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Abstract. Urban carbon dioxide comprises the largest frac-
tion of anthropogenic greenhouse gas emissions, but quan-
tifying urban emissions at subnational scales is highly chal-
lenging, as numerous emission sources reside in close prox-
imity within each topographically intricate urban dome. In
attempting to better understand each individual source’s
contribution to the overall emission budget, there exists
a large gap between activity-based emission inventories
and observational constraints on integrated, regional emis-
sion estimates. Here we leverage urban CO2 observations
from the BErkeley Atmospheric CO2 Observation Network
(BEACO2N) to enhance, rather than average across or can-
cel out, our sensitivity to these hyperlocal emission sources.
We utilize a method for isolating the local component of
a CO2 signal that accentuates the observed intra-urban het-
erogeneity and thereby increases sensitivity to mobile emis-
sions from specific highway segments. We demonstrate a
multiple-linear-regression analysis technique that accounts
for boundary layer and wind effects and allows for the de-
tection of changes in traffic emissions on scale with antic-
ipated changes in vehicle fuel economy – an unprecedented
level of sensitivity for low-cost sensor technologies. The abil-
ity to represent trends of policy-relevant magnitudes with a
low-cost sensor network has important implications for fu-
ture applications of this approach, whether as a supplement
to existing, sparse reference networks or as a substitute in
areas where fewer resources are available.

1 Introduction

Initiatives to curb greenhouse gas emissions and thereby re-
duce the extent of climate-change-related damages are gain-
ing momentum from city to global scales (United Nations,
2015). To support this effort, there is a clear need for moni-
toring strategies capable of describing emission changes and
attributing those changes to the relevant policy measures
(Pacala et al., 2010). Currently, an estimated 70 %–80 % of
global CO2 emissions are urban in origin, and this fraction
is expected to grow as migration to urban areas continues
and intensifies with the industrialization of developing na-
tions (United Nations, 2011). However, cities also present
the largest atmospheric monitoring challenge in that many
disparate emission sources combine with complex topogra-
phy.

A considerable amount of emission estimation work has
been invested in the development of activity-based emis-
sion inventories for selected metropolitan areas, such as In-
dianapolis (Gurney et al., 2012), Paris (Bréon et al., 2015),
Los Angeles (Newman et al., 2016), Salt Lake City (Patara-
suk et al., 2016), and Toronto (Pugliese et al., 2018), as well
as other inventories constructed and maintained by individ-
ual air management agencies for internal use. These inven-
tories, when updated regularly, offer the possibility of di-
rect source attribution without the use of computationally
intense and/or heavily parameterized atmospheric transport
models; they do, however, typically rely on interpolations,
generalizations, or proxies to generate the necessary input ac-
tivity data. The Fuel-based Inventory for Vehicle Emissions
(FIVE) developed by McDonald et al. (2014), for example,
uses a representative 7 days of highway traffic flow mea-
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surements to drive the weekly cycle of CO2 emissions from
mobile sources on roads of all sizes year-round. While traf-
fic patterns and residential and commercial energy usage are
known to vary by day of week (Harley et al., 2005), the spe-
cific timing and magnitude of these variations are likely to be
heterogeneous in space and time. Mobile emission estimates
constructed using an average week of highway observations
therefore neglect the impact of anomalous events as well as
the variety of vehicle fleets, commute practices, and conges-
tion patterns that occur at the neighborhood level. As knowl-
edge of emission factors and fuel efficiency grows, activity
data will become one of the largest sources of uncertainty in
bottom-up inventory products.

Ambient atmospheric measurements offer the opportu-
nity to observe nuanced variations in CO2 emission activ-
ities directly without generalizing across space and time.
In order to document baseline conditions in and upcom-
ing changes to urban greenhouse gas emissions, surface-
level monitoring campaigns in cities using varied approaches
are being pursued (e.g., Bréon et al., 2015; Chen et al.,
2016; McKain et al., 2012, 2015; Shusterman et al., 2016;
Turnbull et al., 2015; and Verhulst et al., 2017). These net-
works, typically consisting of 2–15 instruments, attempt
to constrain and supplement activity-based emission in-
ventories with observation-based estimates. Most previous
work on observation-based emission estimates has focused
on domain-wide emission totals over monthly to annual
timescales (e.g., Kort et al., 2013). This emphasis on inte-
grated signals has led to site selection and data analysis tech-
niques that minimize sensitivity to local emissions, thus dis-
carding a large portion of the information contained in the
datasets collected at individual measurement sites and the
differences between them (Shusterman et al., 2016; Turner
et al., 2016).

We hypothesize that, if trends in the specific small-scale
CO2 sources implicated in most mitigation strategies are to
be resolved from atmospheric monitoring datasets, site-to-
site heterogeneity must be sought out and retained. Here we
present an initial characterization of the degree of spatial het-
erogeneity present in an urban monitoring dataset and offer
these direct observations of intracity heterogeneities as a pos-
sible strategy for providing direct constraints on CO2 emis-
sions from individual sectors. We provide an initial approach
to quantifying changes in the mobile sector and separating
the influence of that sector from other emissions.

2 Measurements

2.1 The BErkeley Atmospheric CO2 Observation
Network

The BErkeley Atmospheric CO2 Observation Network
(BEACO2N; see Shusterman et al., 2016) is an ongoing
greenhouse gas and air quality monitoring campaign oper-

ating in the San Francisco Bay Area since late 2012. The
current network is comprised of ∼ 50 “nodes” stationed on
top of schools and museums at approximate 2 km inter-
vals (Fig. 1). The nodes contain a variety of commercially
available, low-cost sensor technologies: a Vaisala CarboCap
GMP343 for CO2; a Shinyei PPD42NS for particulate mat-
ter; a suite of Alphasense B4 electrochemical devices for O3,
CO, NO, and NO2; and meteorological sensors for pressure,
temperature, and relative humidity. Data are collected every
2–10 s and transmitted wirelessly or via an on-site Ether-
net connection to a central server, where it is made publicly
available in near-real time. The distributed low-cost dataset
is supplemented by a “supersite” at the RFS location featur-
ing a Picarro G2401 cavity ring-down spectroscopy analyzer
for CO2, CO, and H2O; a TSI Optical Particle Sizer 3330 for
particulate matter; a Thermo Fisher Scientific 42i-TL NOx
analyzer for NO and NO2; a Teledyne 703E photometric cal-
ibrator for O3; a Pandora spectrometer system for total col-
umn O3 and NO2; a Lufft CHM 15k ceilometer for cloud
and aerosol layer height; and various instruments for mete-
orological measurements (i.e., a Vaisala WXT520 weather
transmitter, a Campbell Scientific CS500 temperature and
relative humidity probe, and a Davis Vantage Pro2 system
with a Davis 6410 anemometer and Davis 6450 solar radia-
tion sensor). This high-cost, reference-grade instrumentation
serves as a high-accuracy anchor point within the network
domain. Atmospheric boundary conditions are monitored by
the Bay Area Air Quality Management District’s Greenhouse
Gas Measurement Program, which maintains its own refer-
ence instruments at four background sites to the northwest,
east, southeast, and south. A description of the design, de-
ployment, and evaluation of the BEACO2N approach can be
found in Shusterman et al. (2016) and Kim et al. (2018).

Here we utilize CO2 observations from the 20 BEACO2N
sites operating most consistently during the summer and/or
winter of 2017 (Table 1), defined as 1 June 2017 through
30 September 2017 and 1 November 2017 through 31 Jan-
uary 2018, respectively. The raw 2 s CO2 concentrations are
averaged to 1 min means, which are subsequently converted
to bias-corrected dry-air mole fractions using site-specific
meteorological observations and in-network reference mea-
surements (see Shusterman et al., 2016). The processed 1 min
averages are assumed to have an instrumental uncertainty
of less than ±4 ppm. The longer averaging timescales used
hereafter reduce the error of the mean (e.g., ±1.8 ppm at
5 min resolution, ±0.5 ppm at hourly resolution, ±0.06 ppm
for a given hour of the day over an entire season), although
the concomitant increase in the influence of atmospheric
variability cannot be quantified. Any long-term drift in the
sensors is accounted for via a combination of periodic (i.e.,
every 12–24 months) laboratory recalibration and a post hoc
data treatment based on the supersite situated within the net-
work domain. This procedure allows us to confidently com-
pare measurements taken multiple years apart, thus enabling
interannual changes in CO2-related phenomena to be moni-
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Table 1. List of site geo-coordinates, relevant traffic monitor IDs, and approximate distances from a highway.

Site Lat. Long. Traffic Distance from
code (◦ N) (◦ E) monitor IDs highway (m)

ALBa 37.896 −122.292 401052, 402062 1390
BAM 37.788 −122.391 402815, 404920 170
BODa 37.754 −122.156 401857, 401858 300
CHA 37.819 −122.181 400302, 400308 1720
COL 38.002 −122.289 401230, 401269 510
CPSa 37.848 −122.240 402201, 402202 220
DEJb 37.933 −122.338 400361, 400445 950
EXBb 37.802 −122.397 402815, 404920 1570
EXE 37.801 −122.399 402815, 404920 1580
FTK 37.737 −122.173 JJAS: 400442, 400955 1350

NDJ: 400608, 400793
HRSa 37.809 −122.205 400302, 400308 700
LANb 37.794 −122.263 400835, 408138 40
LBL 37.876 −122.252 400176, 400728 3090
LCC 37.736 −122.196 JJAS: 400442, 400955 220

NDJ: 400608, 400793
MADb 37.928 −122.299 400819, 401558 1850
MARb 37.863 −122.314 400176, 400728 950
MTA 37.995 −122.335 400538, 400976 2040
NOCa 37.833 −122.276 401211, 401513 750
NYSb 37.928 −122.359 400359, 400734 380
OHSa 37.804 −122.236 400261, 401017 160
PDSa 37.831 −122.257 400224, 401381 800
PER 37.943 −122.365 400639, 400738 1790
PTL 37.920 −122.306 400819, 401588 970
RFS 37.913 −122.336 400202, 400675 760
RHSb 37.953 −122.347 401228, 406660 1530
SHL 37.967 −122.298 416774, 416790 2030
SPBa 37.960 −122.357 401894, 401895 2280
STWb 37.990 −122.291 400313, 400902 500

a Sites with data available in winter 2017 only. b Sites with data available in summer 2017 only.

tored. The exact details of the calibration and post hoc data
treatment are provided in Shusterman et al. (2016).

2.2 Traffic counts

Traffic count data are collected by the California Depart-
ment of Transportation as part of the Caltrans Performance
Measurement System (PeMS; http://pems.dot.ca.gov/, last
access: 23 September 2018). Hourly passenger vehicle flow
data (in vehicles per hour) are obtained from the road mon-
itors nearest to the relevant BEACO2N site with > 50 %
directly observed (as opposed to modeled) data and are
summed across all lanes and directions. Due to limited data
coverage, in some cases it is necessary to sample road mon-
itors upstream or downstream of the desired roadway seg-
ment; here we assume the sampled traffic conditions to be
reasonable approximations of those on the desired segment.
The specific monitor IDs used in each analysis are given in
Table 1.

3 Results & discussion

To quantify the spatial heterogeneity present across the net-
work, we examine the degree of correlation between every
possible pairing of sites in a given season as a function of the
distance between them, borrowing from a similar analysis
used by McKain et al. (2012). For straightforward compari-
son with the McKain et al. results, we first average the total
CO2 mole fractions to 5 min resolution. Then, for every pair-
wise combination of two sites, we perform an ordinary least
squares linear regression between the two 5 min time series
and calculate the Pearson correlation coefficient. We repeat
this procedure after offsetting the two time series by±5 min,
±10 min, etc., allowing for up to a ±3 h lag, and choose the
optimal r2 value from the possible offsets. We plot the thus-
optimized pairwise correlations as a function of the distance
separating the two relevant sites (Figs. 2 and 3) and fit the
results to a single term exponential decay on top of a con-
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Figure 1. Map of BEACO2N node locations (black dots). Nodes
used in this study are labeled. Map data ©2017 Google.

stant background, defined by the mean correlation observed
at inter-site distances greater than 20 km.

In the summer months, there appears to be some rela-
tionship between the proximity of the sites and the corre-
lation of their observations at all hours, with higher correla-
tions between neighboring sites decaying into more modest,
but still significant, correlations at longer inter-site distances.
The characteristic length scale of this correlation is 2.9 km
(defined as the e-folding distance of the exponential fits in
Fig. 2; 3.6 km during the day and 2.2 km at night), which
we interpret as an indicator of the distance at which various
emission sources exert influence over a site’s measurements.
Shorter correlation lengths indicate sensitivity to near-field
emissions, while longer correlation lengths imply sensitivity
to far-field phenomena.

The winter months exhibit lower pairwise correlations
overall and shorter correlation lengths relative to the sum-
mertime (2.4 km; 2.6 km during the day and 2.1 km at night).
Some portion of the summer–winter differences may be
attributable to seasonal differences in dominant wind pat-
terns, although this effect is difficult to disentangle from the
slightly different collection of sites sampled during the two
seasons; the winter sample, for example, contains fewer pairs
with separation lengths less than 5 km, which affects the per-
ceived overall trend. In either season, the correlation lengths
are, as expected, considerably longer than the previously ob-
served ∼ 100–1000 m e-folding distances of reactive urban
pollutants that are also lost via chemical pathways (e.g., Zhu
et al., 2006; Beckerman et al., 2008; Choi et al., 2014), thus

validating the original choice of 2 km as the desirable inter-
site separation in the design of the BEACO2N instrument.

The 24 h findings (top panels of Figs. 2 and 3) compare
well to those presented by McKain et al., who also doc-
umented a decaying but nevertheless persistent correlation
with increasing site separation. However, McKain et al. saw
very little correlation after restricting their analysis to day-
time hours, even at very short (< 5 km) inter-site distances,
which implies that daytime observations reflect hyperlocal
phenomena only. In contrast, we observe moderate to high
correlations during the day, which illustrates that informa-
tion about emissions and transport phenomena on a variety
of scales is preserved. A spatial visualization of the daytime
correlation coefficients at four representative winter sites is
shown in Fig. 4. We see that PER is well correlated with
its neighbors only, suggesting the presence of local phenom-
ena that do not affect other parts of the network. LCC, how-
ever, also exhibits relationships with more distant sites, indi-
cating a sensitivity to more regional-scale (10–30 km) influ-
ences. Meanwhile, HRS and OHS each possess at least one
near neighbor with whom they are poorly correlated, perhaps
due to hyperlocal events specific to those sites. While the
region-wide phenomena can be characterized using sparser
networks of high-cost, conventional monitoring equipment,
the ability to capture these local processes is unique to the
high-density approach.

We posit that the true strength of a high-density, surface-
level monitoring network lies in its characterization of hy-
perlocal phenomena unique to a given site or subset of sites.
In order to directly examine signals attributable to these spe-
cific local CO2 emission processes, we separate each site’s
observations into a “regional” and “local” component. The
regional component is, by definition, the same at all sites
network-wide, calculated from the bottom 10th percentile of
all BEACO2N readings collected during the surrounding 1 h
window. The bottom 10th percentile is chosen (rather than
the absolute minimum) to account for measurement error
(±4 ppm at 1 min resolution; see Shusterman et al., 2016) as
well as any near-field drawdown from the local biosphere;
negative values in the local signals are likely attributable
to some combination of these effects. While many differ-
ent sites contribute to this bottom 10th percentile over the
course of the data record, some sites located in close proxim-
ity to emission sources are never represented in the bottom
10th percentile and always exhibit some enhancement (i.e.,
a nonzero local component) over the regional background
signal. The regional component is allowed to vary through-
out the data record and will therefore reflect domain-wide
changes in response to day of week, synoptic weather events,
etc.

The diel profiles of the regional signal measured in sum-
mer and winter 2017 are shown in Fig. 5, reflecting the
typical convolution of background concentrations, emis-
sion processes, and dynamics experienced across the entire
BEACO2N domain. In both seasons, we see an increase in
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Figure 2. Optimal correlation coefficients for every possible pairing of summer 2017 sites as a function of their separation distance during all
hours (a), daytime hours (11:00–18:00 LT, b), and nighttime hours (21:00–04:00 LT, c). Solid lines show exponential decay of the correlation
coefficients.

Figure 3. Optimal correlation coefficients for every possible pairing of winter 2017 sites as a function of their separation distance during all
hours (a), daytime hours (11:00–18:00 LT, b), and nighttime hours (2:100–04:00 LT, c). Solid lines show exponential decay of the correlation
coefficients.

the regional signal beginning around 04:00 local time (LT),
followed by a decrease in concentrations at 08:00 LT in the
winter months and 11:00 LT in the summer, and another in-
crease in early to late afternoon, depending on the season.
This diurnal profile corresponds well with known patterns in
traffic emissions – which are largely consistent across sea-
sons – superimposed on diel fluctuations in boundary layer
height and/or biosphere activity that vary in timing and mag-
nitude according to the season. Namely, these results might
be interpreted to conclude that the nighttime boundary layer
in the BEACO2N domain is shallower during the winter
months, producing a larger regional increase in response to
rush hour traffic. The wintertime layer also appears to expand

and re-contract earlier in the day than the summertime layer,
resulting in both an earlier minimum and an earlier rise in
afternoon–evening concentrations. The larger amplitude of
the wintertime diurnal cycle may also reflect the greater in-
fluence of daytime photosynthesis and nighttime respiration
during the San Francisco Bay Area’s rainy winter season. An
analysis of the regional signals calculated for similar periods
in 2013 revealed qualitatively similar results (Fig. S1 in the
Supplement), although it should be noted that the 2013 anal-
ysis uses observations from a significantly different subset of
sites in the BEACO2N network.

We isolate the local signals by subtracting the network-
wide regional component from the data record at each site.
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Figure 4. Optimal correlation coefficients representing network-
wide correlation with 5 min mean total CO2 concentrations at four
representative sites during daytime hours (11:00–18:00 LT) of win-
ter 2017. Yellow spot (r2

= 1) on each subplot shows the location
of the site at which the correlation is examined.

Figure 5. Hourly median values of the network-wide, regional CO2
signals calculated for summer (orange) and winter (blue) periods in
2017. Lighter colored curves indicate the standard error; note the
difference in y scale.

Median 1 min local CO2 signals range from 0.3 to 40.2 ppm
during the day (11:00–18:00 LT) and 1.1 to 38.5 ppm at night
(21:00–04:00 LT) during the summer months, although the
distributions are skewed, with the 10th- to 90th-percentile
ranges stretching from −2.4 to 69.0 ppm during the day
and −2.0 to 45.0 ppm at night. During the winter months,
the daytime medians range from 3.6 to 34.8 ppm (−7.0 to
90.8 ppm 10th- to 90th-percentile range), while the nighttime
medians range from −0.8 to 58.7 ppm (−15.0 to 90.6 ppm
10th- to 90th-percentile range). A full picture of the over-
all distributions is shown in Figs. S2 and S3, confirming a
much greater frequency of high CO2 concentrations during
the winter months. In both seasons, the distribution of the
local enhancements is typically unimodal with a heavy right-
hand tail, although some sites exhibit more complex bi- or
multi-modal distributions.

By definition, we expect these local signals to represent
a unique combination of emission sources and atmospheric
dynamics specific to a given site. Here we endeavor to deter-
mine whether measurements of local CO2 enhancements can
be used to monitor a single urban emission source, despite
the complex landscape of CO2 sources and sinks present
within the study domain. We choose to focus on mobile CO2
emissions as these are estimated to comprise approximately
40 % of the San Francisco Bay Area’s annual CO2 emissions
(Claire et al., 2015). This is the largest source sector in the
CO2 emission inventory and likely to represent an even larger
fraction within the urban core, where the next-largest source
sectors (industrial/commercial and electricity/co-generation)
are less abundant. However, as noted in the discussion of the
regional signals above, direct observation of the magnitude
and variation of traffic emissions via ambient CO2 concen-
trations is complicated by the coincident variation in turbu-
lent mixing and boundary layer height as the earth’s surface
warms and cools at sunrise and sunset (Fig. S4).

In order to more directly examine the relationship between
highway traffic flow and urban CO2 concentrations, we begin
by analyzing the subset of observations collected between
04:00 and 08:00 LT at the LAN site, located less than 40 m
from Interstate 880. During this period, traffic emissions are
high, but the boundary layer is relatively shallow, thus in-
creasing the sensitivity of the surface-level monitor to the
traffic signal. The resultant strong positive correlation be-
tween rush hour traffic flow and local CO2 concentrations is
shown in Fig. 6. An alternative analysis using traffic density
– obtained by dividing the traffic flow by the average vehicle
speed – yields almost identical results (Fig. S5), revealing
a factor-of-2 increase in local CO2 mole fraction enhance-
ments during congestion (high traffic flow/density) relative to
free-flowing conditions (low traffic flow/density), similar to
that observed by a previous on-road mobile monitoring study
by Maness et al. (2015). Also shown in Fig. 6 are the median
CO2 concentrations observed in each 500 vehicles h−1 traffic
flow increment and the ordinary least squares linear regres-
sion through these binned medians.

In addition to this first-order sensitivity to vehicle emis-
sions at the near-roadway LAN site, we find that relatively
subtle emission changes can also be detected using nodes sta-
tioned greater distances from the highway by controlling for
the confounding impacts of dispersion and the biosphere. To
do so, we decompose the CO2 signals into terms that repre-
sent the influence of meteorology (which is correlated with
both dispersion and biosphere activity) and emissions sepa-
rately via a multiple-linear-regression (MLR) approach anal-
ogous to that described by de Foy (2018). Briefly, we use
an ordinary least squares linear regression to calculate the
best fit of the relationship between a site’s CO2 signal and
temperature, specific humidity, wind, boundary layer height,
time of day, day of week, and time of year. Hourly mea-
surements of temperature, specific humidity, wind speed, and
wind direction are taken from a single NOAA Integrated
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Surface Database weather station at the Port of Oakland In-
ternational Airport (https://www.ncdc.noaa.gov/isd/, last ac-
cess: 23 September 2018), and 3 h boundary layer heights are
provided at 0.125◦ by 0.125◦ resolution by the ECMWF’s
ERA-Interim model (Dee et al., 2011; http://apps.ecmwf.int/
datasets/, last access: 23 September 2018). Although the low
spatiotemporal resolution of these datasets limits their abil-
ity to capture hyperlocal meteorologies, here we follow the
example of de Foy, who was nonetheless able to derive mean-
ingful results from similarly coarse weather products.

The nonlinear relationship between CO2 concentrations
and wind or boundary layer height is captured by dividing
these meteorological datasets into quartiles and assigning
each observation a value between 0 (at the maximum of the
quartile) and 1 (at the minimum) using piecewise linear in-
terpolation. The wind speed quartiles are further subdivided
by wind direction and reassigned values of 0–1 accordingly
before fitting a linear coefficient to each subset. The time of
year is represented as a sum of sines and cosines with annual
or semiannual periodicities whose values also vary between
0 and 1 and whose amplitudes are determined by the linear
regression. Zeroes and ones are used to designate each hour
of each type of day of the week as well. For example, time
steps corresponding to 08:00 LT on a Monday may be as-
signed a 1 while all other time steps are set to zero before the
linear regression is performed. As a result, the MLR factors
derived for each of the preceding explanatory variables can
be interpreted in units of ppm CO2. Meanwhile, the tempera-
ture and specific humidity variables are treated by calculating
their difference from their mean values and dividing by their
respective standard deviations before each is fit to CO2 with
a single linear coefficient, which will have units of ppm K−1

and ppm (kgwater kg−1
air )
−1, respectively.

The independent variable leading to the greatest square
of the Pearson correlation coefficient is then combined with
each of the remaining variables, and a second regression is
performed. The two-input combination leading to the largest
increase in the correlation coefficient is then combined with
each of the remaining variables, and so on, until the addi-
tion of a new independent variable no longer increases the r2

value by at least 0.005.
For this analysis, we use hourly total CO2 concentrations

(the sum of the local and regional components) measured at
five sites between 15 February 2017 and 15 February 2018.
For each site, the optimal set of explanatory variables and
their relative contributions to the correlation coefficient are
given in Table 2. Summing the products of each of the MLR
factors with their respective independent variables (e.g., time
of day, wind speed) gives the mixing ratio predicted by the
MLR model; a representative week of observed and mod-
eled CO2 concentrations is shown in Fig. 7. We find gen-
erally good agreement, with some significant hour-by-hour
model–observation differences, especially at RFS. These do
not, however, appear to be systematic either in sign or in tim-

Figure 6. Morning (04:00–08:00 LT) local summertime CO2 con-
centrations at LAN shown as a function of nearby highway traf-
fic flow. Darker points indicate the median CO2 concentration ob-
served in each 500 vehicles h−1 traffic flow increment; black solid
line indicates the linear regression through the binned medians
(equation given above plot), and gray dashed lines show the un-
certainty in the regression slope.

ing (e.g., the rush hour peak in CO2 may be poorly modeled
on one day but well predicted on another).

Multiple-linear-regression coefficients are derived for each
hour of the day during five types of days of the week (Mon-
days, Tuesdays through Thursdays, Fridays, Saturdays, and
Sundays); for clarity, Fig. 8 shows the regression coeffi-
cients for Tuesdays through Thursdays and Sundays. Other
days of the week are shown in Fig. S6. These MLR “fac-
tors” signify the average CO2 enhancement or depletion (in
ppm) uniquely associated with a particular hour of a partic-
ular day of the week. The dependencies on time of day and
day of week derived via this method are hypothesized to pri-
marily reflect the changes in emissions, as the influence of
the coincident changes in atmospheric dynamics has been at
least partially controlled for. For reference, the correspond-
ing Tuesday–Thursday and Sunday diel cycles in the total
CO2 observed at each site are shown in Fig. 9. Indeed, we
do observe some of the same intuitive patterns in the linear
regression coefficients, such as higher coefficients on week-
day mornings corresponding to higher rush hour traffic emis-
sions on those days, but with greater opportunity to differ-
entiate between days of the week, especially around noon,
when raw concentrations are generally similar. As expected,
the Tuesday–Thursday enhancement in the MLR factors is
larger at the sites located close to a freeway (e.g., up to
520 % higher than the corresponding Sunday MLR factor at
FTK) but is less pronounced at LBL (70 %), which is farther
away from major mobile sources. For reference, the 1 km by
1 km FIVE mobile emission inventory developed for the San
Francisco Bay Area by McDonald et al. (2014) predicts a
∼ 210 % weekday enhancement on average, peaking around
05:00 LT, much earlier in the day than is observed here.
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Table 2. Explanatory variables included in the multiple-linear-regression analysis of each site; values indicate the correlation coefficient
increase achieved by subsequent inclusion of each variable.

MLR variable

Site Time of Day of BLH Wind T Humidity
code year week

EXE 0.271 0.031 0.130 0.028 0.031 –
FTK 0.413 0.050 0.088 0.024 – 0.010
LBL 0.230 0.156 0.052 0.028 0.008 0.024
LCC 0.353 0.062 0.177 0.021 – –
RFS 0.316 0.052 0.082 0.029 0.006 –

Figure 7. Representative week of total CO2 concentrations observed (thick gray curve) and modeled (dashed blue curve) at five sites using
a multiple-linear-regression approach based on de Foy (2018).

When we examine the relationship between these
multiple-linear-regression coefficients and morning traffic
flow as we did at LAN (Fig. 10), we again find positive
correlations. This is an interesting result, given that the traf-
fic flow measured on a single highway likely provides only
a first-order approximation of the total traffic emissions in-
fluencing a single CO2 monitor, especially those situated at
greater distances from said highway, which may be sensitive
to additional highways, as well as local roads. Although the
predominance of a single highway’s emissions (or at least
its correlation with those from other sources) is not a nec-
essary condition of our MLR analysis, the strong positive
correlations we observe suggest that this methodology may
nonetheless be useful in monitoring emissions from individ-
ual highways such as these.

The standard error of the slope of the linear regression is
calculated as the standard deviation of the model–data CO2
residuals divided by the square root of the sum of the squared
differences between each traffic flow increment and the mean
traffic flow. The 1σ uncertainty in the slopes (i.e., the 68 %
confidence interval, assuming a Gaussian error distribution)
is thus found to be 11 %–30 %, indicating that analysis of a
single site could be used to detect as small as 11 % changes
in average emissions per vehicle, an improvement upon the

17 % slope uncertainty calculated for the near-highway LAN
site. For reference, under the Corporate Average Fuel Econ-
omy standards, the state of California aims to achieve a fleet-
wide average fuel economy of 23.2 km L−1 by the year 2025
(US EPA, 2012), corresponding to a 35 % decrease in emis-
sions relative to the 15.1 km L−1 economy of 2012–2016
model year vehicles. Assuming a steady decrease in emis-
sions of 3.5 % yr−1, an 11 % decrease would be achieved af-
ter approximately 3 years, showing that one BEACO2N site
is therefore sufficiently sensitive to detect such a trend with
68 % confidence in as little as 3 years. By leveraging multi-
ple independent sites, even greater confidence and/or shorter
timescales could be achieved.

It is likely that sensitivity could be further enhanced
with more accurate meteorological datasets. While the sin-
gle weather station and relatively coarse (0.125◦ by 0.125◦)
reanalysis product we use here may be adequate to represent
the meteorological conditions across some domains, the San
Francisco Bay Area is at the high end of complexity in terms
of terrain and microclimatology. Higher-resolution boundary
layer heights and neighborhood-specific wind observations
may improve the results of our multiple linear regression,
but these types of measurements are rarely available on the
spatial scale of the BEACO2N instrument and are difficult
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Figure 8. Multiple-linear-regression coefficients for five sites derived for each hour of the day on Tuesdays through Thursdays (orange solid
line) and Sundays (blue dashed line) between 15 February 2017 and 15 February 2018.

Figure 9. Hourly median CO2 concentrations observed at five sites on Tuesdays through Thursdays (orange solid line) and Sundays (blue
dashed line) between 15 February 2017 and 15 February 2018; lighter curves indicate the standard error in the medians.

to simulate with accuracy (Jiménez et al., 2013; Banks et al.,
2016). In future work, high-density networks like BEACO2N
may therefore be useful not just in source attribution but also
in providing a much-needed observational constraint on our
understanding of near-surface transport.

Future work will also make use of the ancillary datasets
provided by the BEACO2N platform, such as the concur-
rent NOx and CO concentrations. Prior studies have demon-
strated a methodology for detecting plume-like events in the
BEACO2N NOx and CO observations (Kim et al., 2018), and
the ratio of these species to CO2 provides a unique signature
for each different CO2 source (e.g., Ban-Weiss et al., 2008;
Harley et al., 2005; Lopez et al., 2013; Nathan et al., 2018;
Turnbull et al., 2015), allowing subsets of the data record to

be directly attributed to specific (e.g., mobile) source types
and allowing the relationship between these specific activ-
ities and CO2 mixing ratios to be derived more precisely.
With such a precise methodology for converting between
emissions and concentrations, subtler interannual trends in
emissions could be detected, for example changes in vehicle
emissions following construction of new housing.

4 Conclusions

We have described the heterogeneity measured at the indi-
vidual sites of a high-density, surface-level urban CO2 mon-
itoring network. Network-wide correlation length scales are
found to be slightly longer during daytime during the sum-
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Figure 10. Morning (04:00–08:00 LT) multiple-linear-regression coefficients shown as a function of summertime traffic flow; black solid
lines indicate the linear regression through the MLR factors (equations given above each subplot), and gray dashed lines show the uncertainty
in the regression slope.

mer and generally shorter during winter months, but they fall
in the range of values reported previously based on other sta-
tionary observation networks and mobile monitoring cam-
paigns. High near-field correlations are thought to be driven
by shared sensitivity to local emission events, while moder-
ate far-field correlations reflect regional episodes, suggest-
ing that a given site’s data record is likely a convolution of
both phenomena. We therefore present a methodology for
separating the observed CO2 concentrations into local and
regional components and observe distinct distributions (i.e.,
unimodal vs. bimodal) of local CO2 enhancements within
single neighborhoods. A clear relationship is seen between
morning rush hour traffic counts and local CO2 concentra-
tions, allowing for the detection of changes in vehicle emis-
sions within 3 years if those changes proceed at a rate con-
sistent with policy objectives.

Most prior studies of urban CO2 emissions (e.g., McKain
et al., 2012; Kort et al., 2013; Wu et al., 2018) have favored
sparser networks of high-quality instruments, finding this ap-
proach to be better suited for resolving trends in total region-
wide emissions. It is hypothesized that the ideal monitoring
strategy depends on the particular goals and location of a
given application, with certain locales and emission sources
necessitating high-cost, low-density instrumentation, com-
plemented by other domains where low-cost, high-density
platforms are more effective. The potential trade-offs be-
tween measurement quality and instrument quantity specific
to the San Francisco Bay Area have been investigated pre-
viously using an ensemble of observing system simulations
by Turner et al. (2016), who found BEACO2N-like observ-
ing systems to outperform smaller, higher-quality networks
in estimating regional as well as more localized emission

phenomena there. While Turner et al. saw significant benefits
to achieving an hourly instrument precision of 1 ppm, further
increases in measurement quality offered little advantage in
constraining emissions, especially those from line and point
sources.

This work thus provides an important data-based valida-
tion of the conclusions of Turner et al.’s theoretical analy-
sis. Not only do we demonstrate the ability of low-cost sen-
sors to sufficiently constrain policy-relevant trends in line
source (i.e., highway traffic) emissions, but we do so with-
out the use of computationally intense and heavily parame-
terized atmospheric transport models. Furthermore, we show
that a multiple-linear-regression analysis allows the signature
of highway traffic to be extracted from sites located through-
out the network, enabling trends in mobile emissions to be
quantified without specially situated roadside monitors. Al-
though this approach requires real-time traffic count infor-
mation that is not yet available at all locations, our finding is
nonetheless an important result, as deriving and implement-
ing a particular a priori network layout is a non-trivial task.
Domain-specific transport patterns prevent the development
of general principles of optimal sensor placement, and, even
if ideal locations can be identified, cooperation from facilities
in the area cannot be guaranteed. By establishing for the first
time that an ad hoc, opportunistic sensor siting approach can
nonetheless provide sensitivity to emission sources of inter-
est, we thus improve the prospects for widespread adoption
of distributed monitoring systems in the future.

Progress toward evaluating the capabilities and proper use
of low-cost sensors has particular relevance for nations with
rapidly developing economies, where CO2 emissions are in-
creasing much faster than the resources needed to monitor
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them by conventional means. Domestically, citizen science
and environmental justice groups are also adopting these
technologies (Snyder et al., 2013) as an economically acces-
sible means of advocating for greater public health and eco-
logical wellbeing. While the specific correlation lengths and
emission estimates we derive here are unique to the San Fran-
cisco Bay Area domain, the sensor performance capabilities
and data analysis techniques we outline provide guidance
more generally to any future studies attempting to interpret
similar datasets around the world. High-resolution surface
networks enabled by low-cost technologies offer a unique
opportunity to provide ground truth constraints on difficult-
to-model near-surface dynamics as well as on the individual
CO2 sources and sinks that comprise the strategic backbone
of greenhouse gas mitigation regulation.

Data availability. All BEACO2N CO2 observa-
tions used in this analysis can be downloaded at
https://doi.org/10.5281/zenodo.1206983 (Shusterman and Cohen,
2018). Traffic counts are available on the California Department
of Transportation website (http://pems.dot.ca.gov/, last access: 23
September 2018); wind, temperature, and humidity observations
are available on the NOAA Integrated Surface Database website
(http://www.ncdc.noaa.gov/isd/, last access: 23 September 2018);
and boundary layer heights are available on the ECMWF website
(http://apps.ecmwf.int/datasets/, last access: 23 September 2018).

Supplement. The supplement related to this article is available
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