

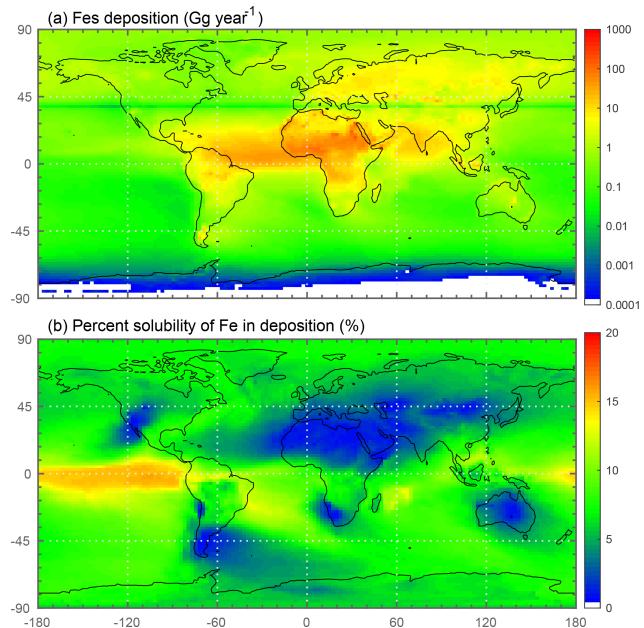
Corrigendum to “Atmospheric processing of iron in mineral and combustion aerosols: development of an intermediate-complexity mechanism suitable for Earth system models” published in *Atmos. Chem. Phys.*, 18, 14175–14196, 2018

Rachel A. Scanza^{1,2}, Douglas S. Hamilton¹, Carlos Perez Garcia-Pando³, Clifton Buck⁴, Alex Baker⁵, and
Natalie M. Mahowald¹

¹Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York, USA

²Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA

³Earth Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain


⁴Department of Marine Sciences, University of Georgia, Athens, Georgia, USA

⁵School of Environmental Sciences, University of East Anglia, Norwich, UK

Correspondence: Rachel A. Scanza (rachel.scanza@pnnl.gov)

Published: 10 December 2018

Figure 7 in the original paper was generated using a script for plotting ratios between the reference case and the sensitivity studies; thus, the soluble iron distribution was inadvertently not normalized by grid-box area. All other figures and tables were generated using scripts with the normalization routines embedded and are correct.

Figure 7. Spatial distribution of annually averaged soluble iron deposition from both dust and combustion in Gg yr^{-1} (a). Spatial distribution of annually averaged fractional iron solubility from dust and combustion (%) (b).