| Simulation | Emission perturbations | Applied to source regions | Scope | |------------|--|---|---| | P0 | No perturbations | Master zoom regions with 1° × 1° resolution: AFR, AUS, EAS, EUR, MAM, MEA, NAM,RSA, RUS, SAM, SAS, SEA, and PAC (3° × 2°) | Base simulation | | P1 | SO ₂ , NO _x , BC,
POM | All 56 continental regions* + international shipping + aviation | SR matrices for BC and POM and first-order approximation for SO_2 and NO_x , assuming negligible chemical interaction | | P2 | SO ₂ | All 56 source regions* + shipping | Independent SR for SO_2 , to be compared to P1 to quantify potential interference between SO_2 and NO_x in the formation of sulfate and ozone | | P3 | NO_x | Representative source regions* (China, Europe, Japan, India, Germany, South Africa, USA) | Independent SR for NO_x , to verify
the additivity of $P1 = P2 + P3$ and
justify the use of $(P1-P2)$ as a
proxy for NO_x perturbation for all
other regions | | P4 | NH ₃ , NMVOCs | All 56 continental source* regions + international shipping | SR matrices for NH ₃ and NMVOCs emissions, assuming little chemical interaction among the selected precursors in the formation of NH ₄ and O ₃ | | P5 | NMVOCs, NO _x | Representative source regions* (Europe, China, India, USA) | Quantify chemical feedbacks in O_3 formation between NO_x and $NMVOCs$ (P5 = P3 + P4) additivity |