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Abstract. Methane emissions from oil/gas fields originate
from a large number of relatively small and densely clus-
tered point sources. A small fraction of high-mode emitters
can make a large contribution to the total methane emission.
Here we conduct observation system simulation experiments
(OSSEs) to examine the potential of recently launched or
planned satellites to detect and locate these high-mode emit-
ters through measurements of atmospheric methane columns.
We simulate atmospheric methane over a generic oil/gas field
(20–500 production sites of different size categories in a
50× 50 km2 domain) for a 1-week period using the WRF-
STILT meteorological model with 1.3× 1.3 km2 horizontal
resolution. The simulations consider many random realiza-
tions for the occurrence and distribution of high-mode emit-
ters in the field by sampling bimodal probability density
functions (PDFs) of emissions from individual sites. The at-
mospheric methane fields for each realization are observed
virtually with different satellite and surface observing con-
figurations. Column methane enhancements observed from
satellites are small relative to instrument precision, even for
high-mode emitters, so an inverse analysis is necessary. We
compareL1 andL2 regularizations and show thatL1 regular-
ization effectively provides sparse solutions for a bimodally
distributed variable and enables the retrieval of high-mode
emitters. We find that the recently launched TROPOMI in-
strument (low Earth orbit, 7× 7 km2 nadir pixels, daily re-
turn time) and the planned GeoCARB instrument (geosta-
tionary orbit, 2.7×3.0 km2 pixels, 2 times or 4 times per day
return times) are successful (> 80 % detection rate, < 20 %

false alarm rate) at locating high-emitting sources for fields
of 20–50 emitters within the 50× 50 km2 domain as long
as skies are clear. They are unsuccessful for denser fields.
GeoCARB does not benefit significantly from more frequent
observations (4 times per day vs. 2 times per day) because
of a temporal error correlation in the inversion, unless under
partly cloudy conditions where more frequent observation in-
creases the probability of clear sky. It becomes marginally
successful when allowing a 5 km error tolerance for local-
ization. A next-generation geostationary satellite instrument
with 1.3× 1.3 km2 pixels, hourly return time, and 1 ppb pre-
cision can successfully detect and locate the high-mode emit-
ters for a dense field with up to 500 sites in the 50× 50 km2

domain. The capabilities of TROPOMI and GeoCARB can
be usefully augmented with a surface air observation net-
work of 5–20 sites, and in turn the satellite instruments in-
crease the detection capability that can be achieved from the
surface sites alone.

1 Introduction

Anthropogenic methane emissions from oil/gas fields orig-
inate from a large number of relatively small and densely
clustered point sources (Allen et al., 2013). For example, the
Barnett Shale in Texas has over 20 000 well pads spread over
a 300× 300 km2 domain, contributing 40 % of total oil/gas
emissions from the region (Lyon et al., 2015). It has been
estimated that 7 % of the wells contribute 50 % of the to-
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tal well emissions (Rella et al., 2015; Zavala-Araiza et al.,
2015). Identifying such high-emitting wells is of both eco-
nomic and environmental interest. We present here observing
system simulation experiments (OSSEs) to examine the po-
tential of using satellite observations of atmospheric methane
for this purpose.

Satellites measure backscattered solar radiation in
the shortwave infrared (SWIR) from which atmospheric
columns of methane can be retrieved with near-uniform sen-
sitivity down to the surface under clear-sky conditions (Jacob
et al., 2016). The satellite record for SWIR methane began
with the SCIAMACHY instrument (2003–2012; Franken-
berg et al., 2005), which provided coarse-resolution mea-
surements (30× 60 km2 in nadir). The currently operating
GOSAT instrument (2009-; Kuze et al., 2016) has finer res-
olution (10 km diameter pixels) but sparse coverage (in-
dividual pixels 250 km apart). The TROPOMI instrument,
launched in October 2017, provides complete daily coverage
at 7× 7 km2 nadir resolution (Hu et al., 2018). The geosta-
tionary GeoCARB instrument, to be launched in the early
2020s, is currently planned to provide 2.7× 3 km2 pixel res-
olution with a return time that may range from 1 to 4 times
per day (Polonsky et al., 2014; O’Brien et al., 2016). Other
geostationary methane satellite missions have been proposed
with various combinations of more frequent coverage, finer
pixel resolution, and higher instrument precision (Fishman
et al., 2012; Butz et al., 2015; Xi et al., 2015; Propp et al.,
2017).

A number of studies have examined the value of satellite
observations for quantifying methane sources. Inverse anal-
yses of SCIAMACHY and GOSAT data have focused on
quantifying emissions at ∼ 100 km regional scales (Bergam-
aschi et al., 2013; Wecht et al., 2014a; Alexe et al., 2015;
Turner et al., 2015). OSSEs have shown the potential for
TROPOMI and GeoCARB to effectively constrain emissions
at the 25–100 km scale without the multiyear averaging re-
quired by SCIAMACHY and GOSAT (Wecht et al., 2014b;
Sheng et al., 2018a). Other OSSEs have examined the poten-
tial for satellites to quantify large point sources from plume
observations (Buchwitz et al., 2013; Rayner et al., 2014;
Varon et al., 2018). A recent study by Turner et al. (2018)
evaluated the capability of TROPOMI and GeoCARB to
quantify emissions in the Barnett Shale down to the kilo-
meter scale for a 1-week observing period. They found that
GeoCARB should have some capability for constant sources
over a 1-week period but not for transient sources. Hase et
al. (2017) simulated surface and aircraft pseudo-observations
over North America and used them to constrain North Amer-
ican emissions at 1◦×1◦ resolution. They found that sparse
optimization better constrained local methane hot spots than
the standard Bayesian approach.

Here we target a different problem. Given a population of
production sites (wells) in an oil/gas field, can satellites lo-
calize high-mode emitters to enable corrective action? In this
problem, quantifying emissions is not as important as iden-

tification of the high-mode emitters. The location of the in-
dividual point sources is known, but their mode of emission
(normal, low mode or high mode) is unknown. Once a well
starts emitting in the high mode, it continues doing so until
corrective action is taken. Satellites offer an attractive moni-
toring approach for identifying high-mode emitters but their
capability may be limited by return frequency, cloud cover,
pixel resolution, error in the atmospheric transport model
needed to relate the plume to the location of emission, or
limitations in the inverse method for identifying sparse high-
mode sources. Here we will evaluate the potential of differ-
ent satellite observing configurations and inverse methods to
address this problem with application to TROPOMI, Geo-
CARB, and finer-resolution geostationary data. We will also
examine whether the information from satellites can be use-
fully complemented with a supporting network of surface ob-
servations.

2 Observing system simulation experiment

We consider a hypothetical oil/gas field of dimension 50×
50 km2 with 20, 50, 100, or 500 randomly placed produc-
tion sites (wells), corresponding to site densities of 0.008,
0.02, 0.04, and 0.2 km−2, respectively. The latter case corre-
sponds to the average site density in the Barnett Shale. We
create a large ensemble of emission scenarios in each case
where different random subsets of sites of different produc-
tion size categories (small: 10–100 million cubic feet per
day (Mcf day−1), where 1 Mcf day−1

= 0.028 Mm3 day−1;
medium: 100–1000 Mcf day−1; large: 1000+Mcf day−1) are
in the high-emission mode, and we simulate the resulting at-
mospheric methane concentration fields with the WRF mete-
orological model at 1.3×1.3 km2 resolution. We then sample
this pseudo-atmosphere with different satellite and surface
observing configurations and apply different inverse meth-
ods to detect the high emitters. Detection success is eval-
uated for each observing configuration and inverse method
using statistics for the ensemble of emission scenarios. We
describe the different elements of the OSSE in this section.

2.1 Constructing an ensemble of emission fields

Production sites within the 50×50 km2 domain are randomly
placed on the 1.3× 1.3 km2 WRF model grid, with at most
one site per grid cell. Emission statistics for the sites are
based on observations from the Barnett Shale Coordinated
Campaign (Lyon et al., 2015). For each scenario we ran-
domly assign a production size category to each site with
23 % of the sites as small, 62 % as medium, and 15 % as
large (Rella et al., 2015). We then assign an emission rate
for each site by randomly sampling the bimodal probabil-
ity density functions (PDFs) describing low-mode emissions
and high-mode emissions for each size category (Lan et al.,
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Figure 1. Probability density functions (PDFs) of emissions for
oil/gas production sites of different production size categories
(small, medium, and large) taken from Barnett Shale observations
(Lan et al., 2015; Rella et al., 2015; Yacovitch et al., 2015). Note
the difference in y-axis scales between the left (low mode) and
right (high mode) panels. The axis break at 40 kg h−1 represents
the threshold for flagging an emitter as high.

2015; Rella et al., 2015; Yacovitch et al., 2015). We assume
no other sources in the domain.

Figure 1 shows the PDFs of methane emissions for each
production site size category. We flag production sites to be
in the high-emission mode if they exceed an emission thresh-
old of 40 kg h−1 (axis break in Fig. 1), which corresponds on
average to 5 % of all the sites. High-mode emissions from
small facilities are much lower, centered around 24 kg h−1,
and would be difficult to distinguish from the normal (low)
emission mode. Thus we do not attempt to detect them as
high-mode emitters.

Figure 2 shows a sample realization of the oil/gas field
with 24 small production sites, 67 medium sites, and 9 large
sites (100 total) within the 50× 50 km2 domain. In this re-
alization there are five sites in the high-emission mode. We
generate 500 emission scenarios in the same fashion as Fig. 2
by randomly assigning size categories for each site (small,
medium, large) and randomly sampling the emission PDFs
from Fig. 1.

2.2 Constructing pseudo-observations of atmospheric
methane

We use the meteorological simulation previously generated
by Turner et al. (2018) for a 1-week period (19–25 Oc-
tober 2013) in the Barnett Shale. This simulation applied
the Weather Research and Forecasting Model (WRF; Ska-
marock et al., 2008) at 1.3 km horizontal resolution to drive
the Stochastic Time-Inverted Lagrangian Transport (STILT)
model (Nehrkorn et al., 2010). STILT is a receptor-oriented
Lagrangian particle dispersion model that defines the source
footprints for individual atmospheric observations. Turner et

Figure 2. Sample realization of emissions from a hypothetical
oil/gas production field with 100 production sites of different pro-
duction size categories (symbols) within a 50× 50 km2 domain
(dashed line). Different production size categories are shown with
symbols. Red shading indicates high-mode emitters. Blue symbols
mark the locations of five surface air monitoring sites placed ac-
cording to the k-means algorithm.

al. (2018) applied it to generate 1.3× 1.3 km2 hourly foot-
prints for any daytime surface or atmospheric column obser-
vation in a 70× 70 km2 domain. Footprints for each column
were obtained by releasing and tracking back in time 100 par-
ticles from vertical levels centered at 28, 97, 190, and 300 m
above ground, and 8 additional levels up to 14 km altitude
spaced evenly on a pressure grid. The column footprints were
weighted with a typical near-uniform SWIR averaging ker-
nel for satellite observations (Worden et al., 2015). Surface
observations are taken in the lowest model layer (centered
at 28 m above ground) and the corresponding footprints are
obtained by releasing and tracking back in time 100 parti-
cles at the observation location and time. We use the ensem-
ble of footprints generated by Turner et al. (2018) and add
to it hourly footprints for surface observations at night. The
70×70 km2 observing domain encompasses our 50×50 km2

oil/gas field plus 10 km outside the boundaries (Fig. 2) to ac-
count for plume transport.

The 70×70 km2 archive of WRF-STILT footprints allows
us to immediately compute the time-dependent methane con-
centration field associated with any emission scenario. Fig-
ure 3 shows a sample footprint, expressing the sensitivity of
atmospheric concentrations at a given location and time i to
the emission field upwind. Column footprints are about an
order of magnitude smaller than surface footprints because
surface signal is weakened for receptors (e.g., satellites) with
total column sensitivity. Taking the footprints to represent the
true atmospheric transport relating emissions to atmospheric
concentrations for that location and time, we can combine
them with any realization of our emission field (Sect. 2.1) to
generate the true time-dependent methane concentrations in
the domain to be sampled by the instruments.

Satellite observations of methane column concentrations
are conventionally expressed in units of dry column mean
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Figure 3. Sample sensitivities of observed atmospheric concentrations (column and surface) to surface emissions upwind, defining the
emission footprint for that observation. Values are shown here for a particular observation point (purple dot) and time (19 October 2013
at 09:00 LT). Concentrations are in mixing ratio units of ppb (dry column mean mixing ratio for the column) and emissions are in units of
µmol m−2 s−1.

mixing ratio (ppb), which is the ratio of the vertical col-
umn density of methane to the vertical column density of dry
air (Jacob et al., 2016). The footprint for location and time
i is mathematically represented as hi = (∂yi/∂x)

T (units:
ppb µmol−1 m2 s) where yi is the methane concentration
(ppb) for that location and time, and x (µmol m−2 s−1) is a
vector of dimension n describing the emission field for the
n emitters in the domain. The vector hi is also a vector of n
dimension. The true atmospheric concentration can be imme-
diately constructed for any emission field x as yi = hi ·x+b,
where · denotes the scalar product and b is a background as-
sumed here to be constant.

A given methane observing configuration makes m obser-
vations of the domain over the 1-week simulation period. The
true methane concentrations for that observation ensemble
can be assembled as anm-dimensional vector ytrue =Hx+b,
where H= ∂ytrue/∂x is the m× n Jacobian matrix of foot-
prints with rows hTi . The pseudo-observations are then gen-
erated as y = ytrue+σε, where σ is the instrument precision
(1 standard deviation) and the vector ε is a random realiza-
tion of Gaussian noise with mean value of zero and stan-
dard deviation of unity for each vector element. SWIR in-
struments may also suffer from systematic errors but we do
not account for those here in the absence of information. The
largest source of systematic error on our scale would likely
be the inhomogeneity in surface reflectivity (Pfister et al.,
2005).

The mean daytime 10 m horizontal wind speed inside the
observing domain during the simulated week is 5.4 m s−1.
Stronger winds could further dilute plumes within an observ-
ing domain, making the ability for satellite detection of emit-
ters more difficult; on the other hand, the model transport
error is less for stronger winds (Varon et al., 2018).

2.3 Satellite and surface observing configurations

Table 1 describes the different satellite observing configu-
rations evaluated in this work including TROPOMI, Geo-
CARB with 2 or 4 return times per day, and an aspira-

tional next-generation geostationary instrument with 1.3×
1.3 km2 pixel resolution, 1 ppb precision, and hourly return
frequency between 08:00 and 17:00 LT (local time). Success-
ful methane retrievals from satellites require a clear sky. The
probability of clear sky in a partly cloudy domain depends
greatly on pixel size (Remer et al., 2012). Results for a partly
cloudy condition would depend on the particular cloud con-
figuration and would be difficult to generalize. Here we as-
sume clear-sky conditions to avoid this complication, but the
detection probability for high-mode emitters should then be
viewed as an upper limit. In particular, it should be recog-
nized that no detection from satellite is possible for a cloudy
domain.

We also wish to determine the benefit of a well-positioned
surface air monitoring network for supplementing the satel-
lite observations. Assuming that we haveM fixed monitoring
instruments to deploy measuring surface air methane concen-
trations in situ. We want to place them in a configuration that
maximizes the information that they would provide, assum-
ing an isotropic wind for generality. A trivial solution would
be to place an instrument at each production site, in which
case the monitoring problem would be fully solved, but this
solution may not be practical for a large number of produc-
tion sites. Given a known spatial distribution of emitters (the
locations of the production sites), we use the k-means spa-
tial clustering approach (Hartigan and Wong, 1979) to select
monitoring site locations minimizing the distances to emit-
ter locations. Figure 2 shows the selected locations for five
surface monitoring sites. We assume that these sites report
hourly data with 1 ppb precision and that the background
concentration in surface air is constant, consistent with the
assumption made for satellite observations. A variable back-
ground would complicate the problem but could be retrieved
as part of the inversion (Wecht et al., 2014b).

An important consideration in the interpretation of satel-
lite observations is that methane column enhancements from
individual point sources are typically small relative to instru-
ment precision, even in the high-emitting mode (Jacob et al.,
2016; Varon et al., 2018). Figure 4 shows the pixel-resolved
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Table 1. Observing configurations considered in this work.

Instrument Observation Pixel size Precisiona Number of
frequency (km× km) (ppb) observationsb

Satellites TROPOMI dailyc 7.0× 7.0 11d 567
GeoCARB 2× day−1 2× dailye 2.7× 3.0 4.0f 7700
GeoCARB 4× day−1 4× dailyg 2.7× 3.0 4.0 15 400
Next generationh hourlyi 1.3× 1.3 1.0 164 500
Surface sitesj hourlyk point 1.0 840–3360l

ar Dry column mean mixing ratio for the satellite observations, local mixing ratio for the surface
observations. b One week of clear-sky conditions in the 70× 70 km2 domain. c 13:00 LT (local time). d Butz
et al. (2012). e 12:00 and 16:00 LT. f O’Brien et al. (2016). g 10:00, 12:00, 14:00, and 16:00 LT.
h Aspirational instrument combining the characteristics of instruments currently at the proposal stage
(Fishman et al., 2012; Butz et al., 2015; Xi et al., 2015). i Between 08:00 and 17:00 LT. j In situ
measurements of surface air concentrations. k Day and night. l For 5 to 20 surface sites.

Figure 4. Simulated noiseless methane column enhancement for sampling by single overpasses of TROPOMI, GeoCARB, and a next-
generation high-resolution geostationary satellite (Table 1). Emission field is that of Fig. 2. The locations of the five high-mode emitters in
that field are indicated. Values are for 22 October 2013 at 13:00 LT.

distribution of atmospheric methane column enhancements
above the background for a single pass of the different satel-
lite instruments sampling the emission field of Fig. 2. The en-
hancements are less than 1 ppb even for 1.3× 1.3 km2 pixels
and are weaker at coarser pixel resolution. This is less than
the single-scene precision of the satellite instruments (Ta-
ble 1). Successful detection of high-mode emitters thus re-
quires the sampling of many pixels, across the plume and/or
through repeated sampling, to reduce the noise. This is less
of an issue for surface air measurements, where methane en-
hancements are an order of magnitude higher (Fig. 3). On
the other hand, surface monitoring sites are spatially sparse.
For both satellite and surface air observations, a formal in-
verse analysis of the ensemble of atmospheric observations
accounting for plume transport is required for detection of
the high-mode emitters.

2.4 Inverse methods

Given a set of observations y and Jacobian matrix H, we
need an inverse method to determine the best solution x̂ of
the emission field x at predetermined locations. We use the
same matrix H for both pseudo-observation construction and
the inversion. The inversion should be able to detect the small

fraction of sources in the high-emitting mode, with detection
being more important than quantification. This is known as
a sparse-solution problem, where most elements of the emis-
sion field x are very small (for which an optimized value
of zero would be acceptable), and a few of the elements are
relatively large. We use regularized least squares regression
(e.g., Hansen, 2010), also known as Tikhonov regularization,
where the solution is found by minimizing the cost function
J (x),

J (x)= (Hx− y)TR−1 (Hx− y)+ λ‖x‖
p
L. (1)

Here the first term on the right-hand side represents the ordi-
nary least-squares cost function, such that the solution would
minimize the residuals between the prediction Hx and the
observations weighted by the observational error covariance
matrix R. The second term represents an adjustable parame-
ter λ and the L-norm of x, which is a measure of the magni-
tude of the vector x defined as the following:

‖x‖L =
L

√
6nk=1|xk|

L. (2)

Adding this second term in the cost function penalizes the
total magnitude of x in the solution, which reduces overfit-
ting to noise and regularizes the solution. When L= 1 and
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p = 1, this is known as L1 regularization or the least abso-
lute shrinkage and selection operator (LASSO; Tibshirani,
1996), and Eq. (1) takes the form

J (x)= (Hx− y)TR−1 (Hx− y)+ λ

n∑
k=1

|xk| . (3)

When L= 2 and p = 2 , Eq. (1) takes the form known as L2
regularization or ridge regression (Evgeniou et al., 2000):

J (x)= (Hx− y)TR−1 (Hx− y)+ λxT x. (4)

Equation (4) is equivalent to the standard Bayesian opti-
mization (Rodgers, 2000) assuming Gaussian distributions,
a prior emission estimate of zero, and uniform prior error
variance of λ−1.

The observational error covariance matrix R= (rij ) adds
and accounts for both instrument and model transport errors.
Representation errors are negligible due to the model grid
resolution being finer or the same resolution as the instru-
ment pixels (Turner et al., 2018). The diagonal terms add the
corresponding error variances in quadrature:

rii = σ
2
I + σ

2
M, (5a)

where σI is the instrument error standard deviation as given
by the precision in Table 1, and σM is the model transport
error standard deviation previously estimated to be 4 ppb
for methane columns (Turner et al., 2018). Given the or-
der of magnitude difference in sensitivity between satellite
columns and surface measurements (Fig. 3), we assume σM
to be 40 ppb for surface measurements. Off-diagonal terms
account for model transport error correlation between differ-
ent observations. Following Turner et al. (2018), we assume a
temporal error correlation length scale (τ ) of 2 h and a spatial
error correlation length scale (`) of 40 km:

rij = σ
2
Mexp

{
−
d

l

}
exp

{
−
t

τ

}
for i 6= j , (5b)

where d and t are the distance and elapsed time, respectively,
between observations yi and yj .

Additional model transport error correlation applies when
combining satellite and surface air observations in the inver-
sion, since the footprints can be similar (Fig. 3). To quantify
this error correlation, we use the work of Sheng et al. (2018b)
who jointly compared column (TCCON) and surface air
(NOAA) measurements of methane at Lamont, Oklahoma,
with GEOS-Chem transport model simulations. By correlat-
ing the model–observation differences for coincident column
(i) and surface air (j ) observations we find a model transport
error correlation coefficient cor(i,j)= 0.65 that we apply to
the corresponding off-diagonal terms:

rij = cor(i,j)σMiσMj exp
{
−
d

l

}
exp

{
−
t

τ

}
. (5c)

Figure 5. An example distribution of the optimal emission esti-
mate x̂ for a realization of the emission inventory (100 sites), Geo-
CARB 4× day−1 pseudo-observations, and L1 or L2 regulariza-
tion. Dashed lines represent the thresholds to classify an emitter
as high-mode, determined either from the distribution x̂ (S = 2) or
from a fixed prior value (here 40 kg h−1).

Inverse solutions derived using L1 regularization produce
sparser solutions than the L2 counterpart (Tibshirani, 1996),
which is desirable for our application and has previously
been shown to produce good results for constraining methane
hot spots (Hase et al., 2017). Here we will perform both L1
and L2 inversions and compare the results. Minimization of
J (x) in Eqs. (3) and (4) to obtain the solution x̂ correspond-
ing to dJ/dx = 0 is done numerically using coordinate gra-
dient descent (Friedman et al., 2009). The regularization pa-
rameter λ is chosen so that the mismatch between model and
observations is small, but not so small that the solution x̂ is
over fit to random noise, which would occur when λ= 0. We
use the process of 5-fold cross-validation to select an opti-
mal λ value (Arlot and Celisse, 2010). This process randomly
samples H and y into a training and validation set. Minimiza-
tion of J is done on the training set using an array of λ values.
The process is repeated five times, and the value of λ that on
average minimizes the residual error in the validation set is
retained.

Figure 5 shows the distribution x̂ from a single realiza-
tion of emissions, GeoCARB 4 times per day (denoted as
4× day−1) pseudo-observations, and both L1 and L2 regular-
ization. In this simulation, L1 regularization enables the re-
trieval of high-mode emitters while L2 regularization is more
restrictive in allowing excursions from the low-mode mean.

2.5 Detection of high-emission modes

Success in the detection of high-mode emitters from the dis-
tribution of x̂ can be determined by comparison to the ac-
tual occurrence and location of these emitters as defined in
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Sect. 2.1 and illustrated in Fig. 2. In a real-world application
we would not know the actual PDFs of emissions (Fig. 1), so
we need to diagnose the occurrence of high-mode emitters
on the basis of anomalies in the distribution of x̂. We define
high-mode elements as being more than S standard devia-
tions from the mean of the x̂ distribution, where S is varied
in the 1.65–2.5 range to examine the associated sensitivity.
Using anomaly detection on x̂ instead of a fixed threshold
(e.g., 40 kg h−1) allows for generalization to other emission
fields where the mean normal and high modes may be dif-
ferent than the Barnett Shale. Figure 5 shows thresholds for
classifying high-mode emitters using anomaly detection and
a fixed value of 40 kg h−1. The L1 threshold is larger than
the L2 threshold, but smaller than 40 kg h−1. Had the fixed
threshold been used, some high-mode emitters (relative to x̂)
would not have been classified as such.

The detection of high-mode emitters by the inversion is
graded into four categories: (1) true positives (TP), or the in-
version correctly identifying the locations of the high-mode
emitters; (2) true negatives (TN), or the inversion correctly
identifying the locations of the low-mode emitters; (3) false
positives (FPs), or the inversion signaling a high-mode emit-
ter when in reality the emitter is in the low mode; and
(4) false negatives (FNs), or the inversion signaling a low-
mode emitter when in reality the emitter is in the high mode.

We compile these grades into three overall performance
metrics (Brasseur and Jacob, 2017). The probability of de-
tection (POD) is defined as the ratio of true positives to true
positives plus false negatives:

POD =
6TP

6TP+6 FN
. (6)

This metric measures the ability to detect high-mode emit-
ters. The false alarm ratio (FAR) is defined as the ratio of
false positives to false positives plus true positives:

FAR =
6 FP

6TP+6 FP
. (7)

This metric measures the reliability of high-mode emission
occurrences detected by the inversion.

A perfect observing system would have a POD of 1 and
a FAR of 0. Here we define a successful observing system
as achieving a POD of 0.8 (80 %) and a FAR of 0.2 (20 %).
These criteria, although somewhat arbitrary, allow us to suc-
cinctly summarize the success of each observing configura-
tion.

We combine the POD and FAR metrics into one overall
performance metric called the equitable threat score (ETS;
Wang, 2014):

ETS=
6TP− α

6TP+6 FP+ 6 FN− α
, (8)

where α is the number of TP predictions that are expected by
chance:

α =
(6TP+ 6 FP)(6TP+ 6 FN)
6TP+ 6 FP+ 6 FN + 6TN

=
1
N

6 FP
FAR

6TP
POD

(9)

and N =6TP+ 6 FP+ 6 FN + 6TN. The ETS measures
how well the high-mode emitters detected by the observing
system correspond to the actual occurrences, beyond what
could be achieved by chance. A perfect observing system has
an ETS of 1, and a system performing worse than chance
would have a negative ETS. An observing system with POD
of 0.8 and FAR of 0.2 has an ETS of 0.65 for a field where
5 % of emitters are in the high mode. We take this as our ETS
criterion for successful detection.

3 Results and discussion

3.1 Performance of different satellite and surface
observing systems

We begin by testing the ability of each satellite configura-
tion of Table 1 to detect high-mode emitters from fields of
20 to 500 randomly scattered production sites within the
50×50 km2 domain. For a given number of sites, we conduct
each test for 500 different realizations of the emission field
randomly assigning each production site to a size category
(small, medium, large) and randomly sampling the PDFs of
Fig. 1. Emitter locations are fixed across all 500 realizations.
Figure 6 shows the POD, FAR, and ETS results for a field
of 100 emitters and compares the results of L1 and L2 reg-
ularizations. The values represent the mean results for the
ensemble of 500 realizations, and the error bars represent the
range of results when the high-mode detection threshold S is
varied from 1.65 to 2.5. We find that L1 regularization pro-
vides better predictions for all cases. This is especially the
case for the next-generation satellite, where L1 regulariza-
tion produces a POD of 0.85 with a near-perfect FAR of 0.04.
L2 regularization is more conducive to spreading emissions
across a broader array of state vector elements. The better
performance of L1 regularization is also observed for other
site densities (not shown). We use L1 regularization in what
follows.

Figure 6 also compares the performances of the satellite
observing systems to those of an ensemble of 5–20 optimally
placed (k means) surface sites. We find that the surface ob-
serving system performs comparably to GeoCARB. We ex-
plore combining satellite and surface observations into a sin-
gle prediction in Sect. 3.3.

The results from Fig. 6 show that TROPOMI and Geo-
CARB are unsuccessful in locating high-mode emitters for a
field of 100 production sites (0.04 sites km−2). We examine
the sensitivity of this result to site density. Figure 7 com-
pares the detection results for fields of 20, 50, 100, and
500 production sites within the 50× 50 km2 domain. For a
field of only 20 emitters, TROPOMI is successful and Geo-
CARB produces near-perfect results. For a field of 50 emit-
ters, TROPOMI is no longer successful, but GeoCARB is
still marginally successful due to finer pixel resolution and
higher instrument precision. We find in general that Geo-
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Figure 6. Probability of detection (POD), false alarm ratio (FAR), and equitable threat score (ETS) of high-mode emitters for each satellite
and surface observing configuration. Each bar represents the mean of 500 observing system simulation experiments (OSSEs), where 100 pro-
duction sites in a 50× 50 km2 domain were used to construct 500 random realizations of an emission field including different subsets of
high-mode emitters. For each observing configuration, the left bar (lighter color) shows results for the inversion with L1 regularization, and
the right bar (darker color) is for the L2 regularization. The dashed lines represent the POD, FAR, and ETS criteria for successful observing
systems. Here, and in following figures, the vertical lines measure the sensitivity to the choice of threshold for diagnosing high-mode emitters
in the inversion.

CARB gains little by sampling 4 times a day (4× day−1) vs.
2× day−1. This is due to the temporal model error correlation
between successive GeoCARB observations. Accounting for
cloud cover would show more benefit from 4× day−1 obser-
vations, since a higher frequency of observations allows for a
greater chance of sampling clear-sky conditions, although the
benefit depends on the cloud persistence timescale (Sheng et
al., 2018a).

The ability of a satellite observing configuration to local-
ize high-mode emitters thus depends not only on repeat time,
resolution, precision, and cloud cover, but also on the den-
sity of emitters within a field. For the high-density fields
of 100 and 500 production sites considered here (0.04 and
0.2 sites km−2), we find that only the next-generation satel-
lite instrument is successful. Actual fields can be even denser
but we are limited in our investigation by the 1.3× 1.3 km2

resolution of the WRF simulation. Detecting individual high-
mode emitters in denser fields would require geostationary
satellite observations with sub-kilometer pixels but this is be-
yond the scope of current proposals.

3.2 Spatial tolerance in detection of high-mode emitters

The results from Fig. 7 are somewhat pessimistic regarding
the ability of near-future satellite observations (TROPOMI
and GeoCARB) to detect the locations of high-mode emitters

Figure 7. Equitable threat score (ETS) for each satellite observing
configuration, varying the density of production sites (20–500 sites
in 50× 50 km2 domain). Results are from the L1 inversion. The
dashed line represents the ETS criterion for successful observation.

in fields of 100+ wells. It may be acceptable to relax the
localization criterion. If the observing system detects a false
positive that is sufficiently close to the actual location of a
high-mode emitter, then the detection may still have some
value. In our OSSE setup, localization is effectively limited
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Figure 8. Effect of introducing spatial tolerance in the detection of
high-mode emitters. Spatial tolerance is the radius within which a
high-mode emitter must be located in order for a prediction to be
called true positive (TP). The results are for an emission field with
100 production sites in the 50× 50 km2 domain. Only results from
the L1 inversion method are shown. The dashed line represents the
ETS success criterion.

by the 1.3× 1.3 km2 grid resolution of the WRF simulation.
To examine the sensitivity to localization, we repeated the
analysis allowing for 3–5 km tolerance of false predictions.
Figure 8 shows the results for a field of 100 emitters. We find
that spatial tolerance significantly improves the performance
of GeoCARB but still falls short of our success criterion. The
FAR decreases below 0.2 for 3 km tolerance and below 0.1
for 5 km tolerance, but the POD only improves to 0.7 and
thus the ETS remains below 0.65.

3.3 Combining satellite and surface observations

We saw in Sect. 3.1 that only the next-generation satellite
instrument can successfully detect high-mode emitters when
the site density is high. Here we examine if a combination of
satellite and surface observations can improve detection, i.e.,
if TROPOMI and GeoCARB could benefit from an in situ
supporting surface network and vice versa. This is addressed
with a joint inversion of the satellite and surface observa-
tions, taking into account the error correlation between the
two as described in Sect. 2.4.

Figure 9 shows the results for a field of 100 emitters. The
already successful next-generation instrument shows no ben-
efit from added surface sites, and the uncertainty increases
slightly with the number surface sites. This increase is due
to imperfect accounting of correlated error between satellite
and surface measurements. On the other hand, the surface
sites provide greatly added value to TROPOMI and Geo-
CARB. Adding 10–20 surface sites enables near-successful
detection of the high-mode emitters. At the same time,

Figure 9. Effectiveness of a combined satellite and surface observ-
ing system for detecting high-mode emitters in an oil/gas field of
100 emitters over a 50× 50 km2 domain, as determined from joint
inversion of the observations. The dashed line represents the ETS
success criterion.

TROPOMI and GeoCARB data add significantly to the per-
formance of a surface observing system alone by provid-
ing observations with more spatial coverage. We find that
TROPOMI and GeoCARB perform similarly when added to
surface sites, and that their main benefit is to decrease the
FAR. Accounting for clouds would show more benefit for
GeoCARB because the finer pixels allow for more frequent
clear-sky observations (Sheng et al., 2018a).

4 Conclusions

We performed observing system simulation experiments
(OSSEs) to test the ability of near-future satellite instruments
measuring atmospheric methane (TROPOMI, GeoCARB,
next-generation geostationary) to detect high-mode point-
source emitters among a field of individual point sources,
alone or supported by a surface monitoring network. We fo-
cused on the practical problem of detecting high-mode emit-
ters in an oil/gas production field with a high density of wells.
Remote detection from satellites, combined with operator
knowledge, could supplement on-site leak detection and re-
pair (LDAR) programs to identify and fix unexpected high
emitters. Our results in these meteorological conditions can
be usefully summarized in terms of answers to questions that
a field manager might have:

“Can I rely on satellite data alone to detect high-mode
emitters among the production sites in my oil/gas field?”
We find that TROPOMI and GeoCARB can detect high-
mode emitters as long as the density of point sources is
relatively small (20 sites within our 50× 50 km2 domain,
or a density of 0.008 km−2) and skies are clear. GeoCARB
shows little difference in success rate (equitable threat score,
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ETS, > 0.65) for 2 or 4 overpasses per day. GeoCARB is
marginally successful for 50 sites (0.02 km−2) but fails for
100 sites (0.04 km−2). A next-generation geostationary satel-
lite instrument with ∼ 1 km pixel resolution and hourly re-
turn time would deliver precise detection in dense fields up
to 500 sites (0.2 km−2). Allowing for a 5 km spatial error tol-
erance for localization, we find that GeoCARB comes close
to successful detection in a field of 100 sites.

“How should I analyze the satellite observations to de-
tect high-mode emitters?” Detection of high-mode emitters
from satellite observations is not a simple matter of flag-
ging hot spots because the methane column enhancements
are typically small compared to instrument precision, even
for high-mode emitters. Repeated clear-sky observation com-
bined with inverse analysis using an atmospheric transport
model is needed. We find that an inversion with L1 regular-
ization produces better results than L2 regularization. This is
expected since the L1 regularization method is designed to
recover sparse signals.

“Can I usefully supplement satellite information with sur-
face monitoring?” Both TROPOMI and GeoCARB signifi-
cantly add to the information provided by a surface monitor-
ing network of 5–20 sites within the 50×50 km2 domain, and
conversely the addition of a surface network significantly en-
hances the information that can be retrieved from TROPOMI
and GeoCARB. The combination of these satellite instru-
ments with the surface monitors can deliver successful detec-
tion of high-mode emitters through a joint inversion. Adding
surface sites provides no benefit to the next-generation geo-
stationary instrument, which can successfully detect high-
mode emitters on its own as long as skies are clear.
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