
Atmos. Chem. Phys., 18, 17387–17404, 2018
https://doi.org/10.5194/acp-18-17387-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

The impact of multi-species surface chemical observation
assimilation on air quality forecasts in China
Zhen Peng1, Lili Lei1,2, Zhiquan Liu3, Jianning Sun1,4, Aijun Ding1,4, Junmei Ban3, Dan Chen5, Xingxia Kou5, and
Kekuan Chu1,2

1School of Atmospheric Sciences, Nanjing University, Nanjing, China
2Key Laboratory of Mesoscale Severe Weather/Ministry of Education, Nanjing University, Nanjing, China
3National Center for Atmospheric Research, Boulder, Colorado, USA
4Jiangsu Provincial Collaborative Innovation Center for Climate Change, Nanjing, China
5Institute of Urban Meteorology, CMA, Beijing, China

Correspondence: Zhen Peng (pengzhen@nju.edu.cn) and Zhiquan Liu (liuz@ucar.edu)

Received: 26 July 2018 – Discussion started: 30 July 2018
Revised: 31 October 2018 – Accepted: 10 November 2018 – Published: 7 December 2018

Abstract. An ensemble Kalman filter data assimilation (DA)
system has been developed to improve air quality forecasts
using surface measurements of PM10, PM2.5, SO2, NO2, O3,
and CO together with an online regional chemical trans-
port model, WRF-Chem (Weather Research and Forecast-
ing with Chemistry). This DA system was applied to simul-
taneously adjust the chemical initial conditions (ICs) and
emission inputs of the species affecting PM10, PM2.5, SO2,
NO2, O3, and CO concentrations during an extreme haze
episode that occurred in early October 2014 over East Asia.
Numerical experimental results indicate that ICs played key
roles in PM2.5, PM10 and CO forecasts during the severe
haze episode over the North China Plain. The 72 h verifi-
cation forecasts with the optimized ICs and emissions per-
formed very similarly to the verification forecasts with only
optimized ICs and the prescribed emissions. For the first-
day forecast, near-perfect verification forecasts results were
achieved. However, with longer-range forecasts, the DA im-
pacts decayed quickly. For the SO2 verification forecasts, it
was efficient to improve the SO2 forecast via the joint ad-
justment of SO2 ICs and emissions. Large improvements
were achieved for SO2 forecasts with both the optimized
ICs and emissions for the whole 72 h forecast range. Simi-
lar improvements were achieved for SO2 forecasts with op-
timized ICs only for the first 3 h, and then the impact of the
ICs decayed quickly. For the NO2 verification forecasts, both
forecasts performed much worse than the control run with-
out DA. Plus, the 72 h O3 verification forecasts performed

worse than the control run during the daytime, due to the
worse performance of the NO2 forecasts, even though they
performed better at night. However, relatively favorable NO2
and O3 forecast results were achieved for the Yangtze River
delta and Pearl River delta regions.

1 Introduction

Predicting and simulating air quality remains a challenge
in heavily polluted regions (Wang et al., 2014; Ding et al.,
2016). Chemical data assimilation (DA), which combines ob-
servations and model simulations, is recognized as one ef-
fective method to improve air quality forecasts. It has been
widely used to assimilate aerosol measurements from both
ground-based and spaceborne platforms, including surface
PM10 observations (Jiang et al., 2013; Pagowski et al., 2014),
surface PM2.5 observations (Li et al., 2013; Zhang et al.,
2016), lidar observations (Yumimoto et al., 2007, 2008),
aerosol optical depth products from AERONET (the AErosol
RObotic NETwork) (Schutgens et al., 2010a, b, 2012), and
various satellites (Sekiyama et al., 2010; Liu et al., 2011; Dai
et al., 2014). These studies indicate that assimilating observa-
tions can substantially improve the spatiotemporal variations
of aerosol in the simulation and forecasts.

Aerosols are not only primarily emitted; a larger portion
of them is also formed secondarily through reactions with
several gaseous-phase precursors and oxidants in the atmo-
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sphere (Huang et al., 2014; Nie et al., 2014; Xie et al.,
2015). So, observations of trace gases are also useful in
assimilating data for aerosol simulations and forecasts. Ef-
forts to assimilate atmospheric-composition observations –
like O3, SO2, NO, NO2, CO, and NH3 – have also been
made. For example, Elbern et al. (1997, 2000, 2007) and El-
bern and Schmidt (1999, 2001) developed a 4D-VAR (four-
dimensional variational) system to assimilate surface mea-
surements of O3, SO2, NO, and NO2 to improve air qual-
ity forecasts with the joint adjustment of initial conditions
(ICs) and emission rates. Later, van Loon et al. (2000)
assimilated O3 in the transport chemistry model LOTOS,
based on an ensemble Kalman filter (EnKF). Heemink and
Segers (2002) attempted to reconstruct NOx and volatile or-
ganic compound (VOC) emissions for O3 forecasting by as-
similating O3. Carmichael et al. (2003, 2008a, b) developed
4D-VAR and EnKF systems to assimilate O3 and NO2 to im-
prove ICs and emission sources for O3 forecasting. Hakami
et al. (2005) constrained black carbon (BC) emissions during
the Asian Pacific Regional Aerosol Characterization Exper-
iment. Henze et al. (2007, 2009) estimated SOx , NOx , and
NH3 emissions based on a 4D-VAR method by assimilating
surface sulfate and nitrate aerosol observations. Other studies
have estimated the NOx (van der A et al., 2006, 2017; Mi-
jling and van der A, 2012; Mijling et al., 2009, 2013; Ding et
al., 2015) and SO2 emissions (van der et A al., 2017) based
on an extended Kalman filter by assimilating SO2 and NO2
retrievals from SCIAMACHY (SCanning Imaging Absorp-
tion spectroMeter for Atmospheric CHartographY) and OMI
(Ozone Monitoring Instrument). Barbu et al. (2009) applied
an EnKF to optimize the emissions and conversion rates us-
ing surface measurements of SO2 and sulfate. McLinden et
al. (2016) constrained SO2 emissions using space-based ob-
servations.

In recent years, severe haze pollution episodes have begun
to occur more frequently in China, especially in the megac-
ity clusters of eastern China (e.g., Parrish and Zhu, 2009;
Sun et al., 2015; Zhang et al., 2015). Thus, regional haze,
especially when accompanied by extremely high PM2.5 con-
centrations, has drawn significant research interest. However,
there are large uncertainties involved in the numerical pre-
diction of atmospheric aerosols. During severe haze pollu-
tion episodes, air quality models often underestimate the ex-
treme peak mass concentration of particulate matter (Wang
et al., 2014). Previous studies have revealed that the as-
similation of atmospheric-composition observations can im-
prove air quality forecasts by constraining the uncertainties
of both the chemical ICs and emissions (Tang et al., 2010,
2011, 2013, 2016; Miyazaki and Eskes, 2013; Miyazaki et
al., 2012, 2014). Peng et al. (2017) demonstrated that sig-
nificant improvements in forecasting PM2.5 can be achieved
via the joint adjustment of ICs and source emissions using an
EnKF to assimilate surface PM2.5 observations.

In 2013, China launched an atmospheric environmen-
tal monitoring system that provides real-time and online at-

mospheric chemical observations, including PM10, PM2.5,
SO2, NO2, O3, and CO (http://113.108.142.147:20035/
emcpublish/, last access: 26 November 2018). This dataset
provides an opportunity to improve air quality forecasts us-
ing DA. However, such fruitful observations are less used in
air quality forecasting even though a large discrepancy exists
between the forecasts and observations. But it is now possi-
ble to estimate the impact on forecast improvement of simul-
taneously assimilating various surface observations. Thus,
we developed an EnKF system that can simultaneously as-
similate surface measurements of PM10, PM2.5, SO2, NO2,
O3, and CO to correct WRF-Chem (Weather Research and
Forecasting model with Chemistry) forecasts using the God-
dard Chemistry Aerosol Radiation and Transport (GOCART)
aerosol scheme. As an extension to Peng et al. (2017), the im-
pact of simultaneously assimilating various surface aerosol
and chemical observations was investigated.

Sections 2 and 3 briefly describe the DA system and obser-
vations used in this study, respectively. The experimental de-
sign is introduced in Sect. 4. Finally, the assimilation results
are presented in Sect. 5, before a brief summary in Sect. 6.

2 DA system

The DA system in this study was the same as the one used in
Peng et al. (2017). It can simultaneously analyze the chemi-
cal ICs and emissions with the assimilation of surface PM2.5
observations. A brief summary of the DA system is intro-
duced here.

In every DA cycle, the ensemble emission scaling factors
λf are first calculated by the forecast model of scaling fac-
tors MSF (see details of MSF in Sect. 2.2). Then, the ensem-
ble forecast emissions Ef are calculated using the following
equation:

Ei,t = λi,tE
p
t , (i = 1, . . .,N), (1)

where Ep
t is the prescribed anthropogenic emission. The en-

semble members of chemical fields Cf are forecasted using
WRF-Chem, forced by the forecast emissions Ef whose ICs
are previously analyzed concentration fields. Now, the back-
ground of the joint vector, xf

=
[
Cf,λf]T, has been produced.

Then, the analyzed state vector, xa
=
[
Ca,λa]T, is optimized

using an ensemble square root filter (EnSRF). Finally, the
assimilated emissions Ea can be obtained using Eq. (1). It
is noted that the optimized emissions are only the results of
a mathematical optimum by utilizing observations. If the op-
timized emissions used in the EnSRF experiment run with
pure concentrations as state vectors are identical to the emis-
sions obtained from the joint EnSRF experiment run with
concentrations and emission factors (representing emissions)
as state vectors, identical results may be obtained.
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Table 1. WRF-Chem model configurations in this study.

Parameterization WRF-Chem option

Aerosol scheme Goddard Chemistry Aerosol Radiation and Transport (Chin et al., 2000, 2002)
Photolysis scheme Fast-J (Wild et al., 2000)
Gas-phase chemistry Regional Atmospheric Chemistry Mechanism (Stockwell et al., 1997)
Microphysics the WRF single-moment 5-class scheme
Longwave radiation Rapid Radiative Transfer Model longwave scheme (Mlawer et al., 1997)
Shortwave radiation Goddard shortwave radiation scheme (Chou and Suarez, 1994)
Planetary boundary layer Yonsei University boundary layer scheme (Hong et al., 2006)
Cumulus parameterization Grell-3D scheme
Land surface model NOAH (Chen and Dudhia, 2001)
Dust and sea salt emissions Goddard Chemistry Aerosol Radiation and Transport (Chin et al., 2002)

Figure 1. The model domain (a) and the North China Plain (b). Black dots are the observational sites used for assimilation, and red stars are
the observational sites used for validation. The green frame marks the Beijing–Tianjin–Hebei region.

2.1 WRF-Chem model

The model used to simulate the transport of aerosols and
chemical species was the WRF-Chem (Grell et al., 2005).
As in Peng et al. (2017), we used version 3.6.1; the physi-
cal and chemical parameterization options are listed in Ta-
ble 1. The model computational domain covered almost the
whole of China, and the horizontal resolution was 40.5 km.
Figure 1b shows our area of interest, the North China Plain
(NCP). The model included 57 vertical levels, and the model
top was 10 hPa.

The hourly prior anthropogenic emissions were based on
the Multi-resolution Emission Inventory for China (MEIC)
(Li et al., 2014) for October 2010, instead of the regional
emission inventory in Asia (Zhang et al., 2009) for the year
2006 in Peng et al. (2017). The reason we chose the MEIC-
2010 was that the total emissions are reasonable for cities
over the NCP (Zheng et al., 2015). The original resolution of
the MEIC-2010 is 0.25◦×0.25◦, but it has been processed to
match the model resolution (40.5 km) (Chen et al., 2016). No

time variation was added to maintain objectivity in the prior
anthropogenic emissions.

2.2 Forecast model of scaling factors

In this work, the primary sources to be optimized were
the emissions of PM10, PM2.5, SO2, NO, NH3, and CO.
The sources of NH3 were analyzed because they also im-
pact greatly on the aerosols distribution. Thus, the emission
scaling factors λf

i,t = (λ
f
PM2.5

,λf
PM10

,λf
SO2
,λf

NO,λ
f
NH3

,λf
CO)

were prepared by the forecast model of scaling operatorMSF
before WRF-Chem integration.

We used the same persistence forecast operator MSF to
forecast λf

i,t as in Peng et al. (2017). The forecast opera-
tor was developed by using the ensemble forecast chemical
fields. Thus,

κi,t =
Cf
i,t

C
f
t

, (i = 1, . . .,N) (2)
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(κi,t )inf = β
(
κi,t − κt

)
+ κt , (i = 1, . . .,N) (3)

λ
p
i,t = (κi,t )inf (4)

λf
i,t =

1
4

(
λa
i,t−3+λ

a
i,t−2+λ

a
i,t−1+λ

p
i,t

)
, (5)

(i = 1, . . .,N),

where Cf
i,t is the ith ensemble member of the chemical fields

at time t , andCf
t =

1
N

N∑
i=1
Cf
i,t is the ensemble mean; κi,t is the

ensemble concentration ratios and κt is the ensemble mean
of κi,t with values of 1; β is the inflation factor to keep
the ensemble spreads of κi,t at a certain level; and λa

i,t−1,
λa
i,t−2, and λa

i,t−3 are the previous assimilated emission scal-
ing factors. It is noted that λf

i,t are spatially varying because
they are calculated by using the spatially varying variables,
the forecast chemical fields Cf

i,t . Furthermore, there are very
few negative values for (κi,t )inf after inflation. A quality con-
trol procedure is performed for (κi,t )inf before further appli-
ance. All these negative data were set as 0 in this work. Then
(κi,t )inf were re-centered to ensure the ensemble mean values
of (κi,t )inf were all 1. Furthermore, another quality control
procedure is performed for λa

i,t to keep them positive. Thus,
all λf

i,t and λa
i,t could be positive.

In this study, the ensemble forecast chemical fields of
PM25, PM10, SO2, NO, NH3, and CO of the previous assim-
ilation cycle are respectively used to calculate the emission
scaling factors (λf

PM2.5
,λf

PM10
,λf

SO2
,λf

NO,λ
f
NH3

,λf
CO). Previ-

ous works (Peng et al., 2015, 2017) showed that reason-
able results can be obtained when the ensemble spread of
the emission scaling factors range from 0.1 to 1. In order to
keep the ensemble spread of the scaling factors at this level
in most model area, β is chosen as 1.3, 1.4, 1.3, 1.2, 1.2, and
1.4 for the ensemble concentration ratios of P2.5, P10, SO2,
NO, NH3, and CO, respectively, in Eq. (3).

Then, the sources Ef
i,t = (E

f
PM2.5

, Ef
PM10

, Ef
SO2

, Ef
NO,

Ef
NH3

, Ef
CO) are calculated using Eq. (1).

From the perspective of PM2.5 emissions, these include the
unspeciated primary sources of PM2.5 EPM2.5 , sulfate ESO4 ,
and nitrate ENO3 . We updated EPM2.5 , ESO4 , and ENO3 (in-
cluding the nuclei and accumulation modes) following Peng
et al. (2017).

2.3 DA algorithm

The assimilation algorithm employed was the EnSRF pro-
posed by Whitaker and Hamill (2002). The EnKF proposed
by Evensen (1994) needs perturbations of observations in
practice. Compared to the original EnKF, the EnSRF obvi-
ates the need to perturb the observations and avoids addi-
tional sampling errors introduced by perturbing observations.

We used the same EnSRF as in Schwartz et al. (2012,
2014). The ensemble member was chosen as 50. The local-

ization radius was chosen as 607.5 km, so EnSRF analysis
increments were forced to zero 607.5 km away from an ob-
servation (Gaspari and Cohn, 1999). The posterior (after as-
similation) multiplicative inflation factor was chosen as 1.2
for all the concentration analysis.

2.4 State variables

The DA system provides joint analysis of ICs and emis-
sions following Peng et al. (2017). Among them, 16 WRF-
Chem/GOCART aerosol variables are included as the state
variables. Furthermore, chemical species,such as SO2, NO2,
and O3 are also included because they are the most im-
portant gas-phase precursors or oxidants of the secondary
inorganic aerosols. CO is also assimilated because CO is
an important tracer of combustion sources, as well as a
precursor of O3 beyond NO2 (Parrish et al., 1991). The
state variables of the emission scaling factors are λ=

(λPM2.5 ,λPM10 ,λSO2 ,λNO,λNH3λCO).
Similar to weak-coupling DA, the DA system simultane-

ously updates both the ICs and the emissions, but with no
cross-variable update, in order to avoid the effects of spuri-
ous multivariate correlations in the background error covari-
ance that may develop due to the limited ensemble size and
errors in both the model and observations (Miyazaki et al.,
2012).

For the PM2.5 observations, the observation operator is ex-
pressed as (Schwartz et al., 2012)

yf
PM2.5
=ρd [P2.5+ 1.375S+ 1.8(OC1+OC2) (6)
+BC1+BC2+D1+ 0.286D2+ S1+ 0.942S2] ,

where ρd is the dry-air density; P25 is the fine unspeciated
aerosol contributions; S represents sulfate; OC1 and OC2 are
hydrophobic and hydrophilic organic carbon, respectively;
BC1 and BC2 are hydrophobic and hydrophilic black car-
bon, respectively; D1 and D2 are dusts with effective radii
of 0.5 and 1.4 µm, respectively; and S1 and S2 are sea salts
with effective radii of 0.3 and 1.0 µm, respectively. In fact,
PM2.5 observations were only used to analyze P2.5, S, OC1,
OC2 BC1, BC2, D1, D2, S1, S2, and λPM2.5 . Since we had no
NH3 observations, PM2.5 observations were also used to an-
alyze λNH3 (see Table 2). For other control variables, PM2.5
observations were not allowed to alter them.

For the PM10 observations, the PM10 observation operator
is expressed as (Jiang et al., 2013)

yf
PM10
=ρd [P10+P2.5+ 1.375S+ 1.8(OC1+OC2) (7)
+BC1+BC2+D1+ 0.286D2+D3+ 0.87D4

+S1+ 0.942S2+ S3] .

Thus,

yf
PM10−2.5

= ρd [P10+D3+ 0.87D4+ S3] , (8)
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Table 2. State vectors in the data assimilation system.

Observations PM2.5 PM10−2.5 SO2 NO2 CO O3

Mass concentration P25, S, OC1, OC2 BC1, BC2, D1, D2, S1, S2 P10, D3, D4, D5 S3, S4, SO2 NO, NO2 CO O3
Scaling factors λPM2.5 , λNH3 λPM10 λSO2 λNO λCO –

meaning that, in the assimilation experiments, we did not use
the PM10 observations directly. In Eqs. (13) and (14), P10
denotes the coarse-mode unspeciated aerosol contributions;
D3 and D4 are dusts with effective radii of 2.4 and 4.5 µm,
respectively; and S3 is sea salt with an effective radius of
3.25 µm. We used the PM10−2.5 observations (the differences
between the PM10 observations and the PM2.5 observations,
yo

PM10−2.5
= yo

PM10
− yo

PM10
) to analyze P10, D3, D4, S3, and

λPM10 . In addition, PM10−2.5 observations were used to ana-
lyzeD5 and S4, since they are coarse-mode mineral dust and
sea salt aerosols. PM10−2.5 observations were not allowed to
impact other control variables.

Moreover, as shown in Table 2, SO2 observations were
used to analyze the SO2 concentration and λSO2 . NO2 ob-
servations were used to estimate the NO, NO2 concentration
and λNO. CO observations were used to analyze the CO con-
centration and λCO. And finally, O3 observations were only
used to analyze the O3 concentration.

3 Observations and errors

The surface chemical observations used in this study were
obtained from the Ministry of Ecology and Environment of
China. Altogether, there were 876 observational sites over
the model domain (Fig. 1). At most sites, one measurement
was selected randomly for the assimilation experiment on a
0.1◦× 0.1◦ grid. Altogether, 355 stations were kept for the
model domain, where 133 assimilation stations were located
on the NCP and 40 stations were located in the Beijing–
Tianjin–Hebei (BTH) region. Other stations were used for
verification purposes: 167 independent stations were located
on the NCP, and 47 in the BTH region.

The observation error covariance matrix R included mea-
surement errors and representation errors. We assumed that
R is a diagonal matrix (without observation correlation).

Following Elbern et al. (2007), the measurement error ε0
is defined as

ε0 = a+ b×50, (9)

where50 represents the measurements for PM2.5, PM10−2.5,
SO2, NO2, CO, or O3 (units: µg m−3). Values of a = 1.5
and b = 0.0075 were chosen for PM2.5, PM10−2.5, SO2, and
NO2. For CO, a = 10 and b = 0.0075.

The representativeness error is defined as

εr = rε0
√
1x/L, (10)

where r = 0.5, 1x = 40.5 km (the model resolution), and
L= 3 km due to the lack of the information of the station
type (Elbern et al., 2007).

Finally, the total error (εt) is defined as

εt =

√
ε2

0 + ε
2
r . (11)

In order to ensure data reliability, the observations were sub-
jected to quality control before DA. Data values larger than a
certain threshold were classified as unrealistic and were not
assimilated. The threshold values were chosen as 700, 800,
300, 300, 400, and 4000 µg m−3 for PM2.5, PM10−2.5, SO2,
NO2, O3, and CO, respectively. In addition, observations
leading to innovations exceeding a certain value were also
omitted. These threshold values were chosen as 70 µg m−3

for PM2.5, PM10−2.5, SO2, NO2, and O3. Also, 1500 µg m−3

was chosen for CO.

4 Experimental design

The DA experiment followed that of Peng et al. (2017), in
which the assimilation of pure surface PM2.5 measurements
with the EnKF was performed to correct finer aerosol vari-
ables and associated emissions. The experiment focused on
an extreme haze event that occurred in October 2014 over
northern China.

The 50-member ensemble spin-up forecasts were first per-
formed from 1 to 4 October 2014 using the perturbed meteo-
rological ICs, lateral boundary conditions (LBCs), and emis-
sions. The perturbed meteorological ICs and LBCs are cre-
ated by adding Gaussian random noise (Torn et al., 2006) to
the temperature, water vapor, velocity, geopotential height,
and dry surface pressure fields of the products of the National
Centers for Environmental Prediction Global Forecast Sys-
tem (GFS) by WRFDA. The perturbed emissions were gen-
erated also by adding Gaussian random noise with a standard
deviation of 10 % of the corresponding anthropogenic emis-
sions. The aerosol ICs were zero, and the aerosol LBCs were
idealized profiles embedded within the WRF-Chem model;
neither of them was perturbed (Peng et al., 2017).

Then, the observed PM10, PM2.5, SO2, NO2, O3, and CO
data starting from 5 to 16 October were assimilated hourly to
adjust the ICs and the corresponding emissions. The ICs were
the subject of analysis of the previous DA cycle. The mete-
orological LBCs were perturbed. The anthropogenic emis-
sions – EPM2.5 , EPM10 , ESO2 , ENO, ENH3 , ECO, ESO4 , and
ENO3 – are calculated by using the forecast emission scal-

www.atmos-chem-phys.net/18/17387/2018/ Atmos. Chem. Phys., 18, 17387–17404, 2018
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Figure 2. Time series of prior ensemble mean RMSE (blue line) and total spread (black line) for PM2.5, PM10, SO2, NO2, CO, and O3
concentrations aggregated over all observations over the Beijing–Tianjin–Hebei region. Units for all these variables: µg m−3.

ing factors. Other species, such as the organic compounds
Eorg and elemental compoundsEBC, are perturbed by adding
Gaussian random noise. Since the emissions are calculated
by Eq. (1), their background uncertainties and the spatial
correlations are completely dependent on those of the cor-
responding emission factors. The forecast scaling factors are
calculated by Eqs. (2)–(5). And no other perturbations are
added to the scaling factors; no other correlations are as-
sumed for the scaling factors.

After that, two sets of 72 h forecasts were performed, each
at 00:00 UTC from 6 to 15 October 2014, with hourly fore-
casting outputs for the assimilation experiment. These two
sets of forecasting experiments were conducted using the en-
semble mean of the concentration analysis as the ICs. One
set of the experiments was forced by the optimized emis-
sions (denoted as fcICsEs), and the other was forced by the
prescribed anthropogenic emissions (denoted as fcICs). The
aim was to use the difference between the fcICsEs and fcICs
to indicate the impact of the optimized emissions.

Moreover, we also ran a control experiment. The ICs were
based on the ensemble mean of the spin-up forecasts at
00:00 UTC on 5 October 2014. The emissions were the pre-
scribed emissions.

5 Results

5.1 Ensemble performance

We begin by assessing the ensemble performance for the
DA system. Figure 2 shows the time series of the prior total
spreads and the prior root-mean-square errors (RMSEs) for
PM2.5, PM10, and the four trace gases calculated against all
observations in the BTH region. It shows that the magnitudes
of the total spreads were close to the RMSEs, indicating that
the DA system was well calibrated (Houtekamer et al., 2005).

Figure 3 shows the area-averaged time series extracted
from the ensemble spread of the six emission scaling fac-
tors (λf

PM2.5
, λf

PM10
, λf

SO2
, λf

NO, λf
NH3

, and λf
CO) in the BTH

region. It shows that the ensemble spread of all the scaling
factors were very stable throughout the∼ 10-day experiment
period, which indicates thatMSF can generate stable artificial
data to generate the ensemble emissions. The value of the
emission scaling factors ranged from 0.2 to 0.6, indicating
that the uncertainty of the assimilated emissions was about
20 %–60 %.
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Table 3. Comparison with observations of the surface PM2.5 mass concentrations in the Beijing–Tianjin–Hebei region from the control
experiment, the assimilation experiment, and the first-day forecast, over all analysis times from 6 to 16 October 2014. Units: µg m−3.

Species Experiment Mean observed value Mean simulated value Bias RMSE CORR

PM2.5

Control

114.8

80.7 −34.1 92.1 0.740
Analysis 119.9 5.1 51.5 0.891
fcICsEs24 121.2 6.5 77.8 0.736
fcICs24 123.1 8.3 75.1 0.748

PM10

Control

174.6

96.9 −77.7 134.6 0.691
Analysis 169.0 −5.6 63.4 0.890
fcICsEs24 162.7 −11.9 98.7 0.716
fcICs24 164.3 −10.3 95.9 0.726

SO2

Control

33.0

81.1 48.1 66.6 0.088
Analysis 41.1 8.1 27.9 0.540
fcICsEs24 62.0 29.0 51.2 0.120
fcICs24 75.7 42.7 65.8 0.038

NO2

Control

56.4

78.8 22.4 39.7 0.545
Analysis 48.0 −8.3 31.7 0.557
fcICsEs24 71.8 15.4 46.2 0.408
fcICs24 82.8 26.4 55.5 0.414

CO

Control

1318.0

752.3 −565.7 962.7 0.354
Analysis 1157.5 −160.4 618.9 0.705
fcICsEs24 1418.4 100.4 805.1 0.476
fcICs24 1448.2 130.2 838.2 0.439

O3

Control

57.5

26.5 −31.0 50.8 0.463
Analysis 59.6 2.1 31.1 0.753
fcICsEs24 63.5 6.0 49.0 0.460
fcICs24 58.98 1.5 50.5 0.478

Figure 3. Time series of the area-averaged ensemble spread for the
emission scaling factors over the Beijing–Tianjin–Hebei region.

5.2 Forecast improvements

In order to evaluate the overall performance of the DA sys-
tem, time series of the hourly pollutant concentrations from
the control run, the analysis, and the first-day forecast of the
two forecasting experiments were compared with the inde-
pendent observations in the BTH region (Fig. 4). Further-
more, model evaluation statistics (Table 3) were calculated
against independent observations from 6 to 16 October 2014.

In addition, biases and RMSEs were presented as a function
of forecast range for the control, analysis, and forecast exper-
iments (Figs. 5–7).

The control run did not perform very well, although it
was able to capture the synoptic variability and reproduce
the overall pollutant levels when there was a severe haze
event. The statistics show that there were larger system-
atic biases and RMSEs and a smaller correlation coefficient
(CORR) for the control (see Table 3). The biases were−34.1,
−77.7, −565.7, and −31 µg m−3 for PM2.5, PM10, CO,
and O3, respectively, from 6 to 16 October – about 29.7 %,
44.5 %, 42.9 %, and 53.9 % lower than the corresponding ob-
served concentrations. During the severe haze episode from
8 to 10 October in particular, when observed PM2.5 were
larger than 200 µg m−3, the biases reached −90.5, −143.1,
−911.8, and −39.1µg m−3, respectively – about 44.4 %,
51.9 %, 49.2 % and 55.7 % lower than the corresponding
observed concentrations, suggesting a significant systematic
underestimation of the WRF-Chem simulation. Additionally,
a significant overestimation of 48.1 µg m−3 was obtained for
SO2 – about 145.8 % higher than the observed concentra-
tions. As for the NO2 simulation, WRF-Chem was able to re-
alistically describe the diurnal and synoptic evolution of NO2
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Figure 4. Time series of the hourly pollutant concentrations in the Beijing–Tianjin–Hebei (BTH) region obtained from observations (red
line), the control run (black line), the analysis (pink line), the first-day forecast from fcICsEs (fcICsEs24, blue line), and the first-day forecast
from fcICs (fcICs24, blue line). The observations were obtained from the 47 independent sites in the BTH region. The modeled time series
were interpolated to the 47 independent sites using the spatial bilinear interpolator method. The shaded backgrounds indicate the distribution
of the observations, where the top edge represented the 90th percentile and the bottom edge the 10th percentile. Units: µg m−3.

concentrations. The model bias was 22.4 µg m−3, which was
about 39.7 % higher than the observed NO2. These results
were similar to the simulations of Chen et al. (2016). Most
of the WRF-Chem settings used here were the same as those
used in Chen et al. (2016), except that they used CBMZ (Car-
bon Bond Mechanism, version Z) and MOSAIC (Model for
Simulating Aerosol Interactions and Chemistry) as the gas-
phase and aerosol chemical mechanisms.

After the assimilation of surface observations, the time se-
ries of the hourly pollutant concentrations from the analy-
sis showed much better agreement with observations than
those from the control. The magnitudes of the bias and the
RMSEs decreased, and the CORRs increased for all six
species. The biases were 5.1, −5.6, 8.1, −8.3, −160.4, and
2.1 µg m−3 for PM2.5, PM10, SO2, NO2, CO, and O3, respec-
tively – about 4.4 %, −3.2 %, 24.5 %, −14.7 %, −12.17 %,
and 3.7 % of the corresponding observed concentrations, in-
dicating that the analysis fields were very close to the obser-
vations. The RMSEs were 51.5, 63.4, 27.9, 31.7, 618.9, and

31.1 µg m−3, respectively – about 44.1 %, 52.9 %, 58.1 %,
20.2 %, 35.7 %, and 38.78 % lower than the RMSEs of the
control run. The CORRs reached 0.891, 0.890, 0.540, 0.557,
0.705, and 0.753, respectively. These statistics indicate that
the DA system was able to adjust the chemical ICs efficiently.

The PM2.5, PM10, and CO concentrations from both sets
of forecasting experiments benefitted substantially from the
DA procedure, as expected. Smaller biases and RMSEs
were obtained for almost the entire 72 h forecast range (see
Figs. 5–7), as compared with the control run. For the first-
day forecast in particular, the model performed almost per-
fectly. It faultlessly captured the diurnal and synoptic vari-
ability of the pollutant (see Fig. 4), in a manner that was
very close to that of the analysis. The overall biases were 6.5,
−11.9, and 100.4 µg m−3 for PM2.5, PM10, and CO, respec-
tively, and the RMSEs were 77.8, 98.7, and 805.1 µg m−3,
respectively, in fcICsEs24 (see Table 3). In fcICs24, the bi-
ases were 8.3,−10.3, and 130.2 µg m−3, respectively, and the
RMSEs were 75.1, 95.9, and 838.2 µg m−3, respectively (see
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Figure 5. Bias of surface PM2.5, PM10, SO2, NO2, CO, and O3 as a function of forecast range calculated against all the independent
observations over the Beijing–Tianjin–Hebei region shown in Fig. 1. The 72 h forecasts were performed at each 00:00 UTC from 6 to
14 October 2014, and the statistics were computed from 6 to 14 October. Units: µg m−3.

Table 3). However, with longer-range forecasts, the impact
of DA quickly decayed. The relative reductions in RMSE
mostly ranged from 30 % to 5 % for the second- and third-day
forecast. From the perspective of the impact of the assim-
ilated emissions, fcICs performed similarly to fcICsEs for
PM2.5, PM10, and CO, indicating that ICs play key roles in
aerosol and CO forecasts during severe haze episodes, while
the impact of assimilated emissions seems negligible.

For the SO2 verification forecast, however, fcICsEs per-
formed much better than both fcICs and the control run.
Smaller biases and RMSEs were obtained for almost the en-
tire 72 h forecast range. At nighttime in particular (from 18 to
23 h, 42 to 47 h, and 66 to 73 h), when there was significant
systematic overestimation in the control run, both the biases
and the RMSEs in fcICsEs were about 30 % lower than those
of the control run. During the daytime (from 0 to 9 h, 24 to
33 h, and 48 to 57 h), fcICsEs still performed slightly better,
although the control run did a near-perfect job. As for fcICs,

smaller biases and RMSEs were obtained for only the first
3 h. Then, the performance was the same as the control run,
indicating that the impact of the ICs had disappeared. These
results demonstrate the superiority of the assimilated emis-
sions, and that the joint adjustment of SO2 ICs and emissions
is an efficient way to improve the SO2 forecast.

The NO2 DA results for the independent sites showed re-
ally poor performance (see Figs. 5–7). Smaller biases were
gained in the daytime of the experiment trials. At night-
time, however, when the simulated NO2 deviated consider-
ably from the observations in the control run, the biases of
both sets of the validation forecasts became even larger. Fur-
thermore, almost all the RMSEs of both sets of the validation
forecasts were always larger than those of the control run.

The O3 DA results were dependent on the NO2 DA results
in the daytime, due to chemical transformation. Both the bi-
ases and the RMSEs were larger, as compared with those of
the control run (see Figs. 5–7). However, at nighttime, when
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Figure 6. As in Fig. 5 but for RMSE. Units: µg m−3.

Figure 7. Normalized RMSE (assimilation divided by control) for fcICsEs and fcICs for PM2.5, PM10, SO2, and CO.

there was significant systematic underestimation in the con-
trol run, the biases in fcICsEs had very similar values to those
of the analysis. Also, the biases in fcICs ranged between the
analysis and the control run, and the RMSEs of both sets of
forecasting experiments were about 10 % smaller than those
of the control run. All these results indicate that the DA sys-
tem performed well at night.

5.3 Emission optimization results

Besides improved pollutant forecasts, improved estimates of
emissions were expected from the joint DA procedure. The
MEIC-2010 was constructed on the basis of annual statistical
books in which the data were often 2–3 years older than the
actual year (Chen et al., 2016). However, consistent efforts
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Figure 8. Spatial distribution of the prescribed emissions (top panels) of PM2.5 (a, d), PM10 (b, e), and NH3 (c, f) and the corresponding
time-averaged differences between the ensemble mean analysis and the prescribed values at the lowest model level averaged over all hours
from 6 to 16 October 2014 in the NCP region. Units for PM2.5 and PM10 emissions: µg m−2 s−1; units for NH3 emissions: mol km−2 h−1.

aimed at reducing and managing anthropogenic emissions
have been made over the past decade to mitigate air pollution.
Thus, there was a large difference between the emission year
and our simulation year. Furthermore, the spatial allocations
of these emissions over small spatial scales, and the monthly
allocations, will also lead to some uncertainties. Lastly, the
emissions inventory cannot fully capture the day-to-day vari-
ability or the actual daily variations, though its differentiation
in terms of working days and weekend days, plus the daily
variations, can be taken into account in practical applications.
However, in this assimilation procedure, the differentiation in
terms of working days and weekend days, plus the daily vari-
ations, was ignored. Therefore, the prescribed anthropogenic
emissions were subject to large uncertainties.

Figures 8 and 9 display the spatial distribution of the
prescribed emission rates and the differences between the
analysis and the prescribed emission rates of PM2.5, PM10,
NH3, SO2, NO, and CO averaged over all hours from 6 to
16 October 2014 in the NCP region. The assimilated emis-
sion rates of PM2.5, SO2, NO, and CO were lower than
the prescribed emissions on the whole. In the BTH region
especially, the differences reached −0.02 µg m−2 s−1, −2.9,
−8.8, and −24.65 mol km−2 h−1, which was a reduction of

about 10 %–20 % of the prescribed emissions. For PM10
emissions, the assimilated values were very close to the pre-
scribed ones, indicating that the prescribed PM10 emissions
had small uncertainties for the NCP region. For NH3 emis-
sions, the assimilated values were a little larger than the pre-
scribed emissions in large industrial cities like Beijing, Tian-
jin, Baoding, Xingtai, Handan, and Taiyuan. However, they
were smaller than the prescribed emissions in agricultural re-
gions, especially in Shandong and Henan provinces. How-
ever, in the BTH region, the assimilated NH3 emissions were
very close to the prescribed emissions on the whole.

Figure 10 shows the time series of the emission scaling
factors and the emissions. As concluded in Peng et al. (2017),
the forecast emission scaling factors changed with the an-
alyzed emission scaling factors due to the use of the time-
smoothing operator. Furthermore, although the prescribed
emissions were constant when designing the assimilation ex-
periment, the analyzed emission scaling factors showed ob-
vious variation with time, as did the analyzed emissions. For
the assimilated SO2 and NO emissions in particular, the di-
urnal variations were perfect. In addition, the difference be-
tween the assimilated emissions and the prescribed emissions
were consistent with those in Figs. 8 and 9. The assimilated
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Figure 9. As in Fig. 8 but for SO2 (a, d), NO (b, e), and CO (c, f). Units for SO2, NO, and CO emissions: mol km−2 h−1.

emissions of PM2.5, SO2, NO, and CO were apparently lower
than the corresponding prescribed emissions, whereas the
values of the assimilated emissions of PM10 and NH3 were
very close to their corresponding prescribed emissions.

In order to investigate the impact of optimized emissions
on chemical simulations, a simulation (fcEs) using the opti-
mized emissions was performed from 5 to 16 October 2014.
Just as in the control run, the ICs were the ensemble mean of
the spin-up forecasts at 00:00 UTC on 5 October 2014. Thus
the difference between the fcEs and the control run is the
anthropogenic emissions. The results showed that the fcEs
performed very similarly to the control run on the whole
in the BTH region. For PM2.5, PM10, and CO, the values
of the fcEs were a little smaller than those of the control
run, which were consistent with the difference of the anthro-
pogenic emissions. For SO2 and NO2, fcEs performed much
better than the control run most of the time, though signifi-
cant systematic overestimation still existed during the night-
time. For O3, minor improvements were also gained due to
the better simulation in fcEs for NO2.

5.4 Discussion

From the results presented above, it is clear that improve-
ments were achieved for almost all the 72 h verification
forecasts using the optimized ICs and emissions for PM2.5,

PM10, SO2, and CO concentrations in the BTH region. How-
ever, the 72 h NO2 verification forecasts performed much
worse than the control run, due to the assimilation. Plus, the
72 h O3 verification forecasts performed worse than the con-
trol run during the daytime, due to the worse performance of
the NO2 forecasts, although they did perform better at night.
However, relatively favorable NO2 and O3 forecast results
were gained for the Yangtze River delta and Pearl River delta
(PRD) regions (see Fig. 11). In the PRD region, during the
daytime, the three NO2 forecasts (i.e., the control run, the
fcICsEs, and the fcICs) performed similarly and had rela-
tively small biases and RMSEs. At nighttime, when there was
significant systematic overestimation in the control run, the
biases and the RMSEs in fcICsEs were much smaller than
those in the control run. For the O3 72 h verification fore-
casts, fcICsEs performed much better than the control run,
except for the first 8 h. Also, fcICs improved the O3 forecasts
to some extent in the 9–72 h forecast range. These results in-
dicate that DA is still an effective way to improve NO2 and
O3 forecasts.

Regarding the failure to improve the NO2 and O3 forecasts
in the BTH region, there are three likely factors. Certainly,
NO2 and O3 forecasts in other areas are also facing similar
challenges.
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Figure 10. Hourly area-averaged time series extracted from the analyzed emission scaling factors (black line), the forecast emission scaling
factors (green dashed line), the analyzed emissions (blue line), and the prescribed emissions (blue dashed line) in the Beijing–Tianjin–Hebei
region. Units for PM2.5 and PM10 emissions: µg m−2 s−1; units for NH3, SO2, NO, and CO emissions: mol km−2 h−1.

Firstly, there are still some limitations for the EnKF
method. EnKF assimilation is influenced greatly by model
errors and observation errors. There are many sources of
uncertainties in air quality forecasts that were not directly
considered in this study (such as chemical schemes and pa-
rameterizations, meteorology, and emissions). And it is very
difficult to accurately evaluate the uncertainties of models,
though the covariance inflation technique was simply applied
for all state variables to roughly compensate for model errors.
Therefore, we can only obtain suboptimal results through
EnKF assimilation. Furthermore, short-lived chemical reac-
tive species, such as NO2 and O3, undergo highly complex
nonlinear photochemical reactions, even on timescales of
hours, such that the forecast accuracy is largely dependent on
the chemical process as well as the physical transportation
process, the ICs, and the emissions. However, those com-
plex photochemical reaction processes are not precisely de-
scribed in current chemical mechanisms, e.g., heterogeneous

reactions (Yang et al., 2015), the photolysis of nitrous acid
and ClNO2 during daytime (Zhang et al., 2017), and so on.
Therefore, on the one hand, there are still large uncertain-
ties for NO2 and O3 forecasts, while, on the other hand, it is
very difficult for NO2 and O3 DA to accurately estimate the
model errors with a limited ensemble size. Thus, NO2 and
O3 assimilations do not perform well (Elbern et al., 2007;
Tang et al., 2016). However, for SO2 and CO, which are rep-
resentative of long-lived chemical reactive species, the chem-
ical reaction process does not work on timescales of hours,
meaning that to some extent hourly chemical DA has the po-
tential to improve their forecasts. For CO in particular, due
to its inertness, we might be able to obtain high-quality ICs
and emissions through DA. The primary sources of aerosol
are the dominant part of the atmospheric aerosol concentra-
tion. So, 72 h aerosol forecasts may perform similarly to CO,
although there are large uncertainties in the chemical model.
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Figure 11. NO2 and O3 time series of the hourly pollutant concentrations in the Pearl River delta region (PRD; 21–24◦ N, 112.5–115◦ E)
obtained from observations (referred to as “obs”, red line), the control run (referred to as “ct”, black line), the analysis (referred to as “an”,
pink line), the first-day forecast from fcICsEs (referred to as “fcICs24”, blue line), and the first-day forecast from fcICs (referred to as
“fcICs24”, blue line). The bias and RMSEs of surface NO2 and O3 as a function of forecast range calculated against all the independent
observations (34 sites) over the PRD region. Units: µg m−3.

Secondly, as stated in the above paragraph, the analysis
ICs and emissions are only a mathematical optimum under
the existing conditions. In addition, only part of the chem-
ical ICs and emissions are involved in the DA experiment;
VOC ICs and emissions, which may greatly influence the
NO2 and O3 forecasts, were not included here because of the
absence of VOC measurements. Although we carried out two
DA sensitivity experiments to adjust the VOC ICs and emis-
sions through the use of NO2 or O3 measurements, we were
still unable to gain improved NO2 and O3 forecasts in the
BTH region in both DA experiments. VOC measurements are
needed to reduce uncertainties of VOC ICs and emissions. In
addition, almost all available data were observed in cities,
and no observation stations were located in rural areas. Thus,
the atmospheric environmental monitoring system was still
spatially heterogeneous.

Another important point is that there are still limitations
to the current chemical mechanisms used in our model, such
as the treatment of model error. NO is the primary species of
NOx emissions in city areas and reacts directly with O3 to
form NO2 (NO+O3→ NO2+O2). Thus, O3 concentrations
may inversely correlate with NO2 concentrations at night.
Consequently, air quality models may systematically under-
estimate O3 concentrations. Currently, DA can only revise
the ICs and the emissions in this work. It cannot change the
model performance, especially when there are certain uncer-
tainties for the meteorological simulation.

6 Summary

In this study, we developed an EnKF system to simultane-
ously assimilate surface measurements of PM10, PM2.5, SO2,
NO2, O3, and CO via the joint adjustment of ICs and source
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emissions. This system was applied to assimilate hourly pol-
lution data while modeling an extreme haze event that oc-
curred in early October 2014 over northern China. In order
to evaluate the impact of DA, two sets of 72 h verification
forecasts were performed. One was conducted with the opti-
mized ICs and emissions, and the other with only optimized
ICs and the prescribed emissions. A control experiment with-
out DA was also performed for comparison.

The results showed that both verification forecasts per-
formed much better than the control simulations for PM2.5,
PM10, and CO. Obvious improvements were achieved for al-
most the entire 72 h forecast range. For the first-day fore-
cast especially, near-perfect forecasts results were achieved.
However, with longer-range forecasts, the impact of DA
quickly decayed. In addition, the forecasts with only opti-
mized ICs and the prescribed emissions performed similarly
to those with the optimized ICs and emissions, indicating that
ICs play key roles in PM2.5, PM10, and CO forecasts during
severe haze episodes.

Also, large improvements were achieved for SO2 forecasts
with both the optimized ICs and emissions for the whole
72 h forecast range. However, similar improvements were
achieved for SO2 forecasts with the optimized ICs only for
the first 3 h, and then the impact of the ICs decayed quickly to
zero. This demonstrates that the joint adjustment of SO2 ICs
and emissions is an efficient way to improve SO2 forecasts.

Even though we failed to improve the NO2 and O3 fore-
casts in the BTH region, relatively favorable NO2 and O3
forecast results were gained in other areas. Also, the fore-
casts with both the optimized ICs and emissions performed
much better than the forecasts with only optimized ICs and
the prescribed emissions. These results indicate that there is
still potential to improve NO2 and O3 forecasts via the joint
adjustment of SO2 ICs and emissions.

However, only one case was investigated in this work.
Thus it is uncertain if the conclusions about different per-
formance of forecasts for various species would hold in a
general. Therefore, more case studies are needed to obtain
general conclusions in future works.
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