Supplement of Atmos. Chem. Phys., 18, 1611–1628, 2018 https://doi.org/10.5194/acp-18-1611-2018-supplement © Author(s) 2018. This work is distributed under the Creative Commons Attribution 3.0 License.

Supplement of

Effects of NO_x and SO_2 on the secondary organic aerosol formation from photooxidation of α -pinene and limonene

Defeng Zhao et al.

Correspondence to: Thomas F. Mentel (t.mentel@fz-juelich.de)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

Table S1. Detailed conditions of the experiments in this study

Experiment No.	VOC (ppb)	SO ₂ added (ppb)	NO added (ppb)	T (K) ^a	RH (%) ^b	Scheme
#1	α-pinene (20.2)	0	0	304-311-314	32	Low NO _x low SO ₂
#2	α-pinene (21.4)	0	19	307-314-317	29	Low NO _x high SO ₂
#3	α-pinene (17.5)	15	0	291-298-302	34	$\begin{array}{c} High\ NO_x\\ low\ SO_2 \end{array}$
#4	α-pinene (18.7)	15	17	300-303-305	42	$\begin{array}{c} High\ NO_x\\ how\ SO_2 \end{array}$
#5	Limonene (7.4)	0	0	294-303-307	31	Low NO _x low SO ₂
#6	Limonene (7.5)	0	25	303-310-313	28	Low NO _x high SO ₂
#7	Limonene (7.8)	15	0	293-301-305	29	High NO _x low SO ₂
#8	Limonene (7.4)	15	17	296-305-309	28	$\begin{array}{c} High\ NO_x \\ high\ SO_2 \end{array}$
#9	Limonene (6.0)	2	17	296-306-310	28	$\begin{array}{c} \text{High NO}_x \\ \text{moderate SO}_2 \end{array}$

^a: The minimum, average and maximum temperature are shown.

^b: The average RHs of the period of monoterpenes photooxidation are shown.

Table S2. Summary of the effect of NO_x on monoterpene SOA yield in the literature

VOC	Oxidation	NO _x (ppb)	Seed aerosol	OH source/OH centration (molecules cm ⁻³)	RH (%)	Literature
α-pinene 15-30 ppb; 150-200 ppb ^a	Ozonolysis	4.6 - 2000 ppb [VOC] ₀ /[NOx] ₀ : 0.65-391	No seed ^b	Low OH ^c	Dry ^d	(Presto et al., 2005)
α-pinene 15 ppb	Photooxidation	≤2-1000 ppb	$(NH_4)_2SO_4$ as seed	Low NO _x : 3×10^6 ; high NO _x : initial 2×10^7	3.7-6.4	(Ng et al., 2007)
α-pinene 19.8-52.4 ppb	Photooxidation	Low NO _x : not reported. High NO _x : 800 ppb	No seed, $(NH_4)_2SO_4$ or $(NH_4)_2SO_4$ $+H_2SO_4$	Low NO _x : H ₂ O ₂ /initial OH 2×10 ⁶ ; high NO _x : HONO and CH ₃ NO ₂ /initial OH 6-20×10 ⁶	<10	(Eddingsaas et al., 2012)
α-pinene 12 ppb	Photooxidation	0.5 ppb-60 ppb (steady state)	No seed, (NH ₄) ₂ SO ₄	O ₃ (78 ppb)/~4-7×10 ⁷	63	(Sarrafzadeh et al., 2016)
α-pinene 13.6-20.4 ppb	Photooxidation	Low NO _x : <0.3 ppb High NO _x : 66-82 ppb	(NH ₄) ₂ SO ₄ or (NH ₄) ₂ SO ₄ +H ₂ SO ₄	$\begin{array}{c} H_2O_2/\\ low\ NO_x:\ OH\ 0.81.1\times 10^6;\ high\ NO_x:\\ OH\ 4.35.9\times 10^6 \end{array}$	29-68	(Han et al., 2016)
α-pinene 16.1-31.7 ppb	Photooxidation	Low NO _x : <1.9 ppb High NO _x : 19.675.1 ppb	$(NH_4)_2SO_4 \\ +H_2SO_4 \text{ or} \\ H_2SO_4 + NH_4HSO_4$	HONO/N.A.°	23-75	(Stirnweis et al., 2017)
α-pinene ~20 ppb	Photooxidation	Low NO _x : ~0.05-0.2 ppb High NO _x : 20 ppb	No seed or SO ₂ was added.	HONO/ OH: (1-15)×10 ⁶	28-42	This study

a: Two levels of α-pinene concentration were used.
 b: In one high NOx, experiment (NH₄)₂SO₄ was used as seed aerosol.
 c: OH scavenger was added.
 d: RH was not specified.
 e: OH concentrations were not specified.

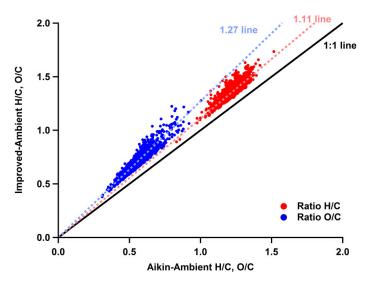
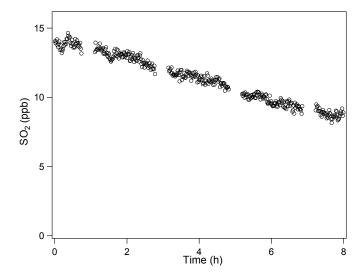



Figure S1. Comparison of the H/C and O/C obtained using the method of Canagaratna et al. (2015) with that obtained using the method of Aiken et al. (2007).

Time (h)

Figure S2. Time series of SO₂ concentration in an experiment with SO₂ added.

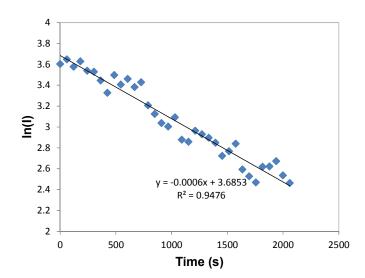


Figure S3. Decay of C₁₀H₁₅NO₈ (MW 277 g/mol) in the dark chamber. Y-axis shows the natural logarithm of the peak intensity obtained from CIMS. The raw data were averaged to 1 min.

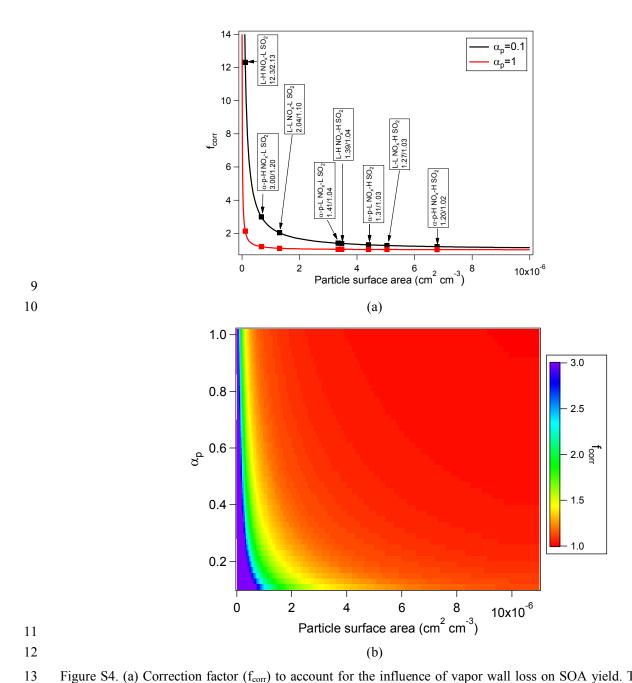


Figure S4. (a) Correction factor (f_{corr}) to account for the influence of vapor wall loss on SOA yield. The curves were derived using an average molecular weight of 200 g/mol and an accommodation coefficient (α_p) on particles of 0.1 and 1, respectively. The lines show the f_{corr} as a function of aerosol surface area concentration and solid squares show the peak aerosol surface area concentration in each experiment. The experiments corresponding to each points are shown. " α -p" and "L" denote α -pinene and limonene, respectively. "L" and "H" denote low and high, respectively. For example, " α -p-H NO_x-L SO₂" denote the experiment of α -pinene oxidation under high NO_x and low SO₂. And the two numbers in each label box show the correction factors (f_{corr}) derived using α_p of 0.1 and 1, respectively. (b). Correction factor (f_{corr}) as a function of particle surface area and accommodation coefficient of organic vapors.

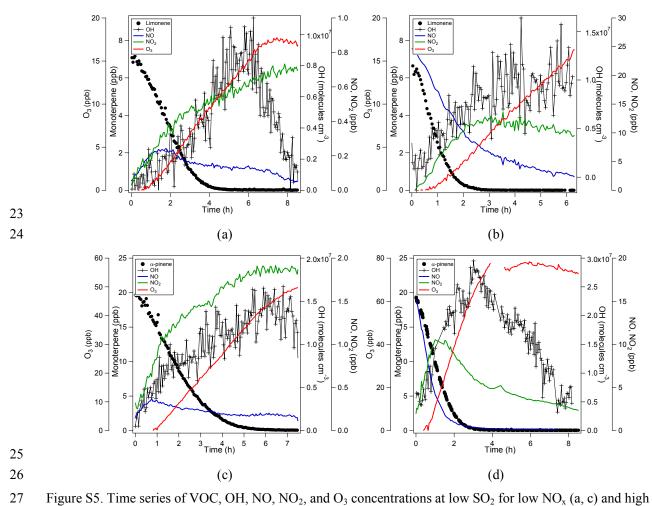


Figure S5. Time series of VOC, OH, NO, NO₂, and O₃ concentrations at low SO₂ for low NO_x (a, c) and high NO_x (b, d). (a, b) and (c, d) are for limonene and α -pinene photooxidation, respectively. Similar trends were observed under high SO₂.

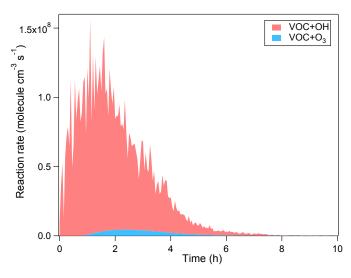


Figure S6. Comparison of the reaction rates of monoterpene with OH and with O_3 in a typical experiment of this study. The reaction rate of VOC+OH is stacked on that of VOC+O3. Monoterpene oxidation was dominated by OH oxidation. Here the data in α -pinene photooxidation at low NO_x are shown. The scattering of the reaction rate of monoterpene with OH is due to the variations in the OH concentrations and OH measurement.

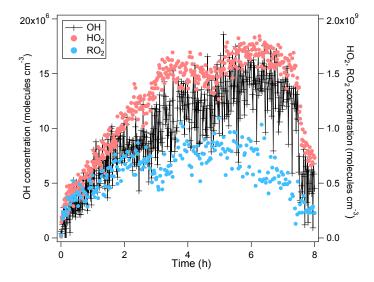


Figure S7. The concentrations of OH, HO_2 and RO_2 radicals in a typical experiment of this study. Here the data in α -pinene photooxidation at low NO_x are shown.

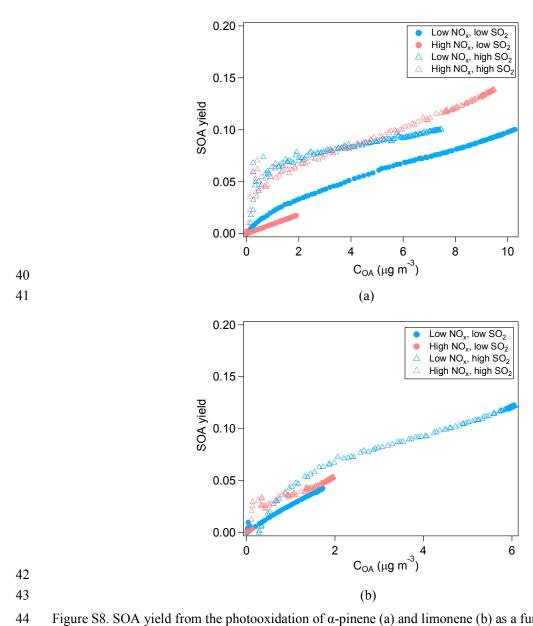


Figure S8. SOA yield from the photooxidation of α -pinene (a) and limonene (b) as a function of organic aerosol concentration (C_{OA}) in different NO_x and SO_2 conditions. Both SOA yield and organic aerosol concentration were corrected for particle wall loss and dilution.

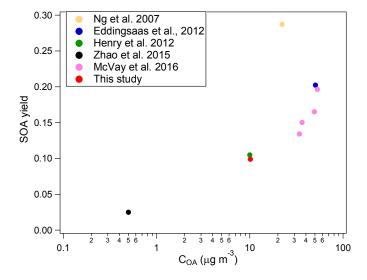


Figure S9. Comparison of the SOA yield as a function of organic aerosol concentration from α -pinene photooxidation at low NO_x with literature data. SOA yield and organic aerosol concentration in this study were corrected for particle wall loss and dilution. SOA particle density in all studies was adjusted to 1 g cm⁻³. The data for Henry et al. (2012) was extracted from Figure 2, experiment 1 in their study. The data for McVay et al. (2016) were extracted from Figure 2-4 in their study. The data extracted from figures in the literature may be subject to uncertainties.

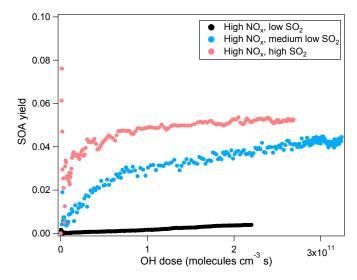


Figure S10. SOA yield at varying SO_2 concentrations for SOA from limonene oxidation at high NO_x . The SO_2 concentrations for low SO_2 , moderate SO_2 and high SO_2 are <0.05 ppb, 2 ppb and 15 ppb, respectively.

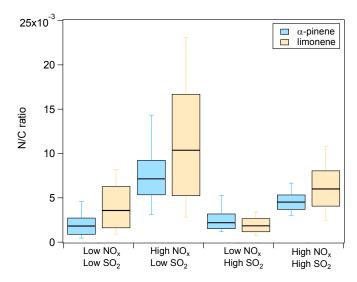


Figure S11. The nitrogen to carbon ratio (N/C) in the SOA formed in different conditions for α -pinene and limonene oxidation. The black line, box, and whiskers show the median, 25^{th} and 75^{th} percentile, and 10^{th} and 90^{th} percentile, respectively.

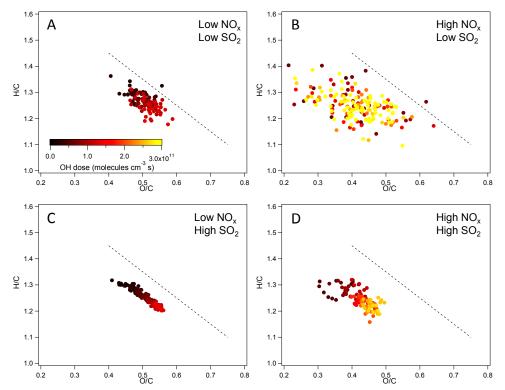


Figure S12. H/C and O/C ratios of SOA from photooxidation of limonene in different NO_x and SO_2 conditions. A: low NO_x , low SO_2 , B: high NO_x , low SO_2 , C: low NO_x , high SO_2 , D: high NO_x , high SO_2 . Note that in the high NO_x , low SO_2 condition (panel B), the AMS signal was too low to derive reliable H/C and O/C due to the low particle mass concentration and small particle size. Therefore, the data from an experiment with high NO_x (20 ppb NO) and moderate SO_2 (2 ppb) is shown instead in panel B. The black dashed line corresponds to the slope of -1.

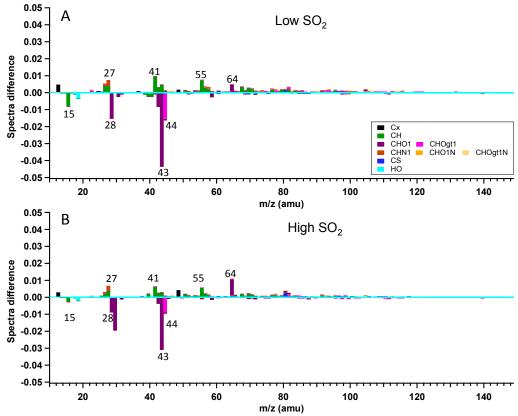


Figure S13. The difference in the mass spectra of organics of the SOA from limonene photooxidation between high NO_x and low NO_x conditions (high NO_x -low NO_x). SOA was formed at low SO_2 (a) and high SO_2 (b). The different chemical family of high resolution mass peaks are stacked at each unit mass m/z ("gt1" means greater than 1). The mass spectra were normalized to the total organic signals. Note that in the high NO_x , low SO_2 condition (panel A), the signal of AMS was too low. Therefore, the data in panel A show an experiment with high NO_x (20 ppb NO) and moderate SO_2 (2 ppb) instead.

References

79 80

- 81 Aiken, A. C., DeCarlo, P. F., and Jimenez, J. L.: Elemental analysis of organic species with electron
- ionization high-resolution mass spectrometry, Anal. Chem., 79, 8350-8358, 10.1021/ac071150w, 2007.
- 83 Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., Hildebrandt Ruiz,
- 84 L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D., Donahue, N. M., Jayne, J. T., and
- Worsnop, D. R.: Elemental ratio measurements of organic compounds using aerosol mass spectrometry:
- characterization, improved calibration, and implications, Atmos. Chem. Phys., 15, 253-272,
- 87 10.5194/acp-15-253-2015, 2015.
- 88 Eddingsaas, N. C., Loza, C. L., Yee, L. D., Chan, M., Schilling, K. A., Chhabra, P. S., Seinfeld, J. H.,
- and Wennberg, P. O.: alpha-pinene photooxidation under controlled chemical conditions Part 2: SOA
- 90 yield and composition in low- and high-NOx environments, Atmos. Chem. Phys., 12, 7413-7427,
- 91 10.5194/acp-12-7413-2012, 2012.
- Han, Y. M., Stroud, C. A., Liggio, J., and Li, S. M.: The effect of particle acidity on secondary organic
- 93 aerosol formation from alpha-pinene photooxidation under atmospherically relevant conditions, Atmos.
- 94 Chem. Phys., 16, 13929-13944, 10.5194/acp-16-13929-2016, 2016.
- 95 Henry, K. M., Lohaus, T., and Donahue, N. M.: Organic Aerosol Yields from alpha-Pinene Oxidation:
- 96 Bridging the Gap between First-Generation Yields and Aging Chemistry, Environ. Sci. Technol., 46,
- 97 12347-12354, 10.1021/es302060y, 2012.
- 98 McVay, R. C., Zhang, X., Aumont, B., Valorso, R., Camredon, M., La, Y. S., Wennberg, P. O., and
- 99 Seinfeld, J. H.: SOA formation from the photooxidation of alpha-pinene: systematic exploration of the
- simulation of chamber data, Atmos. Chem. Phys., 16, 2785-2802, 10.5194/acp-16-2785-2016, 2016.
- Ng, N. L., Chhabra, P. S., Chan, A. W. H., Surratt, J. D., Kroll, J. H., Kwan, A. J., McCabe, D. C.,
- Wennberg, P. O., Sorooshian, A., Murphy, S. M., Dalleska, N. F., Flagan, R. C., and Seinfeld, J. H.:
- 103 Effect of NO(x) level on secondary organic aerosol (SOA) formation from the photooxidation of
- terpenes, Atmos. Chem. Phys., 7, 5159-5174, 2007.
- Presto, A. A., Hartz, K. E. H., and Donahue, N. M.: Secondary organic aerosol production from terpene
- ozonolysis. 2. Effect of NOx concentration, Environ. Sci. Technol., 39, 7046-7054, 10.1021/es050400s,
- 107 2005
- Sarrafzadeh, M., Wildt, J., Pullinen, I., Springer, M., Kleist, E., Tillmann, R., Schmitt, S. H., Wu, C.,
- Mentel, T. F., Zhao, D. F., Hastie, D. R., and Kiendler-Scharr, A.: Impact of NOx and OH on secondary
- organic aerosol formation from beta-pinene photooxidation, Atmos. Chem. Phys., 16, 11237-11248,
- 111 10.5194/acp-16-11237-2016, 2016.
- Stirnweis, L., Marcolli, C., Dommen, J., Barmet, P., Frege, C., Platt, S. M., Bruns, E. A., Krapf, M.,
- Slowik, J. G., Wolf, R., Prevot, A. S. H., Baltensperger, U., and El-Haddad, I.: Assessing the influence
- of NOx concentrations and relative humidity on secondary organic aerosol yields from alpha-pinene
- photo-oxidation through smog chamber experiments and modelling calculations, Atmos. Chem. Phys.,
- 116 17, 5035-5061, 10.5194/acp-17-5035-2017, 2017.