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S1    A linearized one-dimensional solution for a thermal compression wave  

The one-dimensional linearized momentum, thermodynamic and continuity equations, which allow thermal compression 

waves can be written as:  
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where ! is the x-component of velocity, !! perturbation pressure from the base state, !! perturbation density, ! = !"!!  

the speed of sound, ! = !! /!!, ! the gas constant for dry air, and !! the hearting rate per unit mass. The basic state values 

of pressure, density, and temperature are !!,  !!, and !!, respectively. These reduce to a single equation for perturbation 

pressure: 
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Consider a heating function !! = ! ! − !! !!!!/(!! + !!) where the Heaviside unit function ! ! − !! = 1 for ! > !! 

and 0 for ! < !!. The equation can be solved for !! by taking Laplace and Fourier transforms, solving algebraically, and then 

taking inverse transforms to give:  
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It is straightforward to obtain solutions to the other variables (NP94a). 

    Figure S1 shows the solution for a heating rate of 1 J kg-1 s-1, !=20 km, !!=300 K, !!=105 Pa at !=600 s. A narrow 

temperature increase occurs where the heating is large at x=500 km, but there is a very broad region of increased pressure. 

The solution has a wave-like character with the wave front, at around 200 km from the centre of the maximum heating, 

propagating at the speed of sound. There is divergence in the region of heating and convergence at the wave front. The 

passage of the wave front is characterized by a notable increase in pressure and relatively minor increases in density and 

temperature as the air is compressed. 

    The solution at 1200 s for a heating rate that is turned off at 600s is shown in Figure S2. Turning off the heating leads to a 

centre that is warmed and is less dense at 1200 s with only very small pressure perturbations remaining. Two wave-like 

anomalies are moving in opposite directions at the speed of sound. Since the internal energy per unit volume only depends 

on the pressure it can be seen that the internal energy perturbations given by !! !!/!, are propagating away from the heated 

region at the speed of sound. Even though the central region has warmed considerably there is no significant change in the 

internal energy per unit volume (!!!") since there has been a large density decrease in the narrow heated region. Mass can 

be seen to be conserved since the density has increased slightly in the two wide compressed regions which are propagating 

away at the speed of sound. Therefore, this very simple 1D solution shows a significant redistribution of internal energy and 

mass occurring at the speed of sound.  

    There are two energy conservation equations that can be derived from equations S1-S3. The internal energy perturbation 

equation is 
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where !! is the heating rate per unit volume (!!!!). The wave energy equation is 
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The wave energy in Eq. S7 is composed of kinetic energy and wave potential energy (e.g. Phillips, 1990). Figure S3 portrays 

the two expressions for internal energy perturbation and wave energy for the thermal compression wave shown in Fig. S2. It 

can be seen that the internal energy perturbation is four orders of magnitude larger than the wave energy. In this study we are 

concerned with how expansion of air due to a heat source and the resultant compression of the surrounding air leads to a 

transfer of total energy at the speed sound. If solutions to the nonlinear equations were obtained for this problem the total 

energy would consist of internal energy plus kinetic energy with the latter being an extremely small contribution. The total 

energy would to a good approximation be equal to the internal energy and the solutions for small perturbations would be 

similar to these we have obtained for the linearized equations. As this simple linearized solution illustrates it is important not 

to confuse the transfer of total energy by thermal compression waves with the transfer of wave energy. 

S2    A thought experiment demonstrating internal energy transfer is different than convective heat transfer 

Another perspective on internal energy transfer is gained by considering the thought experiment shown in Figure 3. An ideal 

gas in an insulated container is separated into two parts, gas 1 and gas 2, by a movable frictionless partition. Consider 

uniformly heating gas 1 on the left side of the container. This will cause the temperature and pressure to increase. Gas 1 will 

expand and the movable partition will move to the right compressing gas 2. If the heating is discontinued the partition will 

come to an equilibrium position, as shown in Fig. 3b, such that the pressure in gas 2 equals the pressure in gas 1. The 

temperature of gas 2 will have increased due to compression, but will be considerably less than that of gas 1. Since the 

internal energy per unit volume (!!!/!) is only a function of pressure, it will be the same in gas 2 as in gas 1. Obviously, 

since gas 1 now occupies a larger volume than gas 2 it will have a larger net internal energy. 

    The compression of gas 2 is a fast response occurring at the speed of sound. As the partition moves from left to right it 

imparts momentum to the adjacent molecules in gas 2 causing a wave of compression to travel through gas 2 at the speed of 

sound, which reflects backwards and forwards off the right lateral boundary and the middle partition. Now consider 

removing the partition. If the two gases were then mixed by mild stirring this wouldn’t impart significant internal energy 

(stirring a gas will not increase its temperature by much), and the pressure would remain essentially the same. As far as the 

internal energy in a control volume in gas 2 is concerned, the internal energy increased during the compression stage. After 

the mixing stage, even though the control volume contains warmer air than it did at the end of the compression stage, the 

amount of internal energy within it has not changed since the pressure is the same. Note that the density of the gas in the 

control volume that was larger than the density in gas 1 will decrease during this mixing phase as the density throughout the 

container becomes uniform. 

    Convective heat transfer is considered to be the transfer of heat from one place to another by the movement of fluids. It is 

common in meteorology to describe heat as being advected from one place to another, whereby it is meant that when 

relatively warm air moves into a region it constitutes a “heat transfer”. This interpretation is at the heart of the decomposition 

made in Eq. 3. From this perspective the heat transport from left-to-right in the thought experiment depicted in Fig. 3 took 

place in the second stage when air was mixed and the air in the control volume became notably warmer. However, as has 

been explained, this did not constitute a total energy transfer, which occurred earlier in stage 1 during the compression of gas 

2. 
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S3    Results for Experiment 1B  

Early in the simulation at 10 s (Fig. S5) there are significant differences with the fully compressible solution (Fig. 4). For 

instance the potential temperature perturbation in the heat source region is noticeably less than for the fully compressible 

case. This is probably because there is already upward motion at the center of the heat source leading to some adiabatic 

cooling, which does not exist in the case of the fully compressible simulation. Also the surface pressure has already begun to 

decrease (Fig. S5b) and there is no expansion of the air evident in the horizontal and vertical velocity fields. Instead of 

showing expansion the circulation has an inflow at low levels and outflow at the upper region of the heat source with a deep 

updraft at the center. Figure S6 shows the density perturbation at 40 s, u at 80 s, and vertical velocity at 120 s, that can be 

compared with the corresponding frames in Fig. 3 and 4 for the compressible simulation. The density perturbation is larger 

in magnitude than for the fully compressible case. Also, the inflow is stronger and the outflow weaker, which is consistent 

with an outflow velocity associated with expansion of the heated air for the compressible case superimposed onto the 

buoyancy driven circulation. This simulation at 120 s has developed a more extensive subsidence region surrounding the 

updraft. Figure S7 at 15 min can be compared to the compressible case in Fig. 7. Despite the differences noted early in the 

simulations, at this time the results are virtually identical. One discernable difference is that the pressure perturbation at the 

top of the heat source for the compressible case (Fig. 7b) is slightly higher (Fig. S7b).  

S4    Results for Experiment 2C 

Figure S8 shows a horizontal section of the surface pressure perturbation and a vertical section through the centre of the 

domain of the total energy perturbation for Experiment 2C, which does not include the Coriolis term. Comparing Fig. S8a 

and b, with Fig. 8b and d, it can be seen that the inclusion of the Coriolis force radically alters the pressure field and 

distribution of total energy. Far less total energy occurs over the land surface for this simulation and it is being redistributed 

much further offshore. Time series for this simulation shown in Figure S9 illustrate how much larger the total energy is over 

the ocean than over the land at the end of the 9 h simulation. There is also significantly more mass transported offshore for 

this experiment than for Experiment 2A (cf. Fig. 10d). 
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Figure S1. Solution for a 1D thermally generated compression wave at t=600 s.  
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Figure S2. Solution for a 1D thermally generated compression wave at t=1200 s. 
with the heating turned off at t=600 s. 
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Figure S3. Total energy and wave energy for a 1D thermally generated compression wave at 
t=1200 s, with the heating turned off at t=600 s. (a) Total energy. (b) Wave energy. 
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Figure 2. Solution for a 1D thermally generated compression wave at t=1200 s. 
with the heating turned of at t=600 s. 

 

Figure S4. Schematic of a thermally insulated gas divided by a movable 
partition. (a) Initial state. (b) After heat input in chamber 1. 
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Figure S5. Vertical sections for the convective scale heat source without compression waves, 
Experiment 1B, at t=10 s. (a) Potential temperature perturbation (K), (b) pressure perturbation 
(hPa), (c) x-component of velocity (m s-1). and (d) vertical velocity (m s-1). 
 

(a) Potential temperature perturbation (b)     Pressure perturbation 

(c)  x-component of velocity (u) (d)        Vertical velocity  
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Figure S6. Vertical sections for the convective scale heat source without compression 
waves, Experiment 1B. (a) Density perturbation (kg m-3), at t=40 s (b) x-component 
of velocity (m s-1), at t=80 s and (c) vertical velocity (m s-1), at t=120 s.  

(a)     Density perturbation, t=40 s (b) x-component of velocity (u), t=80 s 

(c)  Vertical velocity, t=120 s 
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Figure S7. Vertical sections for the convective scale heat source without compression 
waves, Experiment 1B, at t=15 minutes. (a) Potential temperature perturbation (K), 
(b) pressure perturbation (hPa), (c) density perturbation (kg m-3), (d) x-component of 
velocity (m s-1), and (e) vertical velocity (m s-1). 

(a) Potential temperature perturbation (b)     Pressure perturbation 

(c)    Density perturbation (d)    x-component of velocity (u) 

(e)        Vertical velocity  
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(a)     Pressure perturbation 

(b)  Total energy perturbation 

Figure S8. Continent-scale heat source without the Coriolis 
force, Experiment 2C, at t=9 h. (a) Surface pressure 
perturbation (hPa), and (b) vertical section of the total 
energy perturbation (J m-3). 
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Total energy changes over land and ocean (a) 

Mass changes over land and ocean (b) 

Figure S9. Time series for the square continent scale heating without 
Coriolis force, Experiment 2C. (a) Total energy changes over the land 
and ocean (Joules ×1018), and (b) mass changes over the land and 
ocean (kg ×1012). 


