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S1 Sample selection for radiocarbon (14C) measurements 

There are 58 PM2.5 samples in total, with 13 collected in spring, 15 in summer, 12 in autumn, and 18 in 

winter. Six samples with varying PM2.5 mass and carbonaceous aerosols loading were selected per 

season for 14C analysis. Air mass back trajectories (for identifying the probable sources and transport 

pathways of air pollutions) are also considered when selecting samples for 14C analysis. 72h air mass 

back trajectories starting 150 m above ground level at 2:00 UTC (10:00 a.m., local standard time) were 

calculated using NOAA HYSPLIT trajectory model. The best situation is that the back trajectories 

were similar between days with high PM2.5 loading and low-to-medium PM2.5 loading, in which case, 

the influence of air pollution transport to the sampling site could be minimized. Back trajectories of 

selected samples are presented in Fig. S2. 

S2 Measurement of source markers (levoglucosan, hopanes, picene and water-soluble potassium) 

Organic markers including levoglucosan, picene and hopanes were quantified using the Gas 

chromatography–mass spectrometry (GC/MS) instrumentation. Filter pieces were extracted with a 

mixture of dichloromethane and methanol (2:1, v/v) under ultrasonication. The extracts were 

concentrated using a rotary evaporator in vacuum and then blown down to dryness using a pure 

nitrogen stream. After reaction with N,O-bis-(trimethylsilyl) trifluoroacetamide (BSTFA) at 70 °C for 

3 h, the derivatives were determined using a GC/MS technique. GC/MS analysis of the derivatized 

fraction was performed using an Agilent 7890A GC coupled with an Agilent 5975 CMSD. The GC 

separation was carried out on a HP-5MS fused silica capillary column with the GC oven temperature 

programmed from 50 °C (2 min) to 120 °C at 15 °C min−1 and then to 300 °C at 5 °C min−1 with a final 

isothermal hold at 300 °C for 16 min. The sample was injected in a splitless mode at an injector 

temperature of 280 °C, and scanned from 50 to 650 Daltons using electron impact (EI) mode at 70 eV. 

GC/MS response factors were determined using authentic standards. We use the sum of measured 

hopanes (Σhopanes) in this study, including 17α(H),22,29,30-Trisnorhopane, 17α(H),21β(H)-30-

Norhopane, 17β(H),21α(H)-30-Norhopane, 17α(H),21β(H)-Hopane, 17α(H),21α(H)-Hopane, 

17β(H),21α(H)-Hopane, 17α(H),21β(H)-(22S)-Homohopane, and 17α(H),21β(H)-(22R)-Homohopane.  

Water-soluble potassium (K+) was measured in water extracts using Ion Chromatography (Dionex 600, 

Thermal Scientific-Dionex, Sunnyvale, CA, USA). IonPac CS12A column was used for the separation 

of cations. 20mM methanesulfonic acid with a flow rate of 1 mL min-1 was utilized as eluent for cation 

separation. The minimum detection limit for K+ was 0.001 µg mL-1. Details of these measurements are 

described in Li et al. (2016a) and Zhang et al. (2011). 

S3 Determination of modern and fossil contamination for radiocarbon measurement 

F14C of aerosols samples was corrected for contamination that occurred during graphitization and AMS 

measurement.  For AMS measurements, samples are usually analysed together with varying amounts of 

reference material covering the range of sample mass. Two such materials with known 14C content are 

used: the oxalic acid OXII calibration material (F14C = 1.3406) and a 14C-free CO2 gas (F14C = 0).  



S3 
 

Contamination during the graphitization and AMS measurement results into the differences between 

measured and nominal F14C values. The magnitude of these deviations can be used to quantify the 

contamination with fossil carbon (F14CF = 0) and modern carbon (F14CM = 1), which in turn are used 

for correcting the sample values (de Rooij et al., 2010). 

The contamination with fossil carbon and modern carbon is quantified using isotope mass balance 

(Dusek et al., 2014): 

F C ∙ M = F C ∙ M + F C ∙ M + F C ∙ M .                           (S1) 

 

Mm and Mst stand for the experimentally determined mass and the mass of reference materials either 

the oxalic acid OXII calibration material (F14C = 1.3406) or a 14C-free CO2 gas (F14C = 0) with a unit 

of μgC, respectively. F14Cm and F14Cst represent the experimentally determined F14C measured by AMS 

and nominal F14C of reference materials (Table S9). 

The relationships among all masses are described as Eq. (S2):  

M = M +M +M ,                                                              (S2) 

where MM is calculated using Eq. (S1) by substituting F C = 0 for a 14C-free CO2 gas as: 

 MM= F14Cm·Mm.                                                                    (S3) 

Substitute F C = 1.3406 for OXII and the derived MM from Eq. (S3), MF is derived by combining 

Eq. (S1) and Eq. (S2) as: 

M = ((1.3406 − F C ) ∙ M − (1.3406 − 1) ∙ M )/1.3406.                     (S4) 

MM and MF are calculated by applying Eq. (S3) and Eq. (S4), and they are mass dependent.  The 

modern carbon contamination (MM) is between 0.35 and 0.50 µg C, and the fossil carbon 

contamination (MF) is typically around 2 µg C for a sample bigger than 100 μgC. 

S4 Primary OC/EC ratios from biomass burning (rbb), coal combustion (rcoal), and liquid fossil 
fuel combustion (rliq.fossil) 

There is considerable variability in the published OC/EC ratios for biomass burning (Fig. S16), coal 

combustion (Fig. S17) and liquid fossil fuel combustion (e.g., vehicle emissions; Table S10). OC/EC 

ratios differ due to variabilities in experimental factors, such as fuel types and properties, combustion 

conditions (e.g., smoldering vs. flaming), sampling and analysis methods (e.g., different protocols for 

OCEC measurements) etc.  

When selecting OC/EC ratios for each source, we applied the following rules: first, we prioritize 

localized measurements of fresh emissions and estimations specific to China; second, OCEC measured 

by IMPROVE_A (Chow et al., 2007), the same protocol applied in this study, have higher priorities 

than those measured by other protocols. This is because different protocols (e.g., IMPROVE_A, 

IMPROVE and NIOSH) can lead to differences in OC/EC ratios up to over 3 times (Chow et al., 2001). 

The difference in OC/EC ratios between IMPROVE and IMPROVE_A can be up to a factor of  2 

(Chow et al., 2007); third, for sources with limited data, average of the available data is used. 

Biomass burning emissions are mixtures of emissions from crop residues open burning, crop residues 
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burning in household stove, and wood burning in household stove etc. Higher OC/EC ratios are 

reported for crop residues open burning than those reported for similar fuels burned in household stove 

(Ni et al., 2015), perhaps due to a more complete combustion of household biofuels leading to higher 

EC emission. As it is difficult to estimate the distribution among different biomass burning subtypes, 

here we take OC/EC ratios from emission inventories, where major types of biomass burning are 

included. OC and EC emission amounts from previously reported emission inventories are summarized 

and their ratios are presented in Fig. S16. OC/EC ratios ranged from 3 to 7, with the mean of 4.4.  This 

range covers the OC/EC ratios from fresh emissions of wood combustion (e.g., 4.67 for wood burning 

in rural China by Shen et al. (2015)) and crop residues burning (e.g., 7 for mixture of wheat straw, rice 

straw and corn stalk by Han et al. (2016)). We took rbb = 5 (3–7) to account for the variabilities of 

biomass burning emissions. A bit lower central value of 4.5 was used in previous 14C-based source 

apportionments (Zhang et al., 2014, 2015b).  

OC/EC ratios for fresh emissions from coal combustion are summarized in Fig. S17. A relatively wide 

range of OC/EC ratios is found, which partially can be explained by different protocol applied to 

OC/EC measurements (Chow et al., 2001, 2004; Han et al., 2016). We took OC/EC ratios in the 

literature measured by IMPROVE_A protocol when available, to be consistent with our OCEC 

measurements. 1.4 ± 1.3 and 6.3 ± 1.3 (average ± 1 standard deviation) are used as OC/EC ratios from 

bituminous and anthracite coal combustion, respectively. They are quantified from typical used coals in 

residential sector in China (Tian et al., 2017), and measured by IMPROVE_A protocol (Chow et al., 

2007). The selected OC/EC ratios of 1.4 ± 1.3 and 6.3 ± 1.3 for bituminous and anthracite coal, 

respectively, overlap with most of the data in the literature (Fig. S17). The final OC/EC ratio for coal 

combustion (rcoal) depends on the share of bituminous coal and anthracite coal. Bituminous and 

anthracite coal are apportioned 80% and 20% respectively, according to raw coal production data 

(Chen et al., 2005; Zhi et al., 2008), leading to rcoal = 2.38 ± 0.44 derived from Monte Carlo Simulation 

with assumption of triangular distribution. This ratio is similar to 2.25 derived from OC and EC 

emission amounts from emission inventories of coal combustion for 2000, and 2.26 for the year 2005 

estimated by Zhi et al. (2008). 

Vehicle emissions can be influenced by vehicle type, fuel quality, speed of the vehicle, as well as the 

features of the road (He et al., 2008; Cheng et al., 2010; Cui et al., 2016). Literature searches were 

conducted (Table S10) to establish OC/EC ratios for vehicle emissions. Due to the limitation of 

published data, the lower/upper bonds were estimated as the mean of all lower/upper bounds from 

different datasets. The mean was then calculated as the average of the lower and upper bounds. The 

established rliq.fossil ranged from 0.69 to 1.01 with the mean of 0.85.  
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Figure S1. Temporal variability of OC and EC mass concentrations in PM2.5 in Xi’an, China, during July 2008 to 

June 2009 (n=58). Twenty-four samples were selected for 14C analysis and highlighted in light green. Details on 

sample selection are presented in Supplemental S1. 

  

7/1
1/2

00
8

7/2
3/2

00
8

8/4
/20

08

8/1
6/2

00
8

8/2
9/2

00
8

9/9
/20

08

9/2
7/2

00
8

10
/9/

20
08

10
/21

/20
08

11
/2/

20
08

11
/14

/20
08

11
/26

/20
08

12
/8/

20
08

12
/20

/20
08

1/1
/20

09

1/1
3/2

00
9

1/2
5/2

00
9

2/6
/20

09

2/1
8/2

00
9

3/1
1/2

00
9

3/2
3/2

00
9

4/4
/20

09

4/1
6/2

00
9

4/2
8/2

00
9

5/1
0/2

00
9

5/2
2/2

00
9

6/3
/20

09

6/1
5/2

00
9

6/2
7/2

00
9

0

10

20

30

40

50

60

70
 OC
 EC

O
C

 c
on

ce
nt

ra
ti

on
 (
g

 m
-3

)

0

5

10

15

20

25

E
C

 c
on

ce
nt

ra
ti

on
 (
g

 m
-3

)

summer autumn winter spring summer



S6 
 

 

Figure S2. Three-day backward-in-time air mass trajectory analysis of selected samples for radiocarbon 

measurements. 
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Figure S3. Temporal variation of levoglucosan to EC mass ratios (levo/EC), Σhopanes to EC ratios 

(Σhopanes/EC), picene to EC ratios (picene/EC) for samples selected for radiocarbon measurements. Details of 

measurements are in Supplemental S2. 
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Figure S4. Fire counts (red points) monitored by MODIS in different seasons during the sampling period 

(https://firms.modaps.eosdis.nasa.gov/firemap/). The sampling site is Xi’an. Xi’an is located in the Guanzhong 

Plain, one of the major agricultural production areas.  
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Figure S5.  Correlation between F14C(EC) and levoglucosan/EC ratios, K+/EC ratios in different seasons (red: 

autumn; dark green: spring; blue: summer; winter: black). One data point with extremely high K+ concentration on 

Chinese New Year is removed. 
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Figure S6. The δ13C variability for EC from burning C4 plants. In this study, δ13C for corn stalk is used as it is the 

dominant C4 plant in Xi’an and its surrounding areas (Guanzhong Plain). The range used as δ13C of burning corn 

stalk is indicated as dashed vertical lines, and the mean is shown by a solid vertical line. Sources: 1Chen et al. 

(2012), 2Guo et al. (2016), 3Liu et al. (2014), 4Kawashima and Haneishi (2012), 5Martinelli et al. (2002), 6Das et al. 

(2010). 
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Figure S7. MCMC3-derived posterior probability density functions (PDF) of the relative source contributions of 

C3 plants (denoted as C3), coal and liquid fossil fuel combustion (vehicle) to EC in different seasons, calculated 

using the Bayesian Markov chain Monte Carlo approach. 
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Figure S8. MCMC4-derived posterior probability density functions (PDF) of the relative source contributions of 

liquid fossil fuel combustion (vehicle), coal and biomass burning (C3 and C4 plants, denoted as biomass) to EC in 

different seasons (a), calculated using the Bayesian Markov chain Monte Carlo approach. The PDF of the relative 

source contributions of biomass burning (a) is a posteriori combination of PDF for C3 plants and C4 plants, as 

shown in panel (b). 
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Figure S9. Comparison between the MCMC-derived fraction of biomass burning EC (fbb derived from MCMC4) 

and that obtained from radiocarbon data (14C-based fbb(EC)). Average and one standard deviation is shown for 

fbb(EC), median with interquartile range is shown for fbb . fbb derived from MCMC3 is also very similar to fbb(EC). 
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Figure S10. Sources of EC in different seasons. Results from the F14C and δ13C based Bayesian source 

apportionment calculations of EC. The numbers in the bars represent the median contribution of liquid fossil fuel, 

coal and biomass burning. (a) results from the MCMC3 model, including C3 plants as biomass, coal and liquid 

fossil fuel; (b) Impact of C4 plants burning on EC source apportionment is tested by including C4 biomass into the 

calculations (MCMC4). For MCMC4, the PDF for C3 and C4 plants is combined and named as biomass burning. 

Bars filled with green colour indicate the relative contribution of biomass burning, including C4 plants (light 

green) and C3 plants (dark green).  In winter, the sample taken on Chinese New Year eve (25 January 2009) was 

excluded. 

 

  

summer autumn winter spring summer autumn winter springsummer autumn winter spring summer autumn winter spring

liquid fossil fuel

coal

biomass

(b) MCMC4 (C3 & C4 plants)(a) MCMC3 (C3 plants)

14%
18%

22%
16%

15%

32%

64%

25%

71%

50%

14%

59%

14%
18%

24%
16%

9%

15%

45%

13%

77%

67%

31%

71%

fraction fossil

C4 plants

C3 plants



S15 
 

 

 

Figure S11. MCMC4-derived source contributions to EC for each data point computed using the Bayesian 

Markov chain Monte Carlo approach. (a). biomass burning from C3 plants; (b). biomass burning from C4 plants; 

(c). liquid fossil fuel combustion; (d). coal combustion. Range of 95 % credible intervals (Bayesian analogue of 

confidence intervals) and interquartile range (25th-75th percentile) from the computed probability density functions 

(PDF) and shown in black and green error bars, respectively. To better compare results with MCMC3, we did a 

posteriori combination of PDF for C3 biomass (a) and C4 biomass (b) and named the combined PDF as biomass 

burning (e). 
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Figure S12. Estimated primary OC based on MCMC3 results. (a) measured OC concentrations (blue line and 

diamond symbols) with observational uncertainties (vertical bar) and estimated OC mass (OCpri,e, circle and 

triangular symbols) from apportioned EC and OC/EC ratios for different sources (Eq. (10)). (b) 14C-based fraction 

of non-fossil OC (fnf(OC)) and modelled non-fossil fraction in OCpri,e (fbb(OCpri,e)) derived from Eq. (11).  

Interquartile range (25th-75th percentile) of the median OCpri,e and fbb(OCpri,e) are shown in purple (A), red (B) and 

green (C) vertical bars. “A” and “B” denote different OC/EC ratios applied to primary biomass burning emissions 

(rbb): A. rbb = 5 (3–7, minimum-maximum), B. rbb = 4 (3–5). “C” denotes 80 % rliq.fossil applied in summer with rbb = 

5. fnf(OC) uncertainties are indicated but are too small to be visible.  
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Figure S13. Observed and estimated OC concentrations. Modelled OCe,min is the sum of OCpri,e and OCo,nf. OCo,nf  

accounts for the differences between fnf(OC) and fbb(OCpri,e), with an unrealistic assumption of no secondary fossil 

OC, leading to minimum addition to OCpri,e. Coral area shows the POCbb,e and OCo,nf, green area the POCcoal,e and 

blue area the POCliq.fossil,e. Estimation is based on MCMC3 results for EC source apportionment and primary 

OC/EC ratios corresponding to case (A) in Fig. S12. 
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Figure S14. Probability density functions (PDF) of the relative source contributions of coal combustion to EC in 

winter in the year 2008/2009 (this study, shown in grey; this is also shown in Fig. S8) and 2012/2013 by Wang et 

al. (2016), shown in yellow. 
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Figure S15. Probability density functions (PDF) of the relative source contributions of vehicle emissions to EC in 

winter in the year 2008/2009 (this study, shown in grey; this is also shown in Fig. S8) and 2012/2013 by Wang et 

al. (2016), shown in yellow. 
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Figure S16. OC/EC ratios estimated from OC and EC emission amounts from biomass burning emission 

inventories specific to China. y-axis on the right side indicates the year of estimation. The range applied in OC 

estimation (Sect. 4.4 in main text) is shown by dashed vertical lines, and the mean is indicated by a full vertical 

line. Data sources:  Streets et al. (2003); Yan et al. (2006); Zhang et al. (2006, 2009); Cao et al. (2006, 2011a), Qin 

and Xie (2011), Zhang et al. (2013), Zhou et al. (2017). 
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Figure S17. Literature reported OC/EC ratios for combustion of bituminous coal and anthracite coal. Boxplots 

show the median (thick line across the box), interquartile range (25th-75th percentile, vertical ends of the box). 

Outliers are shown as triangles. Blue dots (averages) with error bars (one standard deviation) represent OC/EC 

ratios measured by IMPROVE_A protocol reported by Tian et al. (2017). Data sources: Chen et al. (2005, 2006, 

2015), Zhang et al., (2008, 2012), Zhi et al. (2008), Shen et al. (2010, 2015), Li et al. (2016b).  
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Table S1. Range of δ13C values for each source reported in previous studies. 

Sources δ13C of emissions 
from sources 
(ranges) 

Source signatures of δ13C used 
in the source apportionment 
calculations of EC (mean ± 
standard deviation) 

Reference 

Corn stalk -19.30 ‰ to  
-13.6 ‰a 

-16.4 ± 1.4 ‰a (Martinelli et al., 2002; Das et al., 
2010; Chen et al., 2012; 
Kawashima and Haneishi, 2012; 
Liu et al., 2014; Guo et al., 2016)  

    
C3 plants  
(wood, wheat 
straw, etc.) 

-35 ‰ to -24 ‰  -26.7 ± 1.8 ‰ Andersson et al. (2015) and 
references therein 

    

coal -25 ‰ to -21 ‰ -23.4 ± 1.3 ‰ Andersson et al. (2015) and 
references therein 

    

liquid fuel  
(e.g., gasoline, 
diesel, and oil) 

-28 ‰ to -24 ‰ -25.5 ± 1.3 ‰ Andersson et al. (2015) and 
references therein 

a δ13C source signature for EC from burning corn stalk (C4 plant) of -16.4 ± 1.4 ‰ (mean ± standard deviation) is 

applied in MCMC4 calculations.  In this study, δ13C for corn stalk is used as it is the dominant C4 plant in Xi’an 

and its surrounding areas (Sun et al., 2017; Zhu et al., 2017), with little sugarcane and other C4 plants.  See details 

on selection of δ13C signature for C4 plants in the study area (corn stalk) in Sect.4.3.1 and Fig. S6. 
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Table S2.  Mass concentrations of PM2.5, OC and EC in Xi’an, China from July 2008 to June 2009. 

 PM2.5 (µg m-3) OC (µg m-3) EC (µg m-3) 

Spring (n=13) 124.0 ± 40.4 (55.9–193.4)a 14.4 ± 9.6 (3.3–33.8) 5.7 ± 2.3 (2.0–8.8) 

Summer (n=15) 83.0 ± 30.7 (31.8–139.2) 12.7 ± 4.5 (4.0–20.6) 6.3 ± 2.0 (2.7–10.0) 

Autumn (n=12) 125.1 ± 69.3 (41.0–212.6) 22.2 ± 13.6 (3.6–34.2) 8.4 ± 2.9 (3.5–11.3) 

Winter (n=18) 213.4 ± 91.8 (73.1–408.5) 39.0 ±17.8 (10.8–67.0) 9.1 ± 3.1 (5.6–16.3) 

Annual 142.0 ± 82.4 (31.8–408.5) 21.5 ± 16.6 (3.3–67.0) 7.6 ± 3.0 (2.0–16.3) 

a average ± standard deviation, the numbers in parentheses are the range of each dataset. 
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Table S3. Average fraction modern (F14C) and stable carbon signature (δ13C, ‰) of OC and EC for selected 
samples. 

Date F14C (OC) F14C (EC) δ13COC δ13CEC Season 

7/17/2008a 0.466 ± 0.010 0.178 ± 0.003 -26.80 -26.50 summer 

7/23/2008 0.489 ± 0.008 0.164 ± 0.003 -25.94 -26.33 summer 

8/4/2008 0.546 ± 0.007 0.153 ± 0.002 -25.86 -26.16 summer 

8/11/2008 0.512 ± 0.008 0.141 ± 0.003 -25.21 -25.53 summer 

9/3/2008 0.549 ± 0.006 0.129 ± 0.002 -25.94 -26.23 autumn 

10/3/2008 0.581 ± 0.006 0.166 ± 0.002 -24.55 -25.51 autumn 

10/16/2008 0.659 ± 0.007 0.188 ± 0.002 -23.70 -24.31 autumn 

10/21/2008 0.610 ± 0.005 0.301 ± 0.003 -24.51 -24.92 autumn 

11/2/2008 0.651 ± 0.006 0.172 ± 0.002 -24.94 -25.10 autumn 

11/14/2008 0.579 ± 0.007 0.200 ± 0.004 -25.48 -24.79 autumn 

11/26/2008 0.671 ± 0.009 0.245 ± 0.004 -24.71 -22.93 winter 

12/20/2008 0.696 ± 0.008 0.225 ± 0.002 -24.06 -22.81 winter 

1/1/2009 0.693 ± 0.007 0.317 ± 0.004 -23.23 -23.12 winter 

1/25/2009 0.745 ± 0.005 0.505 ± 0.008 -23.39 -23.07 winter 

2/6/2009 0.671 ± 0.007 0.318 ± 0.005 -23.92 -23.72 winter 

3/5/2009 0.572 ± 0.006 0.183 ± 0.003 -25.44 -23.53 winter 

3/17/2009 0.545 ± 0.004 0.177 ± 0.002 -25.72 -26.03 spring 

3/29/2009 0.547 ± 0.006 0.153 ± 0.002 -26.91 -25.38 spring 

4/16/2009 0.545 ± 0.007 0.166 ± 0.003 -27.42 -25.05 spring 

4/22/2009 0.535 ± 0.006 0.175 ± 0.004 -26.33 -25.27 spring 

4/28/2009 0.330 ± 0.021 0.175 ± 0.005 -26.41 -25.33 spring 

5/4/2009 0.544 ± 0.004 0.180 ± 0.003 -26.66 -25.35 spring 

6/9/2009 0.549 ± 0.006 0.132 ± 0.003 -24.24 -25.37 summer 

6/21/2009 0.489 ± 0.006 0.124 ± 0.002 -26.30 -25.73 summer 

summerb 0.509 ± 0.033 0.149 ± 0.020 -25.7 ± 0.9 -25.9 ± 0.5 

autumn 0.605 ± 0.044 0.193 ± 0.058 -24.9 ± 0.8 -25.1 ± 0.7 

winter 0.675 ± 0.057 0.299 ± 0.114 -24.1 ± 0.8 -23.2 ± 0.4 

spring 0.508 ± 0.087 0.171 ± 0.010 -26.6 ± 0.6 -25.4 ± 0.4 

a Daily F14C values are given in average ± measurement uncertainty; 

 b  Seasonal averaged F14C and δ13C values are given in average ± standard deviation. 
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Table S4. Average OC and EC concentrations from non-fossil sources (OCnf, ECbb) and fossil sources (OCfossil, ECfossil), relative non-fossil sources contribution to OC and EC (fnf(OC), fbb(EC)), 

and relative fossil sources contribution to OC and EC (ffossil(OC), ffossil(EC)). 

Date OCnf OCfossil ECbb ECfossil fnf(OC) ffossil(OC) fbb(EC) ffossil(EC) Season 

7/17/2008 3.53 ± 0.50 4.48 ± 0.63 1.13 ± 0.26 5.87 ± 1.29 0.440 ± 0.010 0.560 ± 0.010 0.162 ± 0.004 0.838 ± 0.004 summer 

7/23/2008 4.70 ± 0.75 5.49 ± 0.89 1.20 ± 0.24 6.84 ± 1.41 0.461 ± 0.009 0.539 ± 0.009 0.149 ± 0.004 0.851 ± 0.004 summer 

8/4/2008 5.56 ± 0.85 5.22 ± 0.80 1.01 ± 0.21 6.21 ± 1.26 0.515 ± 0.008 0.485 ± 0.008 0.139 ± 0.003 0.861 ± 0.003 summer 

8/11/2008 6.16 ± 0.93 6.59 ± 0.99 0.96 ± 0.21 6.51 ± 1.41 0.483 ± 0.009 0.517 ± 0.009 0.128 ± 0.003 0.872 ± 0.003 summer 

9/3/2008 6.54 ± 1.05 6.09 ± 0.98 1.17 ± 0.18 8.81 ± 1.32 0.518 ± 0.007 0.482 ± 0.007 0.117 ± 0.003 0.883 ± 0.003 autumn 

10/3/2008 13.65 ± 1.80 11.26 ± 1.50 1.54 ± 0.31 8.64 ± 1.75 0.548 ± 0.007 0.452 ± 0.007 0.151 ± 0.003 0.849 ± 0.003 autumn 

10/16/2008 21.23 ± 3.11 12.95 ± 1.86 1.94 ± 0.32 9.40 ± 1.57 0.622 ± 0.008 0.378 ± 0.008 0.171 ± 0.004 0.829 ± 0.004 autumn 

10/21/2008 12.82 ± 1.78 9.41 ± 1.32 2.65 ± 0.44 7.03 ± 1.13 0.576 ± 0.007 0.424 ± 0.007 0.274 ± 0.006 0.726 ± 0.006 autumn 

11/2/2008 20.42 ± 3.22 12.82 ± 2.03 1.60 ± 0.22 8.62 ± 1.20 0.614 ± 0.008 0.386 ± 0.008 0.156 ± 0.003 0.844 ± 0.003 autumn 

11/14/2008 3.83 ± 0.60 3.16 ± 0.50 0.89 ± 0.18 4.00 ± 0.78 0.546 ± 0.008 0.454 ± 0.008 0.182 ± 0.005 0.818 ± 0.005 autumn 

11/26/2008 14.49 ± 1.80 8.41 ± 1.05 1.91 ± 0.36 6.66 ± 1.25 0.634 ± 0.010 0.366 ± 0.010 0.223 ± 0.006 0.777 ± 0.006 winter 

12/20/2008 36.16 ± 4.43 18.83 ± 2.37 1.69 ± 0.43 6.56 ± 1.69 0.657 ± 0.009 0.343 ± 0.009 0.204 ± 0.004 0.796 ± 0.004 winter 

1/1/2009 38.59 ± 4.92 20.39 ± 2.65 4.69 ± 0.71 11.62 ± 1.72 0.654 ± 0.008 0.346 ± 0.008 0.288 ± 0.007 0.712 ± 0.007 winter 

1/25/2009 32.79 ± 4.19 13.86 ± 1.78 4.34 ± 1.34 5.10 ± 1.58 0.703 ± 0.007 0.297 ± 0.007 0.459 ± 0.011 0.541 ± 0.011 winter 

2/6/2009 17.71 ± 2.74 10.27 ± 1.61 2.68 ± 0.50 6.58 ± 1.19 0.633 ± 0.008 0.367 ± 0.008 0.289 ± 0.007 0.711 ± 0.007 winter 

3/5/2009 9.36 ± 1.15 7.98 ± 0.98 0.99 ± 0.22 4.97 ± 1.08 0.540 ± 0.007 0.460 ± 0.007 0.166 ± 0.004 0.834 ± 0.004 winter 

3/17/2009 17.38 ± 2.58 16.39 ± 2.47 1.41 ± 0.27 7.33 ± 1.37 0.514 ± 0.006 0.486 ± 0.006 0.161 ± 0.003 0.839 ± 0.003 spring 

3/29/2009 13.05 ± 1.77 12.21 ± 1.67 1.22 ± 0.19 7.56 ± 1.15 0.517 ± 0.007 0.483 ± 0.007 0.139 ± 0.003 0.861 ± 0.003 spring 

4/16/2009 6.33 ± 0.80 5.98 ± 0.76 0.87 ± 0.19 4.87 ± 1.07 0.515 ± 0.008 0.485 ± 0.008 0.151 ± 0.004 0.849 ± 0.004 spring 

4/22/2009 3.84 ± 0.68 3.77 ± 0.68 0.84 ± 0.17 4.43 ± 0.89 0.505 ± 0.007 0.495 ± 0.007 0.159 ± 0.005 0.841 ± 0.005 spring 

4/28/2009 2.28 ± 0.35 5.03 ± 0.72 0.58 ± 0.12 3.08 ± 0.63 0.311 ± 0.019 0.689 ± 0.019 0.159 ± 0.005 0.841 ± 0.005 spring 

5/4/2009 8.86 ± 1.12 8.41 ± 1.08 1.30 ± 0.25 6.65 ± 1.30 0.513 ± 0.006 0.487 ± 0.006 0.163 ± 0.004 0.837 ± 0.004 spring 

6/9/2009 7.07 ± 0.98 6.57 ± 0.92 0.91 ± 0.17 6.72 ± 1.23 0.518 ± 0.007 0.482 ± 0.007 0.120 ± 0.004 0.880 ± 0.004 summer 

6/21/2009 3.81 ± 0.66 4.47 ± 0.78 0.52 ± 0.13 4.07 ± 1.02 0.462 ± 0.006 0.538 ± 0.006 0.113 ± 0.003 0.887 ± 0.003 summer 
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Table S5.  OC and EC concentrations from non-fossil sources (OCnf, ECbb) and fossil sources (OCfossil, ECfossil), relative non-fossil sources contribution to OC and EC (fnf(OC), fbb(EC)), and 

relative fossil sources contribution to OC and EC (ffossil(OC), ffossil(EC)) in different seasons.  

Season OCnf OCfossil ECbb ECfossil fnf(OC) ffossil(OC) fbb(EC) ffossil(EC) 

summer 5.14 ± 1.38a 5.47 ± 0.95 0.95 ± 0.24 6.03 ± 1.02 0.480 ± 0.032 0.520 ± 0.032 0.135 ± 0.018 0.865 ± 0.018 

 (3.53 ~ 7.07) (4.47 ~ 6.59) (0.52 ~ 1.20) (4.07 ~ 6.84) (0.440 ~ 0.518) (0.482 ~ 0.560) (0.113 ~ 0.162) (0.838 ~ 0.887) 

autumn 13.08 ± 7.06 9.28 ± 3.94 1.63 ± 0.62 7.75 ± 2.00 0.571 ± 0.041 0.429 ± 0.041 0.175 ± 0.053 0.825 ± 0.053 

 (3.83 ~ 21.23) (3.16 ~ 12.95) (0.89 ~ 2.65) (4.00 ~ 9.40) (0.518 ~ 0.622) (0.378 ~ 0.482) (0.117 ~ 0.274) (0.726 ~ 0.883) 

winterb 23.26 ± 13.25 13.18 ± 5.96 2.39 ± 1.42 7.28 ± 2.53 0.624 ± 0.048 0.376 ± 0.048 0.234 ± 0.054 0.766 ± 0.054 

 (9.36 ~ 38.59) (7.98 ~ 20.39) (0.99 ~ 4.69) (4.97 ~ 11.62) (0.540 ~ 0.657) (0.343 ~ 0.460) (0.166 ~ 0.289) (0.711 ~ 0.834) 

spring 8.62 ± 5.74 8.63 ± 4.83 1.04 ± 0.32 5.65 ± 1.80 0.479 ± 0.082 0.521 ± 0.082 0.155 ± 0.009 0.845 ± 0.009 

 (2.28 ~ 17.38) (3.77 ~ 16.39) (0.58 ~ 1.41) (3.08 ~ 7.56) (0.311 ~ 0.517) (0.483 ~ 0.689) (0.139 ~ 0.163) (0.837 ~ 0.861) 

overallb 12.06 ± 9.81 8.96 ± 4.79 1.46 ± 0.90 6.65 ± 1.96 0.535 ± 0.080 0.465 ± 0.080 0.172 ± 0.051 0.828 ± 0.051 

 (2.28 ~ 38.59) (3.16 ~ 20.39) (0.52 ~ 4.69) (3.08 ~ 11.62) (0.311 ~ 0.657) (0.343 ~ 0.689) (0.113 ~ 0.289) (0.711 ~ 0.887) 

a data is given in average ± standard deviation, minimum and maximum are shown in parentheses 

b the sample taken on Chinese New Year eve (25 January 2009) was excluded. 
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Table S6. Stable carbon isotopes for aerosols in China. 

Location Site type Sampling period Seasons PM fraction δ13COC (‰) δ13CEC (‰) References 

North 
China 

Beijing, China urban Jan, 2013 winter PM2.5 -24.26 ± 0.29  Yan et al. (2017) 

Beijing, China urban Feb, 2010 winter PM2.5  -25.1 to -24.2 Chen et al. (2013) 

North China Plain urban Jan, 2013 winter PM2.5  -24.3 to -23.3 Andersson et al. (2015) 

7 cities in North China urban Jan 6–20, 2003 winter PM2.5 -25.54 to -23.08 -25.02 to -23.27 Cao et al. (2011b) 

Beijing, China urban June, 2013 summer PM2.5 -26.74 ± 0.65  Yan et al. (2017) 

7 cities in North China urban June 3–July 30, 2003 summer PM2.5 -26.90 to -26.33 -26.62 to -25.27 Cao et al. (2011b) 

South 
China 

Hong Kong urban Nov 2000–Feb 2001 winter PM2.5 -26.9 ± 0.6  -25.6 ± 0.1  Ho et al. (2006) 

Shanghai, China urban Jan, 2010 winter PM2.5  -25.8 to -24.7 Chen et al. (2013) 

Xiamen, China urban Dec, 2009 winter PM2.5  -25.3 to -24.9 Chen et al. (2013) 

Pearl River Delta urban Jan, 2013 winter PM2.5  -26.7 to -25.7 Andersson et al. (2015) 

Yangtze River Delta urban Jan, 2013 winter PM2.5  -27.7 to -25 Andersson et al. (2015) 

7 cities in South China urban Jan 6–20, 2003 winter PM2.5 -26.62 to -25.79 -26.10 to -25.33 Cao et al. (2011b) 

Shanghai, China urban Sept 1–20, 2009 Autumn PM2.5 -24.5 ± 0.8 -25.1 ± 0.6  Cao et al. (2013) 

Hong Kong urban June–August, 2001 summer PM2.5 -26.9 ± 0.5  -25.6 ± 0.1  Ho et al. (2006) 

7 cities in South China urban June 3–July 30, 2003 summer PM2.5 -26.74 to -25.29 -26.63 to -25.41 Cao et al. (2011b) 

North Xi’an China urban  winter PM2.5 -24.1 ± 0.8 -23.2 ± 0.4 This study 

China    autumn PM2.5 -24.9 ± 0.8 -25.1 ± 0.7  

    summer PM2.5 -25.7 ± 0.9 -25.9 ± 0.5  

    spring PM2.5 -26.6 ± 0.6 -25.4 ± 0.3  

    annual PM2.5 -25.3 ± 1.2 -24.9 ± 1.1  
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Table S7. MCMC3 resultsa from the F14C- and δ13C-based Bayesian Source Apportionment Calculations of EC (Median, interquartile 

range (25th-75th percentile), and 95 % Credible Intervals).  

 Seasons summer autumn winterb spring annualb 

Biomass burning median 0.136 0.177 0.221 0.156 0.173 

(C3 plants) 25th-75th percentile (0.129–0.142) (0.16–0.197) (0.196–0.242) (0.153–0.159) (0.166–0.18) 
 95% credible intervals (0.113–0.159) (0.117–0.245) (0.106–0.288) (0.145–0.167) (0.15–0.196) 
       

coal combustion median 0.147 0.323 0.644 0.251 0.328 
 25th-75th percentile (0.086–0.23) (0.221–0.436) (0.534–0.709) (0.167–0.346) (0.25–0.403) 
 95% credible intervals (0.025–0.494) (0.061–0.673) (0.165–0.805) (0.055–0.56) (0.117–0.557) 
       

liquid fossil median 0.717 0.497 0.136 0.594 0.499 
 25th-75th percentile (0.633–0.778) (0.383–0.607) (0.076–0.245) (0.498–0.677) (0.423–0.578) 
 95% credible intervals (0.365–0.842) (0.147–0.774) (0.022–0.61) (0.282–0.79) (0.269–0.712) 

a Three main source categories were differentiated using this technique: C3 plants (e.g., wood and crop residue), coal and liquid fossil fuel 

(e.g., oil, diesel, and gasoline) combustion. 

b the sample taken on Chinese New Year eve (25 January 2009) was excluded. 
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Table S8. Contribution of C3 and C4 plants burning to EC from the MCMC4 resultsa (Median, interquartile range (25th-75th percentile), 

and 95% Credible Intervals).  

 Seasons summer autumn winterc spring annualc 

Biomass burningb 

from C3 plants 

 

median 0.099 0.123 0.088 0.113 0.123 

25th-75th percentile (0.080–0.114) (0.094–0.149) (0.058–0.122) (0.092–0.129) (0.105–0.139) 

95% credible intervals (0.037–0.137) (0.041–0.199) (0.019–0.196) (0.045–0.149) (0.07–0.165) 

       

Biomass burning 

from C4 plants 

 

median 0.035 0.051 0.152 0.042 0.05 

25th-75th percentile (0.022–0.054) (0.033–0.074) (0.119–0.182) (0.027–0.063) (0.034–0.066) 

95% credible intervals (0.007–0.097) (0.012–0.128) (0.052–0.240) (0.010–0.11) (0.013–0.097) 

aResults from the four-sources (C3 biomass, C4 biomass, coal and liquid fossil fuel) MCMC4 model.  

bContribution of biomass burning is shown in Table 2 and done by a posteriori combination of PDF for C3 plants and that for C4 plants.  

cSample taken from Chinese New Year eve (25 January 2009) was excluded. 
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Table S9. Measured F14C values and masses of the standards with their nominal F14C values. 

Standards 
 

nominal F14C measured F14C 

(F14Cm) 

measured mass (Mm, 

μgC) 

Combustion 

processesa 

OXII 1.3406 1.327 ± 0.022 65 

OXII 1.3406 1.321 ± 0.012 117 

anthracite 0 0.020 ± 0.001 51 

anthracite 0 0.002 ± 0.001 75 

anthracite 0 0.004 ± 0.001 219 

anthracite 0 0.005 ± 0.001 254 
     

Graphitization and 

14C measurementsb 

14C-free CO2 gas  0 0.008 ± 0.001 42 

14C-free CO2 gas  0 0.004 ± 0.000 81 

14C-free CO2 gas  0 0.005 ± 0.000 91 

14C-free CO2 gas  0 0.004 ± 0.000 123 

14C-free CO2 gas  0 0.003 ± 0.000 162 

14C-free CO2 gas  0 0.002 ± 0.000 186 

14C-free CO2 gas  0 0.003 ± 0.000 287 

OXII 1.3406 1.268 ± 0.013 45 

OXII 1.3406 1.270 ± 0.012 81 

OXII 1.3406 1.280 ± 0.011 96 

OXII 1.3406 1.305 ± 0.010 128 

OXII 1.3406 1.337 ± 0.010 162 

OXII 1.3406 1.306 ± 0.006 214 

OXII 1.3406 1.311 ± 0.005 321 

a For combustion processes, two sets of standard material: the oxalic acid HOxII and anthracite with known 14C 

contents (F14C = 1.3406 and F14C = 0, respectively) were combusted using the aerosol combustion system and 

used for quality control; 

b Varying amounts of reference materials covering the range of sample mass are graphitized and analyzed together 

with samples in the same wheel of AMS, to correct for contamination during graphitization and AMS 

measurement. 
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Table S10. Published OC/EC ratios for vehicle emissions specific to China. 

OC/EC ratios Sampling site Measurement protocol References 

0.6 ± 0.2 Shing Mun tunnel (Hongkong, China) IMPROVEa Cheng et al. (2010) 

0.8 ± 0.1 roadside sites (Hongkong, China) IMPROVEa Cheng et al. (2010) 

0.86* (0.48–1.45)** Wuzushan tunnel (Yantai, China) IMPROVEa Cui et al. (2016) 

1.03*(0.77–1.35)** Zhujiang tunnel (Guangzhou, China) NIOSHb Dai et al. (2015) 

0.49 ± 0.04 
(0.44–0.57)** 

Zhujiang tunnel (Guangzhou, China) NIOSHb He et al. (2008) 

0.57 Zhujiang tunnel (Guangzhou, China) NIOSHb Huang et al. (2006) 

1.45 Zhujiang tunnel (Guangzhou, China) NIOSHb Zhang et al. (2015a) 

*represents averaged values;  
** represents the range of values; 
a Chow et al. (2004); 
b Birch and Cary, (1996). 
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