

Supplement of

The vertical variability of ammonia in urban Beijing, China

Yangyang Zhang et al.

Correspondence to: Aohan Tang (aohantang@cau.edu.cn), Yele Sun (sunyele@mail.iap.ac.cn), and Xuejun Liu (liu310@cau.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Table S1. Threshold values (75th percentile, μg m⁻³) for the WPSCF of NH₃ and
NH₃ + NH₄⁺ during four seasons.

1113 - 11114 during rour scasons.					
	Height (m)	Spring	Summer	Autumn	Winter
NH3	2	14.4	17.9	10.8	9.9
	63	16.6	21.1	13.4	11.0
	180	15.9	20.9	13.0	8.8
	320	13.4	19.0	10.3	7.0
NH3+NH4 ⁺	2	30.2	22.6	20.7	18.8
	63	33.3	27.0	24.9	20.9
	180	34.2	26.8	21.9	16.8
	320	28.8	24.4	17.9	16.4

12 of weekly NH₃ concentrations for all heights.

10

13

14 Fig. S2 Weekly mixed-layer height (MLH), average weekly NH₃ concentration of

all heights and the height with peak NH₃ concentration.

17 Fig. S3 Decline proportion of NH₃ concentration from the height with maximum

18 to the upper and lower profiles in four seasons.

Fig. S4 The coefficient of determination (R²) and slope between NH₃ concentration and temperatures (T) (a), relative humidity (RH) (b),
wind speed (WS) (c) for each height.

Fig. S5 Time series of vertical distribution of weekly temperature (top), relative humidity (middle) and wind speed (bottom) in Beijing

23 urban (03/16/2016 - 03/16/2017).

24

Fig. S6 Wind roses of selected 6 heights colored by NH₃ concentrations (µg m⁻³)
during four seasons, i.e., Spring, Summer, Autumn, and Winter from left to right,
respectively. The length of each wedge represents the wind frequency of each

28 direction.

29

Fig. S7 Time series of weekly relative NH₃ concentration fraction* (a) and weekly thermal inversion layer probability* (b: 6 a.m., c: 3 p.m.) for all heights.

³² *Weekly relative NH₃ concentration fraction was calculated by weekly NH₃ ³³ concentration for a specified height minus min NH₃ concentration in the same week, ³⁴ then divided by the difference between the max and min NH₃ concentrations for the ³⁵ same week. The fraction is between 0 to 1, where '0' represents the min NH₃ ³⁶ concentration and '1' means max NH₃ concentration.

*Weekly thermal inversion layer probability was calculated by the number of the days
when thermal inversion layer occurred for a specified height was divided by the total
number of the days during one sampling period (generally 7 days).

*Week No. represents the weekly sampling period, same as the time series along x
axle in Fig. 2.

42

43 Fig. S8 Monthly concentrations ($\pm 1\sigma$) of particulate NH₄⁺ (NH₄⁺(_p)) and gaseous

44 NH₃ (NH_{3(g)}) in air (μg m⁻³), and ammonia conversion ratio (F_{NHx}, mol/mol)

45 $*F_{NHx}$ = gaseous NH₃ concentration divided by the sum of the gaseous NH₃ and

46 particulate NH_4^+ concentrations, where the concentrations are in molar units.

Fig. S9 Weighted potential source contribution analysis (WPSCF) of atmospheric NH₃ and estimated NH₄⁺ in Beijing during 03/16/2016 - 03/16/2017. Note: WPSCF analysis performed for NH₃+NH₄⁺ was in line with that for NH₃.