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Abstract. The seasonal evolution of O3 and its photochem-
ical production regime in a polluted region of eastern China
between 2014 and 2017 has been investigated using obser-
vations. We used tropospheric ozone (O3), carbon monox-
ide (CO), and formaldehyde (HCHO, a marker of VOCs
(volatile organic compounds)) partial columns derived from
high-resolution Fourier transform spectrometry (FTS); tro-
pospheric nitrogen dioxide (NO2, a marker of NOx (nitro-
gen oxides)) partial column deduced from the Ozone Moni-
toring Instrument (OMI); surface meteorological data; and a
back trajectory cluster analysis technique. A broad O3 max-
imum during both spring and summer (MAM/JJA) is ob-
served; the day-to-day variations in MAM/JJA are generally
larger than those in autumn and winter (SON/DJF). Tropo-
spheric O3 columns in June are 1.55× 1018 molecules cm−2

(56 DU (Dobson units)), and in December they are 1.05×
1018 molecules cm−2 (39 DU). Tropospheric O3 columns in
June were ∼ 50 % higher than those in December. Com-
pared with the SON/DJF season, the observed tropospheric
O3 levels in MAM/JJA are more influenced by the trans-
port of air masses from densely populated and industrialized
areas, and the high O3 level and variability in MAM/JJA

is determined by the photochemical O3 production. The
tropospheric-column HCHO/NO2 ratio is used as a proxy to
investigate the photochemical O3 production rate (PO3). The
results show that the PO3 is mainly nitrogen oxide (NOx)
limited in MAM/JJA, while it is mainly VOC or mixed VOC–
NOx limited in SON/DJF. Statistics show that NOx-limited,
mixed VOC–NOx-limited, and VOC-limited PO3 accounts
for 60.1 %, 28.7 %, and 11 % of days, respectively. Consid-
ering most of PO3 is NOx limited or mixed VOC–NOx lim-
ited, reductions in NOx would reduce O3 pollution in eastern
China.

1 Introduction

Human health, terrestrial ecosystems, and material degrada-
tion are impacted by poor air quality resulting from high pho-
tochemical ozone (O3) levels (Wennberg and Dabdub, 2008;
Edwards et al., 2013; Schroeder et al., 2017). In polluted ar-
eas, tropospheric O3 is generated from a series of complex re-
actions in the presence of sunlight involving carbon monox-
ide (CO), nitrogen oxides (NOx ≡ NO (nitric oxide) + NO2
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(nitrogen dioxide)), and volatile organic compounds (VOCs)
(Oltmans et al., 2006; Schroeder et al., 2017). Briefly, VOCs
first react with the hydroxyl radical (OH) to form a peroxy
radical (HO2 + RO2), which increases the rate of catalytic
cycling of NO to NO2. O3 is then produced by photolysis
of NO2. Subsequent reactions between HO2 or RO2 and NO
lead to radical propagation (via subsequent reformation of
OH). Radical termination proceeds via the reaction of OH
with NOx to form nitric acid (HNO3) (Reaction R1, referred
to as LNOx) or by radical–radical reactions resulting in stable
peroxide formation (Reactions R2–R4, referred to as LROx ,
where ROx ≡ RO2+HO2) (Schroeder et al., 2017):

OH+NO2→ HNO3, (R1)
2HO2→ H2O2+O2, (R2)
HO2+RO2→ ROOH+O2, (R3)
2RO2→ ROOR+O2. (R4)

Typically, the relationship between these two compet-
ing radical termination processes (referred to as the ra-
tio LROx/LNOx) can be used to evaluate the photochem-
ical regime. In high-radical, low-NOx environments, Reac-
tions (R2)–(R4) remove radicals at a faster rate than Re-
action (R1) (i.e., LROx � LNOx), and the photochemi-
cal regime is regarded as “NOx limited”. In low-radical,
high-NOx environments the opposite is true (i.e., LROx �

LNOx), and the regime is regarded as “VOC limited”. When
the rates of the two loss processes are comparable (LNOx ≈

LROx), the regime is said to be at the photochemical transi-
tion/ambiguous point, i.e., mixed VOC–NOx limited (Klein-
man et al., 2005; Sillman et al., 1995a; Schroeder et al.,
2017).

Understanding the photochemical regime at local scales is
a crucial piece of information for enacting effective policies
to mitigate O3 pollution (Jin et al., 2017; Schroeder et al.,
2017). In order to determine the regime, the total reactivity
with OH of the myriad of VOCs in the polluted area has to be
estimated (Sillman, 1995a; Xing et al., 2017). In the absence
of such information, the formaldehyde (HCHO) concentra-
tion can be used as a proxy for VOC reactivity because it is a
short-lived oxidation product of many VOCs and is positively
correlated with peroxy radicals (Schroeder et al., 2017). Sill-
man (1995a) and Tonnesen and Dennis (2000) found that
in situ measurements of the ratio of HCHO (a marker of
VOCs) to NO2 (a marker of NOx) could be used to diag-
nose local photochemical regimes. Over polluted areas, both
HCHO and tropospheric NO2 have vertical distributions that
are heavily weighted toward the lower troposphere, indicat-
ing that tropospheric-column measurements of these gases
are fairly representative of near-surface conditions. Many
studies have taken advantage of these favorable vertical dis-
tributions to investigate surface emissions of NOx and VOCs
from space (Boersma et al., 2009; Martin et al., 2004a; Mil-
let et al., 2008; Streets et al., 2013). Martin et al. (2004a)
and Duncan et al. (2010) used satellite measurements of the

column HCHO/NO2 ratio to explore tropospheric O3 sen-
sitivities from space and disclosed that this diagnosis of O3
production rate (PO3) is consistent with previous findings of
surface photochemistry. Witte et al. (2011) used a similar
technique to estimate changes in PO3 from the strict emis-
sion control measures (ECMs) during the Beijing Summer
Olympic Games period in 2008. Recent papers have applied
the findings of Duncan et al. (2010) to observe O3 sensitiv-
ity in other parts of the world (Choi et al., 2012; Witte et al.,
2011; Jin and Holloway, 2015; Mahajan et al., 2015; Jin et
al., 2017).

With in situ measurements, Tonnesen and Dennis (2000)
observed a radical-limited environment with HCHO/NO2 ra-
tios < 0.8, an NOx-limited environment with HCHO/NO2
ratios > 1.8, and a transition environment with HCHO/NO2
ratios between 0.8 and 1.8. With 3-D chemical model sim-
ulations, Sillman (1995a) and Martin et al. (2004b) esti-
mated that the transition between the VOC- and NOx-limited
regimes occurs when the HCHO/NO2 ratio is ∼ 1.0. With a
combination of regional chemical model simulations and the
Ozone Monitoring Instrument (OMI) measurements, Duncan
et al. (2010) concluded that O3 production decreases with
reductions in VOCs at a column HCHO/NO2 ratio < 1.0
and NOx at column HCHO/NO2 ratio > 2.0; both NOx and
VOC reductions decrease O3 production when the column
HCHO/NO2 ratio lies in between 1.0 and 2.0. With a 0-
D photochemical box model and airborne measurements,
Schroeder et al. (2017) presented a thorough analysis of
the utility of column HCHO/NO2 ratios to indicate sur-
face O3 sensitivity and found that the transition/ambiguous
range estimated via column data is much larger than that
indicated by in situ data alone. Furthermore, Schroeder et
al. (2017) concluded that many additional sources of uncer-
tainty (regional variability, seasonal variability, variable free-
tropospheric contributions, retrieval uncertainty, air pollution
levels and meteorological conditions) may cause the transi-
tion threshold vary both geographically and temporally, and
thus the results from one region are not likely to be applicable
globally.

With the rapid increase in fossil fuel consumption in China
over the past 3 decades, the emission of chemical precur-
sors of O3 (NOx and VOCs) has increased dramatically, sur-
passing that of North America and Europe and raising con-
cerns about worsening O3 pollution in China (Tang et al.,
2012; Wang et al., 2017; Xing et al., 2017). Tropospheric
O3 was already included in the new air quality standard
as a routine monitoring component (http://www.mep.gov.cn;
last access: 23 May 2018), where the limit for the maxi-
mum daily 8 h average (MDA8) O3 in urban and industrial
areas is 160 µg m−3 (∼ 75 ppbv at 273 K, 101.3 kPa). Ac-
cording to air quality data released by the Chinese Ministry
of Environmental Protection, tropospheric O3 has replaced
PM2.5 as the primary pollutant in many cities during sum-
mer (http://www.mep.gov.cn/; last access: 23 May 2018). A
precise knowledge of O3 evolution and photochemical pro-
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duction regime in the polluted troposphere in China has im-
portant policy implications for O3 pollution controls (Tang et
al., 2011; Xing et al., 2017; Wang et al., 2017).

In this study, we investigate the O3 seasonal evolution and
photochemical production regime in the polluted troposphere
in eastern China with tropospheric O3, CO, and HCHO de-
rived from ground-based high-resolution Fourier transform
spectrometry (FTS) in Hefei, China, tropospheric NO2 de-
duced from the OMI satellite (https://aura.gsfc.nasa.gov/omi.
html; last access: 23 May 2018), surface meteorological data,
and a back trajectory cluster analysis technique. Considering
the fact that most NDACC (Network for Detection of Atmo-
spheric Composition Change) FTS sites are located in Eu-
rope and Northern America, whereas the number of sites in
Asia, Africa, and South America is very sparse, and there
is still no official NDACC FTS station that covers China
(http://www.ndacc.org/; last access: 23 May 2018), this study
can not only improve our understanding of regional photo-
chemical O3 production regime but also contributes to the
evaluation of O3 pollution controls.

This study concentrates on measurements recorded during
midday, when the mixing layer has largely been dissolved.
All FTS retrievals are selected within ±30 min of OMI over-
pass time (13:30 local time (LT)). While the FTS instrument
can measure throughout the whole day, unless cloudy, OMI
measures only during midday. For Hefei, this coincidence
criterion is a balance between the accuracy and the number
of data points.

2 Site description and instrumentation

The FTS observation site (117◦10′ E, 31◦54′ N; 30 m a.s.l.
(above sea level)) is located in the western suburbs of Hefei
city (the capital of Anhui Province, population of 8 million)
in central-eastern China (Fig. S1 in the Supplement). A de-
tailed description of this site and its typical observation sce-
nario can be found in Tian et al. (2018). Similar to other Chi-
nese megacities, serious air pollution is common in Hefei
throughout the whole year (http://mep.gov.cn/; last access:
23 May 2018).

Our observation system consists of a high-resolution FTS
spectrometer (IFS125HR, Bruker GmbH, Germany), a so-
lar tracker (Tracker-A Solar 547, Bruker GmbH, Germany),
and a weather station (ZENO-3200, Coastal Environmental
Systems, Inc., USA). The near-infrared (NIR) and middle in-
frared (MIR) solar spectra were alternately acquired in rou-
tine observations (Wang et al., 2017). The MIR spectra used
in this study are recorded over a wide spectral range (about
600–4500 cm−1) with a spectral resolution of 0.005 cm−1.
The instrument is equipped with a KBr beam splitter and
MCT detector for O3 measurements and a KBr beam split-
ter and InSb detector for other gases. The weather station
includes sensors for air pressure (±0.1 hpa), air temperature
(±0.3 ◦C), relative humidity (±3 %), solar radiation (±5 %),

wind speed (±0.2 m s−1), wind direction (±5◦), and the pres-
ence of rain.

3 FTS retrievals of O3, CO, and HCHO

3.1 Retrieval strategy

The SFIT4 (version 0.9.4.4) algorithm is used in the pro-
file retrieval (Supplement Sect. S1; https://www2.acom.ucar.
edu/irwg/links; last access: 23 May 2018). The retrieval set-
tings for O3, CO, and HCHO are listed in Table 1. All spec-
troscopic line parameters are adopted from HITRAN 2008
(Rothman et al., 2009). A priori profiles of all gases ex-
cept H2O are from a dedicated WACCM (Whole Atmosphere
Community Climate Model) run. A priori profiles of pres-
sure, temperature, and H2O are interpolated from the Na-
tional Centers for Environmental Protection and National
Center for Atmospheric Research (NCEP/NCAR) reanalysis
(Kalnay et al., 1996). For O3 and CO, we follow the NDACC
standard convention with respect to micro-window (MW)
selection and interfering gas consideration (https://www2.
acom.ucar.edu/irwg/links; last access: 23 May 2018). HCHO
is not yet an official NDACC species but has been retrieved
at a few stations with different retrieval settings (Albrecht et
al., 2002; Vigouroux et al., 2009; Jones et al., 2009; Viatte
et al., 2014; Franco et al., 2015). The four MWs used in the
current study are chosen from a harmonization project tak-
ing place in view of future satellite validation (Vigouroux et
al., 2018). They are centered at around 2770 cm−1, and the
interfering gases are CH4, O3, N2O, and HDO.

We assume measurement noise covariance matrices Sε to
be diagonal and set their diagonal elements to the inverse
square of the signal-to-noise ratio (SNR) of the fitted spectra
and the non-diagonal elements of Sε to zero. For all gases,
the diagonal elements of a priori profile covariance matrices
Sa are set to the standard deviation of a dedicated WACCM
run from 1980 to 2020, and its non-diagonal elements are set
to zero.

We regularly used a low-pressure HBr cell to monitor the
instrument line shape (ILS) and included the measured ILS
in the retrieval (Hase, 2012; Sun et al., 2018).

3.2 Profile information in the FTS retrievals

The sensitive range for CO and HCHO is mainly tropo-
spheric, and for O3 it is both tropospheric and stratospheric
(Fig. S2). The typical degrees of freedom (DOFS) over the
total atmosphere obtained at Hefei for each gas are included
in Table 2: they are about 4.8, 3.5, and 1.2 for O3, CO, and
HCHO, respectively. In order to separate independent par-
tial column amounts in the retrieved profiles, we have cho-
sen the altitude limit for each independent layer such that
the DOFS in each associated partial column is not less than
1.0. The retrieved profiles of O3, CO, and HCHO can be di-
vided into four, three, and one independent layers, respec-
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Table 1. Summary of the retrieval parameters used for O3, CO, and HCHO. All micro-windows (MWs) are given cm−1.

Gases O3 CO HCHO

Retrieval code SFIT4 v 0.9.4.4 SFIT4 v 0.9.4.4 SFIT4 v 0.9.4.4

Spectroscopy HITRAN2008 HITRAN2008 HITRAN2008

P , T , H2O profiles NCEP NCEP NCEP

A priori profiles for
target/interfering gases except
H2O

WACCM WACCM WACCM

MW for profile retrievals 1000–1004.5 2057.7–2058
2069.56–2069.76
2157.5–2159.15

2763.42–2764.17
2765.65–2766.01
2778.15–2779.1
2780.65–2782.0

Retrieved interfering gases H2O, CO2, C2H4,
668O3, 686O3

O3, N2O, CO2, OCS,
H2O

CH4, O3, N2O, HDO

SNR for de-weighting None 500 600

Sa Standard deviation of
WACCM

Standard deviation of
WACCM

Standard deviation of
WACCM

Sε Real SNR Real SNR Real SNR
ILS LINEFIT145 LINEFIT145 LINEFIT145

Error analysis Systematic error
– smoothing error (smoothing)
– errors from other parameters: background curvature (curvature), optical
path difference (max_opd), field of view (omega), solar line strength
(solstrnth), background slope (slope), solar line shift (solshft), phase
(phase), solar zenith angle(sza), line temperature broadening (linetair_gas),
line pressure broadening (linepair_gas), line intensity(lineint_gas)

Random error
– interference errors: retrieval parameters (retrieval_parameters),
interfering species (interfering_species)
– Measurement error (measurement)
– errors from other parameters: temperature (temperature), zero level
(zshift)

tively (Fig. S3). The troposphere is well resolved by O3, CO,
and HCHO, where CO exhibits the best vertical resolution
with more than two independent layers in the troposphere.

In this study, we have chosen the same upper limit (12 km)
for the tropospheric columns for all gases (Table 2), which
is about 3 km lower than the mean value of the tropopause
(∼ 15.1 km). In this way we ensured the accuracies for the
tropospheric O3, CO, and HCHO retrievals and minimized
the influence of transport from the stratosphere, i.e., the so-
called STE process (stratosphere–troposphere exchange).

3.3 Error analysis

The results of the error analysis presented here are based
on the average of all measurements that fulfill the screen-
ing scheme, which is used to minimize the impacts of sig-

nificant weather events or instrument problems (Supplement
Sect. S2). In the troposphere, the dominant systematic error
for O3 and CO is the smoothing error, and for HCHO it is
the line intensity error (Fig. S4). The dominant random error
for O3 and HCHO is the measurement error, and for CO it is
the zero baseline level error (Fig. S5). Taking all error items
into account, the summarized errors in O3, CO, and HCHO
for the 0–12 km tropospheric partial column and for the total
column are listed in Table 3. The total errors in the tropo-
spheric partial columns for O3, CO, and HCHO have been
evaluated to be 8.7 %, 6.8 %, and 10.2 %, respectively.
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Table 2. Typical degrees of freedom for signal (DOFs) and sensitive range of the retrieved O3, CO, and HCHO profiles at Hefei site.

Gas Total column Sensitive range Tropospheric partial Tropospheric
DOFs (km) column (km) DOFs

O3 4.8 Ground – 44 Ground – 12 1.3

CO 3.5 Ground – 27 Ground – 12 2.7

HCHO 1.2 Ground – 18 Ground – 12 1.1

Table 3. Errors in % of the column amount of O3, CO, and HCHO for the 0–12 km tropospheric partial column and for the total column.

Gas O3 CO HCHO

Altitude (km) 0–12 Total column 0–12 Total column 0–12 Total column

Total random 3.2 0.59 3.8 0.66 3.3 0.97

Total systematic 8.1 4.86 5.7 3.9 9.6 5.7

Total errors 8.7 5.0 6.8 3.95 10.2 5.8

4 Tropospheric O3 seasonal evolution

4.1 Tropospheric O3 seasonal variability

Figure 1a shows the tropospheric O3 column time series
recorded by the FTS from 2014 to 2017, where we followed
Gardiner’s method and used a second-order Fourier series
plus a linear component to determine the annual variability
(Gardiner et al., 2008). The analysis did not indicate a signif-
icant secular trend of tropospheric O3 column probably be-
cause the time series is much shorter than those in Gardiner
et al. (2008); the observed seasonal cycle of tropospheric
O3 variations is well captured by the bootstrap resampling
method (Gardiner et al., 2008). As commonly observed, high
levels of tropospheric O3 occur in spring and summer (here-
after MAM/JJA). Low levels of tropospheric O3 occur in au-
tumn and winter (hereafter SON/DJF). Day-to-day variations
in MAM/JJA are generally larger than those in SON/DJF
(Fig. 1b). At the same time, the tropospheric O3 column
roughly increases over time in the first half of the year and
reaches the maximum in June and then decreases during the
second half of the year. Tropospheric O3 columns in June are
1.55× 1018 molecules cm−2 (56 DU (Dobson units)) and in
December are 1.05× 1018 molecules cm−2 (39 DU). Tropo-
spheric O3 columns in June were ∼ 50 % higher than those
in December.

Vigouroux et al. (2015) studied the O3 trends and vari-
abilities at eight NDACC FTS stations that have a long-
term time series of O3 measurements, namely, Ny-Ålesund
(79◦ N), Thule (77◦ N), Kiruna (68◦ N), Harestua (60◦ N),
Jungfraujoch (47◦ N), Izaña (28◦ N), Wollongong (34◦ S),
and Lauder (45◦ S). All these stations were located in non-
polluted or relatively clean areas. The tropospheric columns
at these stations are of the order of 0.7× 1018 to 1.1×

1018 molecules cm−2. The results showed a maximum tro-
pospheric O3 column in spring at all these stations except
at the high-altitude stations Jungfraujoch and Izaña, where it
extended into early summer. This is because the STE process
is most effective during late winter and spring (Vigouroux
et al., 2015). In contrast, we observed a broader maximum
at Hefei which extends over the MAM/JJA season, and the
values are ∼ 35 % higher than those studied in Vigouroux
et al. (2015). This is because the observed tropospheric
O3 levels in MAM/JJA are more influenced by air masses
originating from densely populated and industrialized ar-
eas (see Sect. 4.2), and the MAM/JJA meteorological con-
ditions are more favorable to photochemical O3 production
(see Sect. 5.1). The selection of tropospheric limits 3 km be-
low the tropopause minimized but cannot avoid the influence
of transport from the stratosphere; the STE process may also
contribute to high level of tropospheric O3 column in spring.

4.2 Regional contribution to tropospheric O3 levels

In order to determine where the air masses came from
and thus contributed to the observed tropospheric O3 lev-
els, we have used the HYSPLIT (Hybrid Single-Particle La-
grangian Integrated Trajectory) model to calculate the three-
dimensional kinematic back trajectories that coincide with
the FTS measurements from 2014 to 2017 (Draxler et al.,
2009). In the calculation, the GDAS (University of Alaska
Fairbanks GDAS Archive) meteorological fields were used
with a spatial resolution of 0.25◦× 0.25◦, a time resolution
of 6 h, and 22 vertical levels from the surface to 250 mbar.
All daily back trajectories at 12:00 UTC, with a 24 h path-
way arriving at Hefei site at 1500 m a.s.l., have been grouped
into clusters and divided into MAM/JJA and SON/DJF sea-
sons (Stunder, 1996). The results showed that air masses in
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Figure 1. (a) FTS measured and bootstrap resampled tropospheric O3 columns at Hefei site. The linear trend and the residual are also shown.
Detailed description of the bootstrap method can be found in Gardiner et al. (2008). (b) Tropospheric O3 column monthly means derived
from (a).

Jiangsu and Anhui provinces in eastern China; Hebei and
Shandong provinces in northern China; Shaanxi, Henan, and
Shanxi provinces in northwestern China; and Hunan and
Hubei provinces in central China contributed to the observed
tropospheric O3 levels.

In the MAM/JJA season (Fig. 2a), 28.8 % of air masses
are of eastern origin and arrived at Hefei through the south-
east of Jiangsu Province and east of Anhui Province; 41.0 %
are of southwestern origin and arrived at Hefei through the
northeast of Hunan and Hubei provinces, and southwest of
Anhui Province; 10.1 % are of northwestern origin and ar-
rived at Hefei through the southeast of Shanxi and Henan
provinces, and northwest of Anhui Province; 10.1 % are of

northern origin and arrived at Hefei through the south of
Shandong Province and north of Anhui Province; 10.1 % are
of local origin generated in the south of Anhui Province. As a
result, air pollution from megacities such as Shanghai, Nan-
jing, Hangzhou, and Hefei in eastern China; Changsha and
Wuhan in central-southern China; Zhenzhou and Taiyuan in
northwest China; and Jinan in north China could contribute
to the observed tropospheric O3 levels.

In the SON/DJF season, trajectories are generally longer
and originated in the northwest of the MAM/JJA ones
(Fig. 2b). The direction of air masses originating in the east-
ern sector shifts from the southeast to the northeast of Jiangsu
Province, and that of local air masses shifts from the south

Atmos. Chem. Phys., 18, 14569–14583, 2018 www.atmos-chem-phys.net/18/14569/2018/
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Figure 2. One-day HYSPLIT back trajectory clusters arriving at Hefei at 1500 m a.s.l that are coincident with the FTS measurements from
2014 to 2017. (a) Spring and summer (MAM/JJA) and (b) Autumn and winter (SON/DJF) season. The base map was generated using the
TrajStat 1.2.2 software (http://www.meteothinker.com, last access: 23 May 2018).

to the northwest of Anhui province. Trajectories of eastern-
origin, western-origin, and northern-origin air masses in
SON/DJF are 6.5 %, 13.1 %, and 0.7 % less frequent than
the MAM/JJA ones, respectively. As a result, the air masses
outside Anhui province have a 20.2 % smaller contribution
to the observed tropospheric O3 levels in SON/DJF than in
MAM/JJA. In contrast, trajectories of local-origin air masses
in SON/DJF are 20.2 % more frequent than the MAM/JJA

ones, indicating a more significant contribution of air masses
in Anhui province in SON/DJF.

The majority of the Chinese population lives in the eastern
part of China, especially in the three most developed regions,
the Jing–Jin–Ji (Beijing–Tianjin–Hebei), the Yangtze River
Delta (YRD; including Shanghai–Jiangsu–Zhejiang–Anhui),
and the Pearl River Delta (PRD; including Guangzhou, Shen-
zhen, and Hong Kong). These regions consistently have the
highest emissions of anthropogenic precursors (Fig. S6),
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Figure 3. Minutely averaged time series of temperature, pressure, humidity, and solar radiation recorded by the surface weather station.

which have led to severe region-wide air pollution. This is
particularly the case for the Hefei site, located in the central-
western corner of the YRD, where the population in the
southeastern area is typically denser than the northwestern
area. Specifically, the southeast of Jiangsu province and the
south of Anhui province are two of the most developed ar-
eas in YRD, and human activities therein are very intense.
Therefore, when the air masses originated from these two
areas, the O3 level is usually very high. Overall, compared
with the SON/DJF season, the more southeastern air masses
transportation in MAM/JJA indicated that the observed tro-
pospheric O3 levels could be more influenced by the densely
populated and industrialized areas, broadly accounting for
the higher O3 level and variability in MAM/JJA.

5 Tropospheric O3 production regime

5.1 Meteorological dependency

Photochemistry in polluted atmospheres, particularly the for-
mation of O3, depends not only on pollutant emissions but
also on meteorological conditions (Lei et al., 2008; Wang
et al., 2017; Coates et al., 2016). In order to investigate the
meteorological dependency of the O3 production regime in
the observed area, we analyzed the correlation of the tropo-
spheric O3 with the coincident surface meteorological data.
Figure 3 shows time series of temperature, pressure, humid-
ity, and solar radiation recorded by the surface weather sta-
tion. The seasonal dependencies of all these coincident me-
teorological elements show no clear dependencies except for

the temperature and pressure, which show clear reverse sea-
sonal cycles. Generally, the temperatures are higher and the
pressures are lower in MAM/JJA than those in SON/DJF. The
correlation plots between the FTS tropospheric O3 column
and each meteorological element are shown in Fig. 4. The
tropospheric O3 column shows positive correlations with so-
lar radiation, temperature, and humidity, and negative corre-
lations with pressure.

High temperature and strong sunlight primarily affects O3
production in Hefei in two ways: by speeding up the rates
of many chemical reactions and by increasing emissions of
VOCs from biogenic sources (BVOCs) (Sillman and Sam-
son, 1995b). While emissions of anthropogenic VOCs (AV-
OCs) are generally not dependent on temperature, evapora-
tive emissions of some AVOCs do increase with tempera-
ture (Rubin et al., 2006; Coates et al., 2016). Elevated O3
concentration generally occurs on days with wet conditions
and low pressure in Hefei, probably because these condi-
tions favor the accumulation of O3 and its precursors. Over-
all, MAM/JJA meteorological conditions are more favorable
to O3 production (higher sun intensity, higher temperature,
wetter condition, and lower pressure) than SON/DJF, which
supports the fact that tropospheric O3 in MAM/JJA is larger
than that in SON/DJF.

5.2 PO3 relative to CO, HCHO, and NO2 changes

In order to determine the relationship between tropospheric
O3 production and its precursors, the chemical sensitivity of
PO3 relative to tropospheric CO, HCHO, and NO2 changes
was investigated. Figure 5 shows time series of tropospheric
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Figure 4. Correlation plot between the FTS tropospheric O3 column and the coincident surface meteorological data. Black dots are data pairs
within the MAM/JJA season and green dots are data pairs within the SON/DJF season.

CO, HCHO, and NO2 columns that are coincident with O3
counterparts. The tropospheric NO2 was deduced from the
OMI product selected within the ±0.7◦ latitude/longitude
rectangular area around the Hefei site. The retrieval un-
certainty for the tropospheric column is less than 30 %
(https://disc.gsfc.nasa.gov/datasets/OMNO2_V003/ last ac-
cess: 23 May 2018). Tropospheric HCHO and NO2 show
clear reverse seasonal cycles. Generally, tropospheric HCHO
is higher and tropospheric NO2 is lower in MAM/JJA than in
SON/DJF. Pronounced tropospheric CO was observed, but
the seasonal cycle is not evident, probably because CO emis-
sion is not constant over the season or season dependent.

Figure 6 shows the correlation plot between the FTS tro-
pospheric O3 column and the coincident tropospheric CO,
HCHO, and NO2 columns. The tropospheric O3 column
shows positive correlations with tropospheric CO, HCHO,
and NO2 columns. Generally, the higher the tropospheric
CO concentration, the higher the tropospheric O3, and both
VOCs and NOx reductions decrease O3 production. As an
indicator of regional air pollution, the good correlation be-
tween O3 and CO (Fig. 6a) indicates that the enhancement
of tropospheric O3 is highly associated with the photochem-
ical reactions which occurred in polluted conditions rather
than due to the STE process. The relatively weaker overall
correlations of O3 with HCHO (Fig. 6b) and NO2 (Fig. 6c)
are partly explained by different lifetimes of these gases,
i.e., several hours to 1 day in summer for NO2 and HCHO
and several days to weeks for O3. So older O3-enhanced air
masses easily loose traces of NO2 or HCHO. Since the sen-
sitivity of PO3 to VOCs and NOx is different under different

limitation regimes, the relatively flat overall slopes indicate
that the O3 pollution in Hefei can be fully attributed neither
to NOx pollution nor to VOC pollution.

5.3 O3–NOx–VOC sensitivities

5.3.1 Transition/ambiguous range estimation

Referring to previous studies, the chemical sensitivity of PO3
in Hefei was investigated using the column HCHO/NO2 ra-
tio (Martin et al., 2004; Duncan et al., 2010; Witte et al.,
2011; Choi et al., 2012; Jin and Holloway, 2015; Mahajan et
al., 2015; Schroeder et al., 2017; Jin et al., 2017). The meth-
ods have been adapted to the particular conditions in Hefei.
In particular the findings of Schroeder et al. (2017) have been
taken into account.

Since the measurement tools for O3 and HCHO, the pol-
lution characteristic, and the meteorological condition in this
study were not the same as those of previous studies, the tran-
sition thresholds estimated in previous studies were not ap-
plied here (Martin et al., 2004a; Duncan et al., 2010; Witte et
al., 2011; Choi et al., 2012; Jin and Holloway, 2015; Mahajan
et al., 2015; Schroeder et al., 2017; Jin et al., 2017). In order
to determine transition thresholds applicable in Hefei, China,
we iteratively altered the column HCHO/NO2 ratio thresh-
old and judged whether the sensitivities of tropospheric O3
to HCHO or NO2 changed abruptly. For example, in order
to estimate the VOC-limited threshold, we first fitted tropo-
spheric O3 to HCHO that lies within column HCHO/NO2
ratios < 2 (an empirical starting point) to obtain the corre-
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Figure 5. Time series of tropospheric CO, HCHO, and NO2. Tropospheric CO and HCHO were derived from FTS observations, which is
the same as tropospheric O3, and tropospheric NO2 is derived from OMI data.

sponding slope and then we decreased the threshold by 0.1
(an empirical step size) and repeated the fit, i.e., only fitted
the data pairs with column HCHO/NO2 ratios < 1.9. This
was done iteratively. Finally, we sorted out the transition ra-
tio which shows an abrupt change in slope, and regarded this
as the VOC-limited threshold. Similarly, the NOx-limited
threshold was determined by iteratively increasing the col-
umn HCHO/NO2 ratio threshold until the sensitivity of tro-
pospheric O3 to NO2 changed abruptly.

The transition threshold estimation with this scheme ex-
ploits the fact that O3 production is more sensitive to VOCs
if it is VOC-limited and is more sensitive to NOx if it is NOx

limited, and there exists a transition point near the threshold
(Martin et al., 2004a). Su et al. (2017) used this scheme to
investigate the O3–NOx–VOC sensitivities during the 2016
G20 conference in Hangzhou, China, and argued that this di-
agnosis of PO3 could reflect the overall O3 production con-
ditions.

5.3.2 PO3 limitations in Hefei

Through the above empirical iterative calculation, we ob-
served a VOC-limited regime with column HCHO/NO2 ra-
tios < 1.3, an NOx-limited regime with column HCHO/NO2
ratios > 2.8, and a mixed VOC–NOx-limited regime with
column HCHO/NO2 ratios between 1.3 and 2.8. Column
measurements sample a larger portion of the atmosphere,
and thus their spatial coverage is larger than in situ mea-
surements. So the photochemical scene disclosed by column
measurements is larger than the in situ measurement. Specif-
ically, this study reflects the mean photochemical condition
of the troposphere.

Schroeder et al. (2017) argued that the column measure-
ments from space have to be used with care because of the
high uncertainty and the inhomogeneity of the satellite mea-
surements. This has been mitigated in this study by the fol-
lowing.

The FTS measurements have a much smaller footprint
than the satellite measurements. Also, we concentrate on
measurements recorded during midday, when the mixing
layer has largely been dissolved.

The measurements are more sensitive to the lower parts
of the troposphere, which can be inferred from the normal-
ized averaging kernels (AVKs). The reason is simply that the
AVKs show the sensitivity to the column, but the column per
altitude decreases with altitude.

Figure 7 shows time series of column HCHO/NO2 ratios
which varied over a wide range from 1.0 to 9.0. The col-
umn HCHO/NO2 ratios in summer are typically larger than
those in winter, indicating that the PO3 is mainly NOx lim-
ited in summer and mainly VOC limited or mixed VOC–NOx

limited in winter. Based on the calculated transition criteria,
106 days of observations that have coincident O3, HCHO,
and NO2 counterparts in the reported period are classified,
where 57 days (53.8 %) are in the MAM/JJA season and
49 days (46.2 %) are in the SON/DJF season. Table 4 lists the
statistics for the 106 days of observations, which shows that
NOx-limited, mixed VOC–NOx-limited, and VOC-limited
PO3 accounts for 60.3 % (64 days), 28.3 % (30 days), and
11.4 % (12 days), respectively. The majority of NOx-limited
(70.3 %) PO3 lies in the MAM/JJA season, while the ma-
jority of mixed VOC–NOx-limited (70 %) and VOC-limited
(75 %) PO3 lies in the SON/DJF season. As a result, reduc-
tions in NOx and VOC could be more effective to mitigate
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Figure 6. Correlation plot between the FTS tropospheric O3 column and coincident tropospheric CO (a), HCHO (b), and NO2 (c) columns.
The CO and HCHO data are retrieved from FTS observations, and the NO2 data were deduced from the OMI product.
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Table 4. Chemical sensitivities of PO3 for the selected 106 days of observations that have coincident O3, HCHO, and NO2 counterparts.

Items Proportion Autumn and winter Spring and summer

days percentage days percentage days percentage

NOx limited 64 60.3 % 19 29.7 % 45 70.3 %
Mixed VOC–NOx limited 30 28.3 % 21 70 % 9 30 %
VOC limited 12 11.4 % 9 75 % 3 25 %
Sum 106 100 % 49 46.2 % 57 53.8 %

Figure 7. Time series of column HCHO/NO2 ratios.

O3 pollution in the MAM/JJA and SON/DJF seasons, respec-
tively. Furthermore, considering most of PO3 is NOx limited
or mixed VOC–NOx limited, reductions in NOx would re-
duce O3 pollution in eastern China.

6 Conclusions

We investigated the seasonal evolution and photochemical
production regime of tropospheric O3 in eastern China from
2014 to 2017 by using tropospheric O3, CO, and HCHO
columns derived from Fourier transform infrared spectrome-
try (FTS), the tropospheric NO2 column deduced from the
Ozone Monitoring Instrument (OMI), the surface meteo-
rological data, and a back trajectory cluster analysis tech-
nique. A pronounced seasonal cycle for tropospheric O3 is
captured by the FTS, which roughly increases over time in
the first half year and reaches the maximum in June, and
then it decreases over time in the second half year. Tropo-
spheric O3 columns in June are 1.55× 1018 molecules cm−2

(56 DU (Dobson units)), and in December they are 1.05×
1018 molecules cm−2 (39 DU). Tropospheric O3 columns in
June were ∼ 50 % higher than those in December. A broad
maximum within both spring and summer (MAM/JJA) is ob-
served, and the day-to-day variations in MAM/JJA are gener-
ally larger than those in autumn and winter (SON/DJF). This
differs from tropospheric O3 measurements in Vigouroux et
al. (2015). However, Vigouroux et al. (2015) used measure-
ments at relatively clean sites.

Back trajectory analysis showed that air pollution in
Jiangsu and Anhui provinces in eastern China; Hebei and
Shandong provinces in northern China; Shaanxi, Henan, and
Shanxi provinces in northwest China; and Hunan and Hubei
provinces in central China contributed to the observed tropo-
spheric O3 levels. Compared with the SON/DJF season, the
observed tropospheric O3 levels in MAM/JJA are more influ-
enced by the transport of air masses from densely populated
and industrialized areas, and the high O3 level and variability
in MAM/JJA is determined by the photochemical O3 produc-
tion. The tropospheric-column HCHO/NO2 ratio is used as
a proxy to investigate the chemical sensitivity of the O3 pro-
duction rate (PO3). The results show that PO3 is mainly ni-
trogen oxide (NOx) limited in MAM/JJA, while it is mainly
VOC or mixed VOC–NOx limited in SON/DJF. Reductions
in NOx and VOC could be more effective to mitigate O3 pol-
lution in the MAM/JJA and SON/DJF seasons, respectively.
Considering most of PO3 is NOx limited or mixed VOC–
NOx limited, reductions in NOx would reduce O3 pollution
in eastern China.
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