3 −1/3 1 1

Beheng (1994) 3× 1034 for Nc < 200 cm−3

9.9 for Nc > 200 cm−3
4.7 −3.3 1 1

June 2009 to December 2010 (for more details, please refer
to Rémillard et al., 2012, Dong et al., 2014a, and Wood et
al., 2015). The detailed operational status of the remote sens-
ing instruments at AMF is summarized in Fig. 1 of Rémil-
lard et al. (2012) and discussed in Wood et al. (2015). The
ARM Eastern North Atlantic (ENA) site was established on
the same island in 2013 and provides long-term continuous
observations.

The cloud-top heights (Ztop) were determined from the
W-band ARM cloud radar (WACR) reflectivity and only
single-layered and overcast low-level clouds with Ztop ≤

3 km were selected (the detailed selection criteria can be
found in Dong et al., 2014a, b). Cloud-base heights (Zbase)
were detected by a laser ceilometer (CEIL) and the cloud
thickness was simply the difference between cloud-top and
cloud-base heights. The cloud liquid water path (CLWP)
was retrieved from microwave radiometer (MWR) bright-
ness temperatures measured at 23.8 and 31.4 GHz using a
statistical retrieval method with an uncertainty of 20 g m−2

for CLWP< 200 g m−2 and 10 % for CLWP> 200 g m−2

(Liljegren et al., 2001; Dong et al., 2000). Precipitating sta-
tus is identified through a combination of WACR reflectivity
and Zbase. As in Wu et al. (2015), we labeled the status of
a specific time as “precipitating” if the WACR reflectivity
below the cloud base exceeded −37 dBZ. Note the differ-
ences of the reflectivity thresholds used here and in other
studies. For example, these were −15 dBZ in Sauvageot
and Omar (1987), −17 dBZ in Frisch et al. (1995), −19 to
−16 dBZ in Wang and Geerts (2003), and −30 dBZ or lower
in Kollias et al. (2011). The threshold used in this study is
set at the cloud base rather than for the entire cloud layer as
in the abovementioned studies. The −37 dBZ threshold is a
statistical value from WACR observations over the Azores
presented by Wu et al. (2015, Fig. 2a), in which it is found
that using a higher threshold will miss a significant number
of drizzling events, especially the clouds with virga.

The ARM merged sounding data have a 1 min temporal
and 20 m vertical resolution below 3 km (Troyan, 2012). In
this study, the merged sounding profiles are averaged to 5 min
resolution. Pressure and temperature profiles are used to cal-

culate air density (ρair) profiles and to infer adiabatic cloud
water content.

Cloud droplet number concentration (Nc) is retrieved us-
ing the methods presented in Dong et al. (1998, 2014a, b)
and is assumed to be constant with height. Vertical profiles of
cloud and rain liquid water content (CLWC and RLWC) are
retrieved by combining WACR reflectivity and CEIL attenu-
ated backscatter, and by assuming adiabatic growth of cloud
water. A detailed description is presented in Appendix A with
the results from a selected case. The CLWC and RLWC val-
ues are transformed to qc and qr by dividing by air density
(e.g., qc(z)= CLWC(z)/ρair(z)).

The estimated uncertainties for the retrieved qc and qr are
30 % and 18 %, respectively (see Appendix A). We used the
estimated uncertainties of qr and qc as inputs of Eqs. (4) and
(7) to assess the uncertainties ofEauto andEaccr. For instance,
(1± 0.3)qc is used in Eq. (4) and the mean differences are
then used as the uncertainty of Eauto. The same method is
used to estimate the uncertainty for Eaccr.

The autoconversion and accretion parameterizations domi-
nate at different levels in a cloud layer. Autoconversion dom-
inates around the cloud top, where drizzle drops form by the
self-collection of cloud droplets, and accretion is dominant in
the middle and lower parts of the cloud where raindrops grow
by collecting cloud droplets. In accordance with the physical
processes, we estimate autoconversion and accretion rates at
different levels of a cloud layer in this study. The averaged
qc values within the top five range gates (∼ 215 m thick) are
used to calculate Eauto. To calculate Eaccr, we use the aver-
aged qc and qr within five range gates around the maximum
radar reflectivity. If the maximum radar reflectivity appears
at the cloud base, then five range gates above the cloud base
are used.

The ARM merged sounding data are also used to calcu-
late lower tropospheric stability (LTS= θ700 hPa− θ1000 hPa),
which is used to infer the boundary layer stability. In this
study, unstable and stable boundary layers are defined as LTS
less than 13.5 K and greater than 18 K, respectively, and an
environment with an LTS between 13.5 and 18 K is defined
as mid-stable (Wang et al., 2012; Bai et al., 2018). Enhance-
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Figure 1. Observations and retrievals over the Azores on 27 July 2010. (a) W-band ARM cloud radar (WACR) reflectivity (contour) super-
imposed with cloud-base height (black dots). (b) The black line represents averaged cloud water mixing ratio (qc) within the top five range
gates, the blue line represents averaged rain (×10) water mixing ratio within five range gates around maximum reflectivity, and red dots are
the retrieved cloud droplet number concentration (Nc). Dashed lines represent two periods that have 60 km equivalent sizes with similar qc
but different distributions as shown by step lines in panels (c) and (d). Curved lines in panels (c) and (d) are fitted gamma distributions with
the corresponding shape parameter (ν) shown on the upper right. Nc distributions are not shown. The calculated autoconversion (Eauto, qc
from qc and Eauto, Nc from Nc) and accretion (Eaccr) enhancement factors are also shown.

ment factors in different boundary layers are summarized in
Sect. 4.2 and may be used as reference for model simula-
tions. Further, two regimes are classified: CLWP greater than
75 g m−2 as precipitating and CLWP less than 75 g m−2 as
non-precipitating (Rémillard et al., 2012).

To evaluate the dependence of autoconversion and accre-
tion rates on subgrid variabilities for different model spatial
resolutions, an average wind speed within a cloud layer was
extracted from merged sounding and used in sampling ob-
servations over certain periods to mimic different grid sizes
in GCMs. For example, 2 h of observations correspond to
a 72 km horizontal equivalent grid box if mean horizontal
in-cloud wind speed is 10 m s−1, and if the wind speed is

5 m s−1, 4 h of observations are needed to mimic the same
horizontal equivalent grid. We used six horizontal equiva-
lent grid sizes (30, 60, 90, 120, 150, and 180 km) and mainly
show the results from 60 and 180 km horizontal equivalent
grid sizes in Sect. 4. For convenience, we use “equivalent
size” to imply “horizontal equivalent grid size” from now on.

4 Results and discussions

In this section, we first show the data and methods using
a selected case, followed by statistical analysis based on
19 months of data and multiple time intervals.

www.atmos-chem-phys.net/18/17405/2018/ Atmos. Chem. Phys., 18, 17405–17420, 2018
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Figure 2. Probability density functions (PDFs) of autoconversion (a–d) and accretion (e–f) enhancement factors calculated from qc (a–b),
Nc (c–d), and the covariance of qc and qr (e–f). The two rows show the results from 60 and 180 km equivalent sizes, respectively, with their
average values. Black lines represent precipitation frequency in each bin in panels (a–d) and the ratio of layer-mean qr to qc in panels (e–f).

4.1 Case study

The selected case occurred on 27 July 2010 (Fig. 1a) over
the Azores. This case was characterized by a long period
of non-precipitating or light drizzling cloud development
(00:00–14:00 UTC) before intense drizzle occurred (14:00–
20:00 UTC). Wu et al. (2017) studied this case in detail to
demonstrate the effect of wind shear on drizzle initiation.
Here, we choose two periods corresponding to a 180 km
equivalent size and having similar mean qc near cloud top:
0.28 g kg−1 for period c and 0.26 g kg−1 for period d but with
different distributions (Fig. 1c and d). The PDFs of qc are
then fitted using gamma distributions to get shape parame-
ters (ν) as shown in Fig. 1c and d. Smaller ν is usually as-
sociated with a more inhomogeneous cloud field, which al-
lows more rapid drizzle production and more efficient liquid
transformation from cloud to rain (Xie and Zhang, 2015) in
regions that satisfy precipitation criteria, which are usually
controlled using a threshold qr, droplet size, or relative hu-
midity (Kessler, 1969; Liu and Daum, 2004). Period d has a
wider qc distribution than period c, resulting in a smaller ν
and thus larger Eauto. Using the fitted ν, the Eauto from qc
calculated from Eq. (5) for period d is larger than that for pe-
riod c (1.80 vs. 1.33). The Eauto values for periods d and c
can also be calculated from Nc using the same procedure as
qc with a similar result (2.1 vs. 1.51). The Eaccr values for
periods d and c can be calculated from the covariance of qc
and qr and Eq. (7). Not surprisingly, period d has larger Eaccr

than period c. The combination of larger Eauto and Eaccr in
period d contributes to rapid drizzle production and high rain
rate as seen from WACR reflectivity and qr in Fig. A1.

It is important to understand the physical meaning of en-
hancement factors in precipitation parameterization. For ex-
ample, if we assume two scenarios for qc with a model
grid having the same mean values but different distributions,
(1) the distribution is extremely homogeneous, and there is
no subgrid variability because the cloud has the same chance
to precipitate and the enhancement factors would be unity
(this is true for arbitrary grid-mean qc amount as well); and
(2) the cloud field gets more and more inhomogeneous with
a broad range of qc within the model grid box, which results
in a greater enhancement factor and increases the possibil-
ity of precipitation. That is, a large enhancement factor can
make the part of the cloud with higher qc within the grid box
more efficient in generating precipitation, rather than the en-
tire model grid.

Using the liquid water path (LWP) retrieved from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
as an indicator of cloud inhomogeneity, Wood and Hart-
mann (2006) found that when clouds become more inho-
mogeneous, cloud fraction decreases, and open cells become
dominant, accompanied by stronger drizzle (Comstock et al.,
2007). The relationship between reduced homogeneity and
stronger precipitation intensity found in this study is sim-
ilar to the findings in other studies (e.g., Wood and Hart-
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mann, 2006; Comstock et., 2007; Barker et al., 1996; Pincus
et al., 1999).

It is clear that qc andNc in Fig. 1b are correlated with each
other. In addition to their natural relationships, qc and Nc in
our retrieval method are also correlated (Dong et al., 2014a,
b). Thus, the effect of qc and Nc covariance on Eauto is not
included in this study. In Fig. 1c and d, the results are calcu-
lated using an equivalent size of 180 km for the selected case
on 27 July 2010. In Sect. 4.2, we will use these approaches to
calculate their statistical results for multiple equivalent sizes
using the 19-month ARM ground-based observations and re-
trievals.

4.2 Statistical result

For a specific equivalent size, e.g., 60 km, we estimate the
shape parameter (ν) and calculate Eauto through Eqs. (5) and
(7). The PDFs of Eauto for both 60 and 180 km equivalent
sizes are shown in Fig. 2a–d. The distributions of Eauto val-
ues calculated from qc with 60 and 180 km equivalent sizes
(Fig. 2a and b) are different from each other (2.79 vs. 3.3).
The calculated Eauto values range from 1 to 10, and most
are less than 4. The average value for the 60 km equivalent
size (2.79) is smaller than that for the 180 km equivalent size
(3.2), indicating a possible dependence of Eauto on model
grid size. Because drizzle-sized drops are primarily formed
by autoconversion, we investigate the relationship between
Eauto and precipitation frequency, which is defined as the
average percentage of drizzling occurrence based on radar
reflectivity below cloud base. Given the average LWP over
the Azores from Dong et al. (2014b, 109–140 g m−2), the
precipitation frequency (black lines in Fig. 2a and b) agrees
well with those from Kubar et al. (2009, 0.1–0.7 from their
Fig. 11). The precipitation frequency within each bin shows
an increasing trend for Eauto from 0 to 4–6, then oscillates
when Eauto > 6, indicating that in the precipitation initia-
tion process, Eauto keeps increasing to a certain value (∼ 6)
until the precipitation frequency reaches a near-steady state.
Higher precipitation frequency does not necessarily result in
larger Eauto values but instead may produce more drizzle-
sized drops from autoconversion process when the cloud is
precipitating.

The PDFs of Eauto calculated from Nc also share similar
patterns of positive skewness and peaks at ∼ 1.5–2.0 for the
60 and 180 km equivalent sizes (Fig. 2c and d). Although
the average values are close to their qc counterparts (2.54
vs. 2.79 for 60 km and 3.45 vs. 3.2 for 180 km), the differ-
ence in Eauto between 60 and 180 km equivalent sizes be-
comes large. The precipitation frequencies within each bin
are nearly constant or decrease slightly, which is different
from their qc counterparts shown in Fig. 2a and b. This
suggests complicated effects of droplet number concentra-
tion on precipitation initiation and warrants more exploration
of aerosol–cloud–precipitation interactions. As mentioned in
Sect. 2, qc and Nc are also fitted using lognormal distribu-

tions to calculateEauto. The results are close to those in Fig. 2
(not shown here), with average values of 3.28 and 3.84, re-
spectively, for 60 and 180 km equivalent sizes. Because the
Eauto values calculated from qc and Nc are close to each
other, we will focus on analyzing the results from qc only for
simplicity and clarity. The effect of qc and Nc covariance, as
stated in Sect. 4.1, is not presented in this study due to the in-
trinsic correlation in the retrieval (Dong et al., 2014a, b, and
Appendix A of this study).

The covariance of qc and qr is included in calculatingEaccr
and the results are shown in Fig. 2e and f. The calculated
Eaccr values range from 1 to 4, with mean values of 1.62 and
1.76 for 60 and 180 km equivalent sizes, respectively. These
two mean values are much greater than the prescribed value
used in MG08 (1.07). Since accretion is dominant in the mid-
dle and lower parts of the cloud where raindrops sediment
and continue to grow by collecting cloud droplets, we super-
impose the ratio of qr to qc within each bin (black lines in
Fig. 2e and f) to represent the portion of rain water in the
cloud layer. In both panels, the ratios are less than 15 %,
which means that qr can be 1 order of magnitude smaller
than qc. The differences in magnitude are consistent with
previous CloudSat and aircraft results (e.g., Boutle et al.,
2014). This ratio increases from Eaccr = 0 to ∼ 2 and then
decreases, suggesting that the conversion efficiency cannot
be infinitely increased with Eaccr under available cloud wa-
ter. The ratio of qr to qc increases from Eaccr = 1.07 (0.063)
to Eaccr = 2.0 (0.142), indicating that the fraction of rain
water in total liquid water using the prescribed Eaccr is too
low. This ratio could be increased significantly using a large
Eaccr value, therefore increasing precipitation intensity in the
models. This further suggests that the prescribed value of
Eaccr = 1.07 used in MG08 is too small to correctly simulate
precipitation intensity in the models. Therefore, similar to the
conclusions in Lebsock et al. (2013) and Boutle et al. (2014),
we suggest increasing Eaccr from 1.07 to 1.5–2.0 in GCMs.

To illustrate the impact of using prescribed enhancement
factors, autoconversion and accretion rates are calculated us-
ing the prescribed values (e.g., 3.2 for Eauto and 1.07 for
Eaccr, MG08; Xie and Zhang, 2015) and the newly calculated
ones in Fig. 2 that use observations and retrievals. Figure 3
shows the joint density of autoconversion (Fig. 3a and b) and
accretion rates (Fig. 3c and d) from observations (x axis) and
model parameterizations (y axis) for 60 and 180 km equiva-
lent sizes. Despite the spread, the peaks in the joint density
of autoconversion rate appear slightly above the 1 : 1 line, es-
pecially for the 60 km equivalent size, suggesting that cloud
droplets in the model are more easily converted into driz-
zle/raindrops than in the observations. On the other hand,
the peaks in the accretion rate appear slightly below the 1 : 1
line, which indicates that simulated precipitation intensities
are lower than observed ones. The magnitudes of the two
rates are consistent with Khairoutdinov and Kogan (2000),
Liu and Daum (2004), and Wood (2005b).
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Figure 3. Comparison of autoconversion (a–b) and accretion (c–d) rates derived from observations (x axis) and from the model (y axis).
Results are for 60 km (a, c) and 180 km (b, d) model equivalent sizes. Colored dots represent joint number densities.

Compared to the observations, the precipitation in GCMs
occurs at higher frequencies with lower intensities, which
might explain why the total precipitation amounts are close
to surface measurements over an entire grid box. This
“promising” result, however, fails to simulate precipitation
on the right scale and cannot capture the correct rain wa-
ter amount, thus providing limited information in estimating
rain water evaporation and air–sea energy exchange.

Clouds in an unstable boundary layer have a better chance
of getting moisture supply from the surface by upward mo-
tion than clouds in a stable boundary layer. Precipitation
frequencies are thus different in these two boundary layer
regimes. For example, clouds in a relatively unstable bound-
ary layer produce drizzle more easily than those in a stable
boundary layer. Given the same boundary layer conditions,
CLWP is an important factor in determining the precipita-
tion status of clouds. Over the Azores, precipitating clouds
are more likely to have CLWP greater than 75 g m−2 than
their non-precipitating counterparts (Rémillard et al., 2012).
To further investigate what conditions and parameters can
significantly influence the enhancement factors, we classify
low-level clouds according to their boundary layer conditions
and CLWPs.

The averaged Eauto and Eaccr values for each category
are listed in Table 2. Both Eauto and Eaccr increase when
the boundary layer becomes less stable, and these values
become larger in precipitating clouds (CLWP> 75 g m−2)

than those in non-precipitating clouds (CLWP< 75 g m−2).

Table 2. Autoconversion (left values) and accretion (right values)
enhancement factors in different boundary layer conditions (LTS>
18 K for stable, LTS< 13.5 K for unstable, and LTS within 13.5
and 18 K for mid-stable) and in different LWP regimes (LWP≤
75 g m−2 for non-precipitating and LWP> 75 g m−2 for precipi-
tating).

LWP≤ 75 g m−2 LWP> 75 g m−2

LTS> 18 K 2.32/1.42 2.75/1.52
13.5≤LTS≤ 18 K 2.61/1.47 3.07/1.68
LTS< 13.5 K 4.62/1.72 6.94/1.86

In model parameterizations, the autoconversion process only
occurs when qc or cloud droplet size reaches a certain thresh-
old (e.g., Kessler, 1969; Liu and Daum, 2004). Thus, it will
not affect model simulations if a valid Eauto is assigned to
Eq. (1) in a non-precipitating cloud. The Eauto values in both
stable and mid-stable boundary layer conditions are smaller
than the prescribed value of 3.2, while the values in unsta-
ble boundary layers are significantly larger than 3.2, regard-
less of whether they are precipitating. All Eaccr values are
greater than the constant of 1.07. The Eauto values in Table 2
range from 2.32 to 6.94 and the Eaccr values vary from 1.42
to 1.86, depending on different boundary layer conditions
and CLWPs. Therefore, as suggested by Hill et al. (2015),
the selection of Eauto and Eaccr values in GCMs should be
regime-dependent.

Atmos. Chem. Phys., 18, 17405–17420, 2018 www.atmos-chem-phys.net/18/17405/2018/



P. Wu et al.: Evaluation of autoconversion and accretion enhancement factors 17413

Figure 4. Autoconversion (red line) and accretion (blue line) en-
hancement factors as a function of equivalent sizes. The shaded ar-
eas are calculated by varying qc and qr within their retrieval uncer-
tainties. The two dashed lines show the constant values of autocon-
version (3.2) and accretion (1.07) enhancement factors prescribed
in MG08.

To properly parameterize subgrid variabilities, the ap-
proaches of Hill et al. (2015) and Walters et al. (2017) can be
adopted. To use MG08 and other parameterizations in GCMs
as listed in Table 1, proper adjustments can be made accord-
ing to the model grid size, boundary layer conditions, and
precipitating status. As stated in the methodology, we used
a variety of equivalent sizes. Figure 4 demonstrates the de-
pendence of both enhancement factors on different model
grid sizes. The Eauto values (red line) increase from 1.97
at an equivalent size of 30 km to 3.15 at an equivalent size
of 120 km, which are 38.4 % and 2 % percent lower than the
prescribed value (3.2, upper dashed line). After that, theEauto
values remain relatively constant at ∼ 3.18 when the equiv-
alent model size is 180 km, which is close to the prescribed
value of 3.2 used in MG08. This result indicates that the pre-
scribed value in MG08 is appropriate for large grid sizes in
GCMs. The Eaccr values (blue line) increase from 1.53 at
an equivalent size of 30 km to 1.76 at an equivalent size of
180 km, increases of 43 % and 64 %, respectively, larger than
the prescribed value (1.07, lower dashed line). The shaded ar-
eas represent the uncertainties in Eauto and Eaccr associated
with the uncertainties in the retrieved qc and qr. When equiv-
alent size increases, the uncertainties decrease slightly. The
prescribed Eauto is close to the upper boundary of uncertain-
ties except for the 30 km equivalent size, while the prescribed
Eaccr is significantly lower than the lower boundary.

It is noted that Eauto and Eaccr depart from their prescribed
values in opposite directions as the equivalent size increases.
For models with finer resolutions (e.g., 30 km), both Eauto
and Eaccr are significantly different from the prescribed val-
ues, which can partially explain the issue of “too-frequent”
and “too-light” precipitation. Under both conditions, the ac-
curacy of precipitation estimation is degraded. For models

with coarser resolutions (e.g., 180 km), the average Eauto is
exactly 3.2, while Eaccr is much larger than 1.07 when com-
pared to finer-resolution simulations. In such situations, the
simulated precipitation will be dominated by the too-light
problem, in addition to being regime-dependent (Table 2),
and as in Xie and Zhang (2015), Eauto and Eaccr should also
be scale-dependent.

Also note that the location of ground-based observations
and retrievals used in this study is in the remote ocean, where
the MBL clouds mainly form in a relatively stable boundary
layer and are characterized by high precipitation frequency.
Even in such environments, however, GCMs overestimate
the precipitation frequency (Ahlgrimm and Forbes, 2014).

To further investigate how enhancement factors affect pre-
cipitation simulations, we use Eauto as a fixed value of 3.2
in Eq. (4) and then calculate the qc needed for models to
reach the same autoconversion rate as observations. The qc
differences between models and observations are then calcu-
lated, which represent the qc adjustment in models to achieve
a realistic autoconversion rate in the simulations. Similar to
Fig. 1, the PDFs of qc differences (model–observation) are
plotted in Fig. 5a and b for 60 and 180 km equivalent sizes.
Figure 5c shows the average percentages of model qc adjust-
ments for different equivalent sizes. The mode and average
values for the 30 km equivalent size are negative, suggest-
ing that models need to simulate lower qc in general to get
reasonable autoconversion rates. Lower qc values are usu-
ally associated with smaller Eauto values that induce lower
simulated precipitation frequency. On average, the percent-
age of qc adjustments decreases with increasing equivalent
size. For example, the adjustments for finer resolutions (e.g.,
30–60 km) can be ∼ 20 % of the qc, whereas adjustments in
coarse-resolution models (e.g., 120–180 km) are relatively
small because the prescribed Eauto (equal to 3.2) is close
to the observed ones (Fig. 4), and when equivalent size is
180 km, no adjustment is needed. The adjustment method
presented in Fig. 5, however, may change cloud water sub-
stantially and may cause a variety of subsequent issues, such
as altering cloud radiative effects and disrupting the hydro-
logical cycle. The assessment in Fig. 5 only provides a ref-
erence to the equivalent effect on cloud water by using the
prescribed Eauto value as compared to those from observa-
tions.

All above discussions are based on the prescribed Eauto
and Eaccr values (3.2 and 1.07) in MG08, whereas there
are quite a few parameterizations that have been published
so far. In this study, we list Eauto and Eaccr for three other
widely used parameterization schemes in Table 3, which are
given only for 60 and 180 km equivalent sizes. The values
of the exponent in each scheme directly affect the values
of the enhancement factors. For example, the scheme in Be-
heng (1994) has the highest degree of nonlinearity and hence
the largest enhancement factors. The scheme in Liu and
Daum (2004) is very similar to the scheme in Khairoutdinov
and Kogan (2000) because both schemes have a physically
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Figure 5. qc needed for models to adjust to reach the same auto-
conversion rate as observations for (a) 60 km and (b) 180 km model
equivalent sizes. Positive biases represent increased qc required in
models, and negative biases mean decreased qc. The average per-
centages of adjustments for different equivalent sizes are shown in
panel (c). Note that the percentages in the vertical axis are negative.

realistic dependence on cloud water content and number con-
centration (Wood, 2005b). For a detailed overview and dis-
cussion of various existing parameterizations, please refer to
Liu and Daum (2004), Liu et al. (2006a), Liu et al. (2006b),
Wood (2005b), and Michibata and Takemura (2015). A
physical-based autoconversion parameterization was devel-
oped by Lee and Baik (2017), in which the scheme was
derived by solving the stochastic collection equation with
an approximated collection kernel that is constructed using
the terminal velocity of cloud droplets and the collision ef-
ficiency obtained from a particle trajectory model. Due to
the greatly increased complexity of their equation, we do
not attempt to calculate Eauto here but it should be exam-
ined in future studies due to the physically appealing Lee and
Baik (2017) scheme.

5 Summary

To better understand the influence of subgrid cloud variations
on the warm-rain process simulations in GCMs, we inves-
tigated the warm-rain parameterizations of autoconversion
(Eauto) and accretion (Eaccr) enhancement factors in MG08.
These two factors represent the effects of subgrid cloud and
precipitation variabilities when parameterizing autoconver-
sion and accretion rates as functions of grid-mean quanti-
ties. Eauto and Eaccr are prescribed as 3.2 and 1.07, respec-
tively, in the widely used MG08 scheme. To assess the de-
pendence of the two parameters on subgrid-scale variabili-

Table 3. Autoconversion and accretion enhancement factors (Eauto
and Eaccr) for the parameterizations in Table 1, except for the
Khairoutdinov and Kogan (2000) scheme. The values are averaged
for 60 and 180 km equivalent sizes. NA – not available.

Eauto Eaccr

60 km 180 km 60 km 180 km

Liu and Daum (2004) 3.82 4.23 NA NA
Tripoli and Cotton (1980) 2.46 2.69 1.47 1.56
Beheng (1994) 6.94 5.88 1.47 1.56

ties, we used ground-based observations and retrievals col-
lected at the DOE ARM Azores site to reconstruct the two
enhancement factors in different equivalent sizes.

From the retrieved qc and qr profiles, the averaged qc val-
ues within the top five range gates are used to calculateEauto,
and the averaged qc and qr within five range gates around
maximum reflectivity are used to calculate Eaccr. The calcu-
lated Eauto values from observations and retrievals increase
from 1.96 at an equivalent size of 30 km to 3.18 at an equiv-
alent size of 150 km. These values are 38 % and 0.625 %
lower than the prescribed value of 3.2. The prescribed value
in MG08 represents well the large grid sizes in GCMs (e.g.,
1802 km2 grid). On the other hand, the Eaccr values increase
from 1.53 at an equivalent size of 30 km to 1.76 at an equiv-
alent size of 180 km, which are 43 % and 64 % higher than
the prescribed value (1.07). The higher Eauto and lower Eaccr
prescribed in GCMs help to explain the issue of too-frequent
precipitation events with too-light precipitation intensity. The
ratios of rain to cloud liquid water increase with increasing
Eaccr from 0 to 2 and then decrease thereafter; the values
at Eaccr = 1.07 and Eaccr = 2.0 are 0.063 and 0.142, further
underscoring that the prescribed value of Eaccr = 1.07 is too
small to simulate correct precipitation intensity in models.

To further investigate what conditions and parameters can
significantly influence the enhancement factors, we classified
low-level clouds according to their boundary layer conditions
and CLWPs. Both Eauto and Eaccr increase when the bound-
ary layer conditions become less stable, and the values are
larger in precipitating clouds (CLWP> 75 g m−2) than those
in non-precipitating clouds (CLWP< 75 g m−2). The Eauto
values in both stable and mid-stable boundary layer condi-
tions are smaller than the prescribed value of 3.2, while those
in unstable boundary layer conditions are significantly larger
than 3.2 regardless of whether or not the cloud is precipitat-
ing (Table 2). All Eaccr values are greater than the prescribed
value of 1.07. Therefore, the selection of Eauto and Eaccr val-
ues in GCMs should be regime-dependent, which also has
been suggested by Hill et al. (2015) and Walters et al. (2017).

This study, however, did not include the effect of uncer-
tainties in GCM simulated cloud and precipitation properties
on subgrid-scale variations. For example, we did not consider
the behavior of the two enhancement factors under differ-
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ent aerosol regimes, a condition which may affect the pre-
cipitation formation process. The effect of aerosol–cloud–
precipitation interactions on cloud and precipitation subgrid
variabilities may be of comparable importance to meteoro-
logical regimes and precipitation status and deserves further
study. Other than the large-scale dynamics, e.g., LTS in this
study, upward/downward motion at subgrid scale may also
modify cloud and precipitation development and affect the
calculations of enhancement factors. The investigation of the
dependence of Eauto and Eaccr on aerosol type and concen-
tration as well as on vertical velocity would be a natural ex-
tension and complement the current study. In addition, other
factors may also affect precipitation frequency and intensity
even under the same aerosol regimes and even if the clouds
have similar cloud water content. Wind shear, for example,
as presented in Wu et al. (2017), is an external variable that
can affect precipitation formation. Further studies are needed
to evaluate the role of the covariance of qc and Nc at subgrid
scales on Eauto, which is beyond the scope of this study and
requires independent retrieval techniques.

Data availability. The ground-based measurements were obtained
from the Atmospheric Radiation Measurement (ARM) program.
The data can be downloaded from http://www.archive.arm.gov/
(last access: 8 March 2016).
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Appendix A: Joint cloud and rain liquid water content
(LWC) profile estimation

If a time step is identified as non-precipitating, the CLWC
profile is retrieved using Frisch et al. (1995) and Dong et
al. (1998, 2014a, b). The retrieved CLWC is proportional to
radar reflectivity.

If a time step is identified as precipitating (maximum re-
flectivity below cloud base exceeds −37 dBZ), the CLWC
profile is first inferred from temperature and pressure in
merged sounding by assuming adiabatic growth. Marine stra-
tocumulus clouds are close to adiabatic (Albrecht et al.,
1990), which assists cloud property retrievals (e.g., Rémil-
lard et al., 2013). In this study, we use the information from
rain properties near cloud base to further constrain the adia-
batic CLWC (CLWCadiabatic).

Adopting the method of O’Connor et al. (2005), Wu et
al. (2015) retrieved rain properties below cloud base (CB)
for the same period as in this study. In Wu et al. (2015), rain-
drop size (median diameter, D0), shape parameter (µ), and
normalized rain droplet number concentration (NW) are re-
trieved for the assumed rain particle size distribution (PSD):

nr(D)=NWf (µ)

(
D

D0

)µ
exp[−

(3.67+µ)D
D0

]. (A1)

To infer rain properties above cloud base, we adopt the as-
sumption in Fielding et al. (2015) that NW increases from
below CB to within the cloud. This assumption is consistent
with the in situ measurement in Wood (2005a). Similar to
Fielding et al. (2015), we use constant NW within the cloud
if the vertical gradient of NW is negative below CB. The µ
within the cloud is treated as constant and is taken as the
average value from four range gates below CB. Another as-
sumption in the retrieval is that the evaporation of raindrops
is negligible from one range gate above CB to one range gate
below CB; thus, we assume raindrop size is the same at the
range gates below and above CB.

With the above information, we can calculate the reflec-
tivity contributed by rain at the first range gate above CB
(Zr(1)), and the cloud reflectivity (Zc(1)) is then Zc(1)=
Z(1)−Zr(1), where Z(1) is the WACR measured reflectiv-
ity at the first range gate above CB. Using the cloud droplet
number concentration (Nc) from Dong et al. (2014a, b),
CLWC at the first range gate above CB can be calculated
through

Zc(1)= 26

∞∫
0

nc (r)r
6dr =

36
π2ρ2

w

CLWC(1)reflectivity
2

Nc

exp(9σ 2
x ) (A2.1)

CLWC(1)reflectivity =

√
Zc (1) π2ρ2

wNc

36exp(9σ 2
x )

, (A2.2)

where ρw is liquid water density and nc (r) is the lognor-
mal distribution of cloud PSD with logarithmic width σx .

Geoffroy et al. (2010) suggested that σx increases with the
length scale, and Witte et al. (2018) showed that σx is also
dependent on the choice of instrumentation. The variations of
σx should be reflected in the retrieval by using different σx
values with time. However, no aircraft measurements were
available during CAP-MBL to provide σx over the Azores
region. The inclusion of solving σx in the retrieval adds an-
other degree of freedom to the equations and complicates the
problem considerably. In this study, σx is set to a constant
value of 0.38 from Miles et al. (2000), which is a statistical
value from aircraft measurements in marine low-level clouds.

We then compare the CLWCadiabatic and the one calculated
from CLWCreflectivity at the first range gate above CB. A scale

parameter (s) is defined as s = CLWCreflectivity(1)
CLWCadiabatic(1)

, and the entire
profile of CLWCadiabatic is multiplied by s to correct the bias
from cloud subadiabaticity. The reflectivity profile from the
cloud is then calculated from Eq. (A2.1) using the updated
CLWCadiabatic, and the remaining reflectivity profile from the
WACR observation is regarded as the rain contribution. Rain
particle size can then be calculated given that NW and µ are
known and rain liquid water content (RLWC) can be esti-
mated.

There are two constraints used in the retrieval. One is that
the summation of cloud and rain liquid water path (CLWP
and RLWP) must be equal to the LWP from the microwave
radiometer observation. Another is that raindrop size (D0)

near cloud top must be equal to or greater than 50 µm, and
if D0 is less than 50 µm, we decrease NW for the entire rain
profile within the cloud and repeat the calculation until the
50 µm criterion is satisfied.

It is difficult to quantitatively estimate the retrieval un-
certainties without aircraft in situ measurements. For the
proposed retrieval method, 18 % should be used as uncer-
tainty for RLWC from rain properties in Wu et al. (2015)
and 30 % for CLWC from cloud properties in Dong et al.
(2014a, b). The actual uncertainty depends on the accuracy
of the merged sounding data, the sensitivity of WACR near
cloud base, and the effect of entrainment on cloud adiabatic-
ity during precipitation. A recent aircraft field campaign, the
Aerosol and Cloud Experiments in the Eastern North Atlantic
(ACE-ENA), was conducted during 2017–2018 with a total
of 39 flights over the Azores, near the ARM ENA site on Gra-
ciosa Island. These aircraft in situ measurements will be used
to validate the ground-based retrievals and quantitatively es-
timate their uncertainties in the future.

Figure A1 shows an example of the retrieval results. The
merged sounding, ceilometer, microwave radiometer, and
WACR are used in the retrieval. Whenever one or more in-
struments are not reliable, that time step is skipped, and
this results in the gaps in the CLWC and RLWC as shown
in Fig. A1b and c. When the cloud is classified as non-
precipitating, no RLWC will be retrieved. Using air density
(ρair) profiles calculated from temperature and pressure in
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Figure A1. Joint retrieval of cloud and rain liquid water content (CLWC and RLWC) for the same case as in Fig. 1. (a) WACR reflectivity,
(b) CLWC, and (c) RLWC. The black dots represent cloud-base height. Blank gaps are a result of the data from one or more observations
being not available or reliable. For example, the gap before 14:00 UTC is due to multiple cloud layers, whereas we only focus on a single
layer cloud.

merged sounding, mixing ratio (q) can be calculated from
LWC using q (z)= LWC(z)/ρair(z).
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