Köhler theory	Nano-Köhler theory	Real molecular systems
Describes the activation of CCN $(d_p > 50 \text{ nm})$ to cloud droplets by spontaneous condensation of water vapor.	Describes the activation of inorganic clusters ($d_p = \sim 1-3$ nm) for growth by spontaneous condensation of organic vapor.	A distribution of clusters of varying sizes and compositions including inor- ganic and organic compounds can exist simultaneously at all times.
The condensing vapor is water vapor with typical atmospheric concentrations of $\sim 10^{17}$ cm ⁻³ .	The condensing vapor is a water-soluble organic compound with concentrations likely ranging from $\sim 10^5$ to 10^8 cm ⁻³ (Jokinen et al., 2017).	Vapor concentrations are not constant but may vary over time.
The seed consists of a mixture of in- organic/organic compounds and is wa- ter soluble. The seed compounds do not evaporate.	The seed consists of sulfuric acid and bases and is soluble in the condens- ing organic compound. The seed com- pounds do not evaporate but condense irreversibly on the cluster.	There is no seed in the same sense as in the theory. Both inorganic and organic compounds can condense and evaporate and may contribute to the growth.
Thermodynamic equilibrium between water and the seed particle is assumed.	Thermodynamic equilibrium between the organic compound, the seed cluster and water is assumed. The energy bar- rier width in nano-Köhler is very narrow with respect to the number of molecules compared to Köhler theory, and thus ad- dition of only few molecules may result in overcoming the barrier.	Clusters can nucleate over barriers and they may not be in thermodynamic equilibrium before activation to growth.
The growing cloud droplets scavenge the available water vapor thereby lim- iting the activation process.	The loss rate of organic vapor is de- termined mainly by larger background aerosol particles and not the growing clusters.	The cluster population is affected by losses due to background particles, and cluster self-coagulation may also be important. The magnitude of external losses may vary over time.