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Abstract. Deposition to the sea surface is a major atmo-
spheric loss pathway for many important trace gases, such
as sulfur dioxide (SO2). The air–sea transfer of SO2 is con-
trolled entirely on the atmospheric side of the air–sea in-
terface due to high effective solubility and other physical–
chemical properties. There have been few direct field mea-
surements of such fluxes due to the challenges associated
with making fast-response measurements of highly soluble
trace gases at very low ambient levels. In this study, we re-
port direct eddy covariance air–sea flux measurements of
SO2, sensible heat, water vapor, and momentum. The mea-
surements were made over shallow coastal waters from the
Scripps Pier, La Jolla, CA, using negative ion chemical ion-
ization mass spectrometry as the SO2 sensor. The observed
transfer velocities for SO2, sensible heat, water vapor, and
momentum and their wind speed dependences indicate that
SO2 fluxes can be reliably measured using this approach.
As expected, the transfer velocities for SO2, sensible heat,
and water vapor are lower than that for momentum, demon-
strating the contribution of molecular diffusion to the overall
air-side resistance to gas transfer. Furthermore, transfer ve-
locities of SO2 were lower than those of sensible heat and
water vapor when observed simultaneously. This result is at-
tributed to diffusive resistance in the interfacial layer of the
air–sea interface.

1 Introduction

The deposition of soluble trace gases to the ocean surface is
an important component in the global budgets of several im-
portant biogeochemical elements. For example, roughly 90–

108 Tg yr−1 of SO2 is emitted to the atmosphere from fossil
fuel combustion and industrial processes, from volcanic out-
gassing, and from the atmospheric photochemical oxidation
of biogenic dimethylsulfide (DMS; Sheng et al., 2015; Chin
et al., 2000). In the marine atmosphere, SO2 oxidation con-
tributes to the production and growth of aerosols which influ-
ence the Earth’s radiation budget via aerosol backscatter of
solar radiation and cloud optical properties. Global models
estimate that dry deposition of SO2 to the sea surface com-
prises slightly less than half of the total removal from the at-
mosphere (Sheng et al., 2015; Chin et al., 2000). The param-
eterization of dry deposition of soluble gases in atmospheric
chemistry models is based largely on laboratory experiments,
micrometeorological theory, or field studies in terrestrial en-
vironments (Liu et al., 1979; Liss, 1973; Mackay and Yeun,
1983). Relatively few direct flux studies of soluble trace gas
deposition to the sea surface have been carried out due to a
lack chemical sensors with sufficient sensitivity and response
time for eddy covariance flux measurements. Faloona et al.
(2009) reported air–sea eddy covariance surface fluxes for
SO2 using a fast-response chemical ionization mass spec-
trometric technique developed by Bandy et al. (2002). To
our knowledge these are the only previous eddy covariance
measurements of SO2 surface fluxes over the ocean. Air–sea
fluxes of the highly soluble organic compounds acetone and
methanol have also been reported (Marandino et al., 2005;
Yang et al., 2013, 2014, 2016).

In this study, we made eddy covariance flux measurements
of SO2 deposition to the coastal ocean from the Scripps In-
stitute of Oceanography pier in La Jolla, California. These
measurements were accompanied by simultaneous measure-
ments of air–sea fluxes of momentum, water vapor, and sen-
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sible heat. The goals of this study were (1) to directly deter-
mine the transfer coefficient of SO2 and its wind speed de-
pendence for comparison to existing estimates; (2) to com-
pare the transfer coefficients of SO2 with those of momen-
tum, water vapor, and sensible heat to assess the relative im-
portance of turbulent and diffusive resistance to SO2 deposi-
tion; and (3) to attempt to detect the dependence of soluble
gas deposition on molecular diffusivity in the marine envi-
ronment.

2 Background

2.1 Air–sea gas transfer of highly soluble gases

Gas transfer across a gas–liquid interface is commonly pa-
rameterized as follows:

F =K

(
Cw

α
−Ca

)
, (1)

where F is the air–sea flux (mol m−2 s−1), Ca and Cw are
bulk air- and water-side concentrations (mol m−3), and α is
the dimensionless solubility (Cw/Ca at equilibrium). K rep-
resents the bulk gas transfer coefficient reflecting the phys-
ical processes limiting exchange on both sides of the inter-
face, expressed in air-side units (m s−1). The reciprocal ofK ,
or resistance, can be partitioned into water-side and air-side
processes, where

K−1
= Rtotal = rw+ ra =

1
kw
+
α

ka
. (2)

In the case of gases like SO2 with very high effective solubil-
ity (α� 1) (Liss, 1971; Liss and Slater, 1974) and negligible
seawater concentration (see below), the air side dominates
the total resistance (i.e., ra � rw) so the gas transfer equa-
tion becomes

F = ka

(
[SO2]w

α
− [SO2]a

)
≈ ka[SO2]air, (3)

where ka is the air-side gas exchange coefficient (m s−1), also
referred to as the deposition velocity. The transfer coefficient,
ka (hereafter referred to as kSO2 ), encapsulates the physi-
cal processes controlling transport across the marine atmo-
spheric surface layer to the air–sea interface. This transport
is governed by (1) turbulence in the surface layer, (2) molec-
ular diffusion close to the sea surface where turbulence is
suppressed by molecular viscosity, and (3) the resistance to
transfer across the air–sea interface at the water surface (Liss
and Slater, 1974; Slinn et al., 1978). The transfer coefficient
can be expressed in terms of resistance to deposition, as fol-
lows:

k−1
a = rtotal = rturbulence+ rdiffusion+ rsurface. (4)

The turbulent resistance term, sometimes referred to as aero-
dynamic resistance, is often approximated by the momentum

transfer coefficient (or drag coefficient) under the assumption
that there is no diffusive barrier to momentum transfer. Diffu-
sive resistance is usually conceptualized in terms of the sur-
face renewal model, involving periodic exchange of patches
of near-surface air by turbulent eddies, with deposition of
a trace gas to the sea surface via non-steady-state diffusion
(Higbie, 1935; Danckwerts, 1951). This model implies a de-
pendency on molecular diffusivity, as follows:

rdiffusion ∝ Scn, (5)

where Sc is the Schmidt number defined as the kinematic vis-
cosity of air (ν) divided by the molecular diffusion coefficient
(D) of the gas in air and n is a constant. Early studies of solu-
ble gas deposition to the ocean suggested a Sc2/3 dependence
based on boundary layer theory (Slinn et al., 1978). Current
gas transfer models parameterize gas transfer as a surface re-
newal process with a Sc1/2 dependence (Fairall et al., 2000;
Donelan and Soloviev, 2016). Laboratory experiments using
water-side-controlled gases show n ranging from 0.50 to 0.66
for smooth and rough flow conditions (Jahne et al., 1987).

Interfacial surface resistance, i.e., resistance to air–sea
gas transfer arising from physical–chemical interactions in
a molecular scale layer at the surface, is included here for
completeness. We are aware of no evidence that such pro-
cesses are important at clean water surfaces for molecules
such as SO2 or H2O (see Sect. 2.2.3). The sea surface is often
“contaminated” by the presence of organic compounds and
particulates collectively referred to as the sea surface (or ma-
rine) microlayer. One could hypothesize that a hydrophobic
surface film of sufficient coverage and thickness could intro-
duce resistance to the transfer of small polar molecules such
as SO2 or H2O, but such effects have not yet been demon-
strated. It is well known that the microlayer can alter the sur-
face tension of the sea surface, dampening the formation of
capillary waves and indirectly altering the turbulent and dif-
fusive resistance to transfer of momentum and gases (Frew
et al., 1990; Bock and Frew, 1993; Pereira et al., 2016).

2.2 Physical chemical properties of SO2 relevant to gas
transfer

The interpretation of the SO2 air–sea flux measurements in
this study is based on the following premises: (1) deposition
of SO2 is controlled entirely on the air side of the air–sea in-
terface and (2) surface ocean waters are always highly under-
saturated in SO2 with respect to the overlying atmosphere. In
this section we discuss the basis for these assumptions.

2.2.1 Effective solubility of SO2 and the kinetics of
ionic equilibria

Sulfur dioxide is not a highly soluble gas, but it has a very
large effective solubility in aqueous solution at elevated pH
because of the dissociation of aqueous SO2 into bisulfite and
sulfite ions (HSO−3 ; SO2−

3 ). Collectively, dissolved SO2 and
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its ionized forms are referred to as S(IV). The equilibria gov-
erning the aqueous speciation of SO2 are listed below, with
equilibrium constants given for seawater at 298 K (Millero
et al., 1989).

SO2 
 SO2(aq) (R1)
SO2(aq)+H2O 
 HSO−3 +H+ (R2)

HSO−3 
 SO2−
3 +H+ (R3)

HSO2 =
[SO2(aq)]
PSO2

= 1.17Matm−1 (6)

K1 =
[HSO−3 ][H

+
]

[SO2(aq)]
= 2.7× 10−2 M (7)

K2 =
[SO2−

3 ][H
+
]

[HSO−3 ]
= 7.7× 10−7 M (8)

Combining these equilibria yields an effective SO2 solubility,
as follows:

Heff =HSO2

[
1+

K1

[H+]
+
K1K2

[H+]2

]
. (9)

HSO2 is the Henry’s law solubility (M atm−1), K1 and K2
are equilibrium constants in Equations (7) and (8), R is the
gas constant (L atm K−1 mol−1), and T is temperature (K).
At the pH of seawater, Heff is 6.2× 108 M atm−1.

As noted by Liss (1971), the kinetics of S(IV) ionization
in seawater are rapid, occurring on timescales much shorter
than those for transport across the water-side interfacial layer.
Based on rate constants for the forward and reverse reactions
comprising the equilibria listed above, the characteristic time
for equilibration of dissolved SO2 with the ionic forms of
S(IV) is roughly 4.5×10−4 s (Schwartz and Freiberg, 1981),
while the timescale for diffusive transport through the in-
terfacial layer on the water side is on the order of seconds
(Hoover and Berkshire, 1969). Consequently, SO2 behaves
as a highly soluble gas during the air–sea exchange process.

2.2.2 Placing a limit on the surface ocean concentration
of S(IV)

To our knowledge, there are no published measurements of
surface ocean S(IV). Here we place an upper limit on sur-
face ocean S(IV) based on rough estimates for the sources
of S(IV) to the ocean and the oxidation kinetics of S(IV)
in seawater. The sources of S(IV) to the surface ocean in-
clude (1) release of hydrogen sulfide (H2S) from marine
sediments or deep waters, followed by oxidation to S(IV);
(2) atmospheric deposition of SO2; (3) production of H2S
in surface waters from hydrolysis of photochemically pro-
duced carbonyl sulfide (OCS) followed by oxidation; and
(4) production of H2S in surface waters from particulates
and/or organisms. For the sediment source, we take the upper

limit of about 10−1 mol m−2 yr−1 from the global compila-
tion of sulfate reduction rates by Bowles et al. (2014). For
the atmospheric source, an atmospheric SO2 mixing ratio of
1 nmol mol−1 and a deposition velocity of 0.02 m s−1 yields
a source of 2.6× 10−2 mol m−2 yr−1. The other sources are
many orders of magnitude smaller, based on surface ocean
distributions and laboratory hydrolysis rates of OCS (Elliott
et al., 1987; Cutter and Krahforst, 1988; Radford-Knoery
and Cutter, 1994). Assuming that all of these sources are
delivered to a shallow mixed layer of 10 m depth yields an
upper limit on the S(IV) production rate (PS(IV)) of about
10−2 mol m−3 yr−1. For the open ocean, the S(IV) produc-
tion rate is likely much lower, because the sulfide from sed-
imentary sulfate reduction is not released directly into the
surface ocean. The kinetics of oxidation of S(IV) in seawater
was measured in the laboratory by Zhang and Millero (1991).
They report the following rate expression:

[S(IV)]
dt

= koxidation[S(IV)]2, (10)

where [S(IV)] is the seawater concentration of S(IV)
(M) and koxidation is the S(IV) oxidation rate constant of
12.4. M−1 s−1 The steady-state surface ocean S(IV) can be
calculated as a balance between sources and oxidation, as
follows:

PS(IV) = koxidation[S(IV)]2, (11)

S(IV)=

√
PS(IV)

koxidation
, (12)

yielding a steady-state S(IV) concentration of roughly 8.4×
10−8 M. Based on the effective solubility of SO2 in seawater,
this represents an equilibrium SO2 gas-phase mixing ratio
of only 0.1 fmol mol−1. That is several orders of magnitude
lower than typical atmospheric SO2 levels over the ocean
(De Bruyn et al., 2006; Bandy et al., 1992; Chin et al., 2000).
Therefore, one can justifiably assume that the sea surface is
highly undersaturated in SO2 with respect to the overlying at-
mosphere. It follows that the bulk air–sea concentration dif-
ference for SO2 is essentially equal to the air-side concentra-
tion (Eq. 3).

2.2.3 Surface resistance to SO2 deposition

In order for the molecular interface between water and air to
play a significant role in air–sea gas transfer, the surface must
introduce a resistance comparable to that across the turbulent
and viscous layers above it. The surface can be modeled as a
diffusive air-side layer with a thickness (L) equal to the mean
free path of SO2 in air, about 120 nm. The resistance across
a flat planar surface layer can be estimated as

rsurf =
L

γD
=

1.2× 10−7

γ × 1.3× 10−5 ≈
10−2

γ
sm−1, (13)
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where γ and D are the accommodation coefficient and
molecular diffusion coefficient of SO2, respectively (Fuller
et al., 1966). The timescales associated with turbulent and
diffusive transport can be estimated using the COAREG
(Coupled Ocean–Atmosphere Response Experiment Gas)
gas transfer model (Fairall et al., 2000). For a height of
10 m and a wind speed of 10 m s−1 under neutral conditions,
COAREG yields the following:

rturb+ rdiff ∼= 102 s m−1. (14)

An accommodation coefficient of 10−4 would therefore be
required in order for resistance at the surface to be compara-
ble to that of the turbulent and diffusive atmosphere above.
Laboratory studies of SO2 uptake into clean water droplets
suggest that the mass accommodation coefficient is about 0.1
(Worsnop et al., 1989). At this value, the surface resistance
is only about 0.1 % of the overall resistance. Thus, surface
resistance is not expected to play a significant role in air–sea
gas transfer across clean water surfaces. The same is likely
true for H2O, which is believed to have an accommodation
coefficient near unity, although there is considerable scatter
in laboratory experiments (Morita et al., 2004). As noted ear-
lier, the possibility of additional surface resistance for either
SO2 or H2O due to the presence of natural organic marine
microlayers cannot be evaluated due to lack of information
about their properties.

3 Methods

3.1 Study site and experimental setup

This study was conducted at Scripps Pier located in La Jolla,
California, during April 2014. The local meteorology is char-
acterized by a daily westerly sea breeze with occasional
frontal systems that generally approach from the northwest.
The pier structure extends 330 m from shore in the west–
northwest direction and the water depth at the end of the pier
is approximately 10 m. The end of the pier extends roughly
100 m past seaward of breaking waves. Meteorological sen-
sors and air inlets were mounted at the end of a moveable
6 m boom mounted on the northwest corner of the pier. The
boom was positioned to extend approximately into the pre-
vailing winds. The sensing regions of the eddy covariance
flux package and the air intake for SO2 detection were lo-
cated approximately 10 m above the sea surface. The sensor
height was corrected for changes in tidal range during the ex-
periment. Instrumentation for sulfur dioxide detection, data
acquisition, clean air generator, and pumps were located in a
trailer located at the end of the pier. Three-dimensional winds
and fast-response temperature measurements were measured
using a Campbell CSAT 3 sonic anemometer, with data col-
lection at 50 Hz. Water vapor and air density were measured
using an open-path infrared gas analyzer (IRGA; LI-COR
model LI-7500) at 5 Hz. The instrument was calibrated using

a dew point generator (LI-COR model LI-610). Sea surface
temperature was measured using a temperature probe array
mounted on the pier with 9 probes vertically spaced by about
1 m. The sea surface temperature was taken to be the shal-
lowest probe not exposed to air. Mean air temperatures were
obtained from the NOAA meteorological station at the end
of the pier.

For SO2 detection, the air sampling inlet was similar to
that used by Bell et al. (2013) to measure DMS. The air
inlet was a 0.25′′ O.D. PFA tee fitting mounted just be-
hind the sonic anemometer sensing region. Air was drawn
into the inlet at a flow rate of 8500 cc min−1 and dried
by passage through two counterflow Nafion membrane dri-
ers (Perma Pure LLC model PD-625-24PP) connected in
series just after the inlet. The air passed from the driers
through a 0.25′′ O.D., 13 m long PFA Teflon tube to a chem-
ical ionization mass spectrometer located in the trailer. In
the trailer, 1000 cc min−1 of the 8500 cc min−1 airflow was
drawn through the ionization source of the mass spectrome-
ter. A 200 cc min−1 stream of ozonized dry air (Pen Ray UV
lamp) was added to the 1000 cc min−1 prior to entry into the
ionization source. A continuous flow of isotopically labeled
gas standard (34SO2 in N2) was injected into the sampled air
stream at the inlet tee. This gas standard was delivered to the
inlet from an aluminum high-pressure cylinder located in the
trailer, at a flow rate ranging from 1 to 10 cc min−1 from a
1/8′′ O.D. PFA tube.

All flow rates were controlled and logged using mass flow
controllers interfaced to a PC. Air for the Nafion counterflow
driers and ozone generator was supplied by a pure air gen-
erator and compressor (Aadco model 737-11), located in the
trailer. Pumping for the air inlet and ionization source was
provided by a carbon vane pump (Gast model 1023).

3.2 SO2 detection by chemical ionization mass
spectrometry

Atmospheric SO2 was detected using a laboratory-built
chemical ionization mass spectrometer (CIMS) in negative
ion mode. This instrument was described previously for pos-
itive ion measurements of dimethylsulfide (Bell et al., 2013).
The instrument was modified for this study by replacing a
set of conical declustering lenses with a multi-lens ion fun-
nel of the design developed by Kelly et al. (2010). This re-
sulted in an order of magnitude improvement in ion trans-
mission over the prior configuration of the instrument. In
the CIMS instrument, ionization was carried out in a 0.25′′

inch glass-lined stainless steel flow tube containing a 63Ni
foil at 430 Torr and room temperature, with an airflow rate of
1000 cc min−1. Ions from the source enter the declustering
region containing the ion funnel through a 250 µm diameter
pinhole. The ion funnel is 127 mm long and consists of 100
concentric rings decreasing in diameter from 25.4 to 1.5 mm
(Kelly et al., 2010). A DC gradient of 3 V cm−1 was applied
to transmit ions axially and two phases of radio frequency
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(RF; 2 MHz, 150 V p-p) were applied so that adjacent rings
in the funnel were 180◦ out of phase. The ion funnel was
operated at a pressure of 1 Torr. Ions exit the ion funnel via
a 1 mm orifice into the first stage of a differentially pumped
Extrel quadrupole mass filter (19 mm). Ions are detected us-
ing a dynode, ion multiplier, pulse amplifier/discriminator,
and counting electronics (National Instruments model USB
6343). Ion counts were logged locally by the mass spectrom-
eter control software and retransmitted as analog signals in
real time with a fixed 2 s delay. The analog signals were
logged by the multichannel data logger along with data from
the meteorological sensors. Sulfur dioxide was detected in
negative ion mode as SO−5 (m/z 112), which was generated
using the following reaction scheme previously described by
Thornton et al. (2002).

O−2 +O3→ O−3 +O2 (R4)
O−3 +CO2→ CO−3 +O2 (R5)
CO−3 +SO2→ SO−3 +CO2 (R6)
SO−3 +O2+N2→ SO−5 +N2 (R7)

The addition of ozone minimizes the competing reaction
O−2 +SO2→ SO−4 and increases response to SO2 (Möhler
et al., 1992). When operating the ionization source at atmo-
spheric pressure there was interference at m/z 112 from the
CO4(H2O)−2 cluster ion. This was essentially eliminated by
dropping the pressure in the source to 430 Torr.

Isotopically labeled 34SO2 delivered to the air inlet served
as an internal standard to account for any wall losses or vari-
ations in instrument sensitivity due to changes in ambient
conditions. The flow rate of the gas standard was adjusted to
achieve a 34SO2 level of roughly 100 pmol mol−1 after dilu-
tion into the ambient airflow. The gas standard was prepared
in our laboratory in a high-pressure aluminum gas cylinder
(Scott Marrin model 30A) and delivered via mass flow con-
troller. These gas standards were calibrated in the lab against
a gravimetrically calibrated permeation device using an in-
ert dilution system described by Gallagher et al. (1997). The
isotopically labeled standard was detected at m/z 114. The
ambient SO2 mixing ratio was calculated from the field data
as follows:

XSO2 =
S112

S114

fstd

ftotal
Xtank, (15)

where S112 and S114 are blank-corrected mass spectrometer
signals, fstd and ftotal are the gas flow rates of the isotopic
standard and inlet, and Xtank is the molar mixing ratio of
34SO2 in the compressed cylinder. Because the air stream
was dried in the inlet tube prior to analysis, XSO2 repre-
sents the mixing ratio of SO2 in dry air. Blanks involved
sampling air through a carbonate-impregnated filter to quan-
titatively remove ambient SO2. Whatman 41 filters for this
purpose were soaked in 1 % sodium carbonate solution and
dried prior to use. During this study the SO2 instrument ex-
hibited sensitivity of approximately 150 Hz ppt−1.

3.3 Flux data acquisition, post-processing, and gas
transfer calculations

The analog data streams from the meteorological and chemi-
cal sensors were filtered with a Butterworth filter and logged
at 50 Hz using a National Instruments multichannel data log-
ger. Post-processing consisted of (1) aligning the data to ac-
count for instrumental electronic delays and the delay due
to the airflow transit time through the inlet tube; (2) rotat-
ing the 3-D winds for each flux interval into the frame of
reference of the mean winds and to account for tilt in the
sonic anemometer (1.3◦); (3) converting the data to geophys-
ical units; (4) computing vertical fluxes of water vapor, sensi-
ble heat, SO2 and momentum; (5) applying a high-frequency
correction to the SO2 fluxes to account for loss of fluctu-
ations in the inlet tubing; and (6) applying various quality
control criteria to filter the resulting data set for instrumen-
tal issues or unsuitable environmental conditions. Data pro-
cessing was carried out using Matlab (Mathworks). The inlet
delay for SO2 was determined experimentally in the labora-
tory prior to field deployments to be roughly one second. The
measured delay was consistent with the offset required for
maximizing the covariance between vertical wind and SO2
concentration. Sulfur dioxide was measured as a dry mixing
ratio since the air stream was dried prior to entering the mass
spectrometer and converted to concentration (mol m−3) us-
ing the dry air density. Water vapor concentrations measured
by the LI-COR IRGA were corrected to account for air den-
sity fluctuations and converted to concentration (mol m−3).
The saturation vapor pressure of seawater at the sea sur-
face temperature was calculated following Sharqawy et al.
(2010). The mean air temperature was corrected for the adi-
abatic lapse rate, and the sonic temperatures were corrected
for humidity. SO2, water vapor, temperature, and winds were
corrected to 10 m height and neutral stability using COARE
(Businger et al., 1971; Fairall et al., 1996; Edson et al., 2013;
Fairall et al., 2003). The data set was subdivided into 13 min
flux intervals for processing. The resulting data consisted of
means and variances for air temperature, relative humidity,
SO2, and seawater surface temperature. Fluxes of momen-
tum (Reynolds stress, τ ), water vapor, sensible heat, and SO2
were calculated for each interval according to

FSO2 = w
′C′SO2

, (16)

FH2O = ρ w′X
′

H2O , (17)

Fmom = ρ

√
(w′u′)2+ (w′v′)2 , (18)

FSH = ρ cp w′T ′ , (19)

where u, v, and w are the winds; cp is the heat capacity of
air and ρ is air density in kg m−3; and the other variables
are defined previously. T is the air temperature corrected for
humidity and the adiabatic lapse rate. Primed quantities with
overbars represent the ensemble average of the fluctuations
about the mean.
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Transfer velocities were computed following Eqs. (1)
and (3), as follows:

kSO2 =−
FSO2

[SO2]a
, (20)

kH2O =
FH2O

(Xs−XH2O) ρdry
, (21)

kmom =
Fmom

U10 ρ
, (22)

kSH =
FSH

(Ts − T ) ρ cp
. (23)

Xs is the calculated mixing ratio of water vapor correspond-
ing to the saturation vapor pressure of water at the sea surface
temperature.

3.4 High-frequency correction for inlet tubing

High-frequency fluctuations in the mixing ratio of SO2 are
attenuated during the passage of ambient air through inlet
tubing and membrane driers. The attenuation characteristics
of the inlet used in this study were characterized by inter-
rupting the addition of an SO2 gas standard to the airflow,
resulting in an exponential decay of the SO2 signal. A decay
constant (K) was obtained from the slope of a linear regres-
sion to a plot of log(SO2) vs. time. The attenuation of the
inlet was modeled as a first-order low-pass Butterworth filter
with a cut-off frequency, Fc =K/(2p), of about 1.5 Hz. A
high-frequency correction factor or gain, G, was computed
for each flux interval by applying the filter to the sonic tem-
perature time series data and taking the ratio of the filtered
and unfiltered fluxes as follows:

G= Funfiltered/Ffiltered. (24)

Linear regression of the gain against wind speed yielded
G= 0.005U10+ 1.018. The SO2 flux for each interval was
multiplied by the gain using this relationship and the mean
wind speed for the interval.

3.5 Quality control criteria

Several quality control criteria were applied to the data to
identify and eliminate flux intervals collected under unsuit-
able conditions or with instrumental problems. They are de-
scribed as follows.

1. Co-spectral shape: a cumulative sum of co-spectral den-
sity, normalized to the total flux, was computed for
each flux interval, summing from low to high frequency.
Intervals were rejected if (a) the cumulative sum at
0.004 Hz exceeded the total flux or was opposite in sign
or (b) the difference between the cumulative flux at
two consecutive frequencies exceeded 18 %. These cri-
teria identified most intervals with obvious deviations
in co-spectral shape from those defined in Kaimal et al.

(1972). Most of these intervals were caused by elec-
tronic noise on the sonic anemometer signal.

2. Small air–sea differences: intervals with air–sea concen-
tration differences close to the propagated uncertainty
of the analytical measurements were eliminated. The
criteria for water vapor, sensible heat, and SO2 were
10−3 mol mol−1, 0.7 ◦C, 10 pmol mol−1.

3. Wind sector: intervals with mean wind directions devi-
ating from onshore by more than ±90◦ were rejected.

4. Stable atmospheric conditions: intervals with stable at-
mospheric conditions, defined as z/L > 0.07, were re-
jected (Oncley et al., 1996).

5. Local SO2 contamination: intervals with sharp excur-
sions in SO2 associated with local contamination due to
nearby vessels were subjectively identified and rejected.

4 Observations

4.1 Meteorological and oceanic conditions

The field study was carried out from 6 to 27 April 2014.
Time series of meteorological and oceanographic param-
eters and fluxes measured during this study are given in
Fig. 1. Winds were generally light during the study, with
a mean wind speed of 3.8± 2.0 m s−1 and a range of 0–
9.7 m s−1. Air temperatures were 16.2± 1.3 ◦C with a range
from 12.9 to 19.9 ◦C and the average relative humidity was
80 %. Sea surface temperatures averaged 16.5± 0.9 ◦C with
a range of 13.8–18.3 ◦C. The SO2 mixing ratio ranged from
below detection to 560 pmol mol−1 with a mean of 100±
114 pmol mol−1. Sharp spikes in SO2 were usually associ-
ated with military or commercial vessels passing upwind of
the pier. Low SO2 levels were associated with the occurrence
of morning fog. For the first few days of the study, a high-
pressure region was located over the study site (DOY 97–
100), during which winds were light and air temperatures
were warm. Air mass back trajectories from this period in-
dicate that marine air masses flowed from the north, passing
inland over California before reaching the site. SO2 levels
were relatively high during this time likely due to fossil fuel
combustion. After the high-pressure system moved out of the
region, airflow was from the northwest, arriving at the study
site directly from the ocean, and SO2 levels were relatively
low during this period. There was a notable increase in wind
speed starting at DOY 106. On DOY 115 a low-pressure sys-
tem passed over the region with higher wind speeds.

The Scripps Pier site experiences a consistent diurnal sea
breeze, with offshore flow during the evening and extending
to the early morning. Data from periods with offshore flow
were excluded from the analysis in the quality control pro-
cess. Due to the sea breeze locally and along the coast, there
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Figure 1. Time series of meteorological and oceanographic parameters measured on Scripps Pier during 6–27 April 2014. The grey bands
indicate night. The blue symbols (×, right y axis) are fluxes that passed quality control.

is likely advection of polluted air offshore, and the SO2 levels
measured during onshore flow may be elevated compared to
marine air from the open ocean. The average air–sea temper-
ature differential during the study was 0.56± 1.55 ◦C with
a range from −3.5 to 2.7 ◦C, with positive values indicat-
ing a warmer ocean than atmosphere. Occasionally air–sea
temperature differentials exhibited diurnal variability which
reflected the changes in air temperatures. Starting on DOY
114, seawater temperatures warmed and were significantly
warmer than air temperatures for the remaining 3 days of the
study.

4.2 Air–sea differences and fluxes

All the observed SO2 fluxes were from the atmosphere to the
ocean surface (negative by convention) and ranged from 0 to
−65 pmol m−2 s−1, with the largest fluxes observed at the be-
ginning and end of the deployment associated with high SO2
levels and high wind speeds, respectively (Fig. 1). All ob-
served water vapor and sensible heat fluxes passing quality
control were upward, which was consistent with the positive
(from the ocean to the atmosphere) thermodynamic gradient
for the duration of the study. The warm seawater tempera-
tures combined with the high winds and cold temperatures
on the last 2 days of the study resulted in large H2O and heat
fluxes.
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Figure 2. Frequency-weighted co-spectra of vertical wind and SO2 concentration for flux intervals collected at Scripps Pier during three
time periods. (a, d, g) DOY 96–102; (b, e, h) DOY 104–109; (c, f, i) DOY 114–117. (a–c) Individual co-spectra for 13 min flux intervals;
(d–f) same as top except co-spectra have been normalized to the average flux during the interval. (g–i) Bin-averages of the flux-normalized
co-spectra (circles), ± 1 standard deviation (dotted line), and idealized co-spectral shape from Kaimal et al. (1972) (dashed line).

Frequency-weighted co-spectra of vertical wind and SO2
are shown in Fig. 2. Fluxes measured during DOY 114–
117 were significantly larger than those measured during the
rest of the campaign because of the strong winds and large
air–sea temperature differences observed during that period
(Fig. 1). The co-spectra measured at Scripps Pier for all pa-
rameters were similar in shape to the characteristic boundary
layer co-spectral shapes defined by Kaimal et al. (1972).

4.3 Transfer velocities

The wind speed dependence of kmom observed in this study
was significantly greater than predicted using the open ocean
parameterization from the NOAA COARE (Fairall et al.,
2000) (Fig. 3). The relationship between wind speed and sur-
face roughness can vary significantly between the open ocean
and coastal environments because of bottom-generated tur-
bulence, as well as other influences related to fetch, tidal cur-
rents, surfactants, and wave properties (Smith, 1988; Brown
et al., 2013; Geernaert et al., 1986). Thus, the turbulent prop-
erties of the atmospheric surface layer in coastal environ-
ments are not well described by wind speed alone. To account

for such effects, we examined the relationship between trans-
fer velocities and both wind speed and friction velocity (u∗)
(Fig. 4).

The transfer velocities measured for water vapor, sensible
heat, and SO2 (kH2O, kSH, kSO2 ) were all positively correlated
with friction velocity (Fig. 4, Table 1). kmom was significantly
higher than the scalar parameters and kSO2 was lower than
kH2O and kSH. The regressions against friction velocity uti-
lize slightly different data sets in each case because these re-
gressions utilize flux measurement intervals that passed qual-
ity control for both the scalar parameter (water vapor, sensi-
ble heat, SO2) and for momentum flux. This means that the
data sets used for the various parameters were not identical
either in terms of the number of flux intervals or the phys-
ical conditions under which they were collected, i.e., tem-
perature, wind speed, atmospheric stability, sea state, etc.
Ideally, the comparison of transfer velocities would be car-
ried out using intervals for which all four of the parameters
passed quality control. However, given the limited data set,
this constraint reduced the available data to an unacceptable
degree. As an alternative, we also compared the gas trans-
fer velocities to each other by computing two-way linear re-
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Figure 3. Momentum transfer velocities measured at Scripps Pier
as a function of wind speed with linear least squares regression and
95 % confidence intervals (black). Blue line – COAREG parameter-
ization of Fairall et al. (2000).

gressions between pairs of simultaneously measured trans-
fer velocities (Fig. 5, Table 2). This analysis was in general
agreement with the k vs. u∗ analysis described earlier and
showed kSO2 < kH2O, kSO2 < kSH and no significant differ-
ence between kSH and kH2O. Momentum transfer velocities
were significantly larger than all the scalar transfer velocities.
The comparison of transfer velocities from simultaneous in-
tervals is a more robust approach to observing differences in
transfer velocities.

5 Discussion

This study demonstrates the successful measurement of SO2
deposition to the sea surface using eddy covariance, with
(1) co-spectra exhibiting a similar shape to water vapor and
sensible heat and (2) a linear relationship between transfer
velocities and wind speed or friction velocity. Virtually all of
the SO2 co-spectra indicated that the direction of flux was
from air to sea, even during periods of very low atmospheric
SO2. This confirms the assumption that seawater SO2 con-
centrations are highly undersaturated with respect to atmo-
spheric SO2. In general, we expect measurements of kSO2 to
be of higher precision than those of water vapor and sensible
heat because (1) the SO2 in seawater is negligible, so the air–
sea concentration gradient is equal to the bulk atmospheric
concentration, eliminating the need for a water-side measure-
ment; and (2) the SO2 flux and atmospheric concentration are
determined simultaneously using a single sensor with a linear
response, so the absolute calibration of the sensor does not
influence the measured gas transfer velocity. These are ad-
vantages compared to the measurement of transfer velocities
for water vapor or sensible heat, which require both air-side

and water-side measurements in order to quantify the air–sea
concentration or temperature difference. The transfer veloc-
ities for SO2 had significantly less scatter compared to the
water vapor and sensible heat transfer velocities at high wind
speeds (Fig. 4).

Faloona et al. (2009) reported airborne eddy covariance
measurements of SO2 deposition over the equatorial Pacific.
The data from their lowest flight altitude of 30 m should be
comparable to the data from this study. We made this com-
parison as a function of u∗ rather than wind speed to ac-
count for the differences in sea surface roughness between
the coastal and open ocean environments. The SO2 transfer
velocities reported by Faloona et al. (2009) were roughly half
those observed at Scripps over a similar range of wind stress
(Fig. 6, Table 3). This difference is considerably larger than
expected from the scatter in the data or estimated uncertain-
ties in the flux measurements. Further investigation is needed
in order to determine whether a systematic difference exists
in SO2 deposition to coastal vs. open ocean waters and, if so,
what the cause might be.

A few studies of direct air–sea exchange of highly solu-
ble organic compounds have also been carried out. Fluxes
of acetone to the Pacific Ocean were reported by Marandino
et al. (2005) and methanol fluxes to the Atlantic Ocean were
reported by Yang et al. (2013). Surprisingly, the direction
and/or magnitude of air–sea fluxes observed in those studies
were not consistent with observed air–sea concentration dif-
ferences based on bulk air and seawater measurements. Both
studies speculated that this was due to near-surface water-
side gradients, because assuming a zero sea surface con-
centration gave reasonable gas transfer velocities with linear
wind speed dependence. For acetone, the resulting gas trans-
fer velocities were considerably lower than those observed
in this study (Fig. 6, Table 3). For methanol, the gas trans-
fer velocities were similar to this study, but with a slightly
stronger dependence on wind stress. The anomalous behav-
ior of acetone and methanol is generally thought to be re-
lated to near-surface biological or photochemical processes.
The presumed near-surface gradients are problematic in that
they require strong localized production and loss processes
and have not yet been observed in the field. Given the uncer-
tainty introduced by these inferred gradients, more detailed
analysis of the similarities and differences in the data seem
unwarranted.

One of the goals of this study was to compare observa-
tions of air-side-controlled gas transfer velocities to model
parameterizations. The COAREG air–sea gas transfer model
(Fairall et al., 2000, 2011) utilizes the open ocean COARE
parameterization of friction velocity, based on wind speed
and stability (Fairall et al., 1996). As a result, COAREG
substantially underestimates the observed transfer velocities
for this nearshore coastal site. As noted earlier, momentum
transfer coefficients at Scripps Pier were elevated compared
to those typically encountered under open ocean conditions.
COAREG yields much better agreement with the field data
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Figure 4. Transfer velocities measured at Scripps Pier as a function of wind and friction velocity. (a) Water vapor, sensible heat, and SO2
as a function of U10 (black dots). (b) Water vapor, sensible heat, and SO2 as a function of u∗ with linear least squares regressions and 95 %
confidence intervals (black dots and black line). Red lines are a second-order least squares regression of transfer velocities computed with
the COAREG parameterization using measured drag coefficients (Fairall et al., 2000, 2011). Blue lines are transfer velocities computed with
the COAREG parameterization, allowing the model to calculate friction velocities and drag coefficients.

Table 1. Two-way regression of transfer velocities against friction velocity (k/u∗).

Parameter Regression slope ± CI Number of
(α = .05) (cm m−1) observations

Water vapor (kH2O/u∗) 3.74± 0.71 69
Sensible heat (kSH/u∗) 3.14± 0.89 36
Sulfur dioxide (kSO2/u∗) 2.32± 0.79 15
Momentum (kmom/u∗) 5.06± 0.40 80

when drag coefficients based on the measured momentum
fluxes were used (Figs. 4, 6). In this study, the momentum
transfer velocity was significantly (roughly 50 %) larger than
the transfer velocities of SO2, H2O, and sensible heat ob-
served under simultaneous or similar conditions. This is rea-
sonable, given that momentum can be transferred across the
air–sea interface via both viscous stress (analogous to diffu-
sion of mass or heat) and by pressure forces for which there
is no analog in mass transfer.

Differences between the gas transfer velocities of SO2,
H2O, and sensible heat should reflect the role of molecular
diffusivity in the viscous layer adjacent to the sea surface.

The diffusivity of SO2 in air is roughly half that of H2O or
sensible heat (Table 4). Comparing the relative magnitudes
of kH2O, kSH, and kSO2 is therefore a good test for the ability
of gas transfer models to partition resistance between turbu-
lence and diffusion. Using the drag coefficients based on the
field data, COAREG gives kSO2/kH2O = 0.82. Using the av-
erage k/u∗ of the field observations (Fig. 4) gives

kSO2/u∗

kH2O/u∗
=

2.32± 0.79
3.74± 0.71

= 0.62± 0.24. (25)

The pairwise analysis of simultaneous measurements gives
a ratio of kSO2/kH2O of 0.52± 0.14. Thus, the field obser-
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Table 2. Pairwise regression of transfer velocities using simultaneously measured data from Figs. 3 and 4.

Parameter Regression slope ± CI Number
(α = .05) of data points

Sulfur dioxide vs. water vapor (kSO2 vs. kH2O) 0.52± 0.14 26
Sulfur dioxide vs. sensible heat (kSO2 vs. kSH) 0.64± 0.15 20
Water vapor vs. sensible heat (kH2O vs. kSH) 1.17± 0.15 64
Sulfur dioxide vs. momentum (kSO2 vs. kmom) 0.40± 0.27 15
Water vapor vs. momentum (kH2O vs. kmom) 0.82± 0.15 69
Sensible heat vs. momentum (kSH vs. kmom) 0.72± 0.13 36

Figure 5. Two-way regressions of transfer velocities measured at Scripps Pier. (a) Water vapor, sensible heat, and SO2 against each other.
(b) SO2, water vapor, and sensible heat regressed against momentum. The 95 % confidence intervals are shown.

vations and model qualitatively agree that the resistance to
SO2 transfer is greater than that of H2O. Quantitatively, the
COAREG result is just within the 95 % confidence interval of
the k/u∗ result, but outside the uncertainty range of the pair-
wise comparison. For kSO2/kSH the result is similar, with bet-
ter agreement between observations and model. COAREG
predicts a ratio of 0.85 while the field data yield 0.74± 0.33
from the ratio of average k/u∗ and 0.64±0.15 from the pair-
wise analysis. Finally, for kH2O/kSH COAREG predicts a
ratio of 1.03. This agrees very well with the field observa-
tions, which give ratios of 1.19±0.41 from the average k/u∗
and 1.17± 0.15 from the pairwise analysis. The model–data
agreement for kH2O/kSH is not surprising because their Sc
numbers are almost identical. Consequently, the ratio calcu-
lated by COAREG should not be sensitive to either the par-
titioning between turbulent and diffusive resistance or to the
parameterization of diffusive resistance.

The field data suggest that the resistance to gas transfer of
SO2 is larger than expected from COAREG. This could in-
dicate that COAREG underestimates diffusive resistance or
it could indicate some additional unknown source of resis-
tance, such as a surface resistance. It seems unlikely, though
not impossible, that surface resistance associated with the sea
surface microlayer would influence only SO2 and not H2O,
but as noted earlier, the properties of the sea surface micro-
layer are not well known. We can estimate the magnitude of
this anomalous resistance using the field data and COAREG
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Table 3. Slopes and intercepts of regressions to k vs. u∗ shown in Fig. 6.

References Gas Slope± 95 %CI Intercept± 95 %CI

This study SO2 2.74± 0.62 0.07± 0.11
Faloona et al. (2009) SO2 1.20± 0.50 0.10± 0.12
Yang et al. (2013) methanol 3.82± 0.29 −0.22± 0.08
Marandino et al. (2005) acetone 1.28± 0.34 0.05± 0.07

Table 4. Diffusion coefficients and Schmidt numbers (Sc) for H2O, sensible heat, and SO2 in air, as calculated according to Fuller et al.
(1966) and Hilsenrath (1960).

Parameters H2O Sensible SO2
heat

Diffusion coefficient in air (298 K; cm2 s−1) 0.25 0.22 0.13
Sc number (298 K) 0.61 0.69 1.19

Figure 6. Gas transfer velocities as a function of friction velocity
for this study and prior measurements of air–sea exchange of highly
soluble, air-side-controlled gases from Yang et al. (2013), Faloona
et al. (2009), Marandino et al. (2005), and this study. The grey line is
the COAREG model calculated with the drag coefficients measured
during this study, using the Sc number of SO2.

as follows:

rtotal_H2O = rturb+ rdiff_H2O = rH2O_COAREG, (26)
rtotal_SO2 = rturb+ rdiff_SO2 + ranom_SO2

= rSO2_COAREG+ ranom_SO2 , (27)
rSO2_COAREG

rH2O_COAREG
= 1.18. (28)

The k/u∗ slopes of the field data give

rtotal_SO2

rtotal_H2O
=
kH2O/u∗

kSO2/u∗
= 1.61± 0.63. (29)

Solving these equations simultaneously yields

ranom/rtotalSO2
= 0.26± 0.29. (30)

The analysis using the pairwise data gives

ranom/rtotalSO2
= 0.38± 0.17. (31)

In other words, the field data allow for additional resistance
for SO2 comprising 25 %–38 % of the total air-side SO2 re-
sistance. However, given the limited data set and the uncer-
tainties associated with the regressions, it seems premature to
conclude that such anomalous resistance exists or to specu-
late on its origin. It does seem likely that, with further work,
measurements such as these can provide useful constraints
on air–sea gas transfer models.

6 Conclusions

This study demonstrated successful measurement of atmo-
spheric deposition of sulfur dioxide to the sea surface by
eddy covariance. The high effective solubility and negligi-
ble seawater concentrations make SO2 a useful tracer for
studying the processes controlling air-side resistance to air–
sea gas transfer. The deposition velocities found in this study
are in reasonable agreement with bulk parameterizations in
current use. The data from this study show that SO2 trans-
fer velocities are lower than those of momentum and wa-
ter vapor, in qualitative agreement with gas transfer theory.
The measurement of air–sea SO2 fluxes provides the op-
portunity to compare the transfer rates of air-side-controlled
substances with different molecular diffusivities. This study
was limited in terms of both the amount of data collected
and the range of environmental conditions sampled. Further
studies conducted on the open ocean, covering a wider range
of wind speeds, sea state, and air–water temperature differ-
ences, could make a significant contribution to our under-
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standing of the deposition of highly soluble gases to the
oceans.
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