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Abstract. Atmospheric reanalyses are data-assimilating
weather models which are widely used as proxies for the true
state of the atmosphere in the recent past. This is particularly
the case for the stratosphere, where historical observations
are sparse. But how realistic are these stratospheric reanaly-
ses? Here, we resample stratospheric temperature data from
six modern reanalyses (CFSR, ERA-5, ERA-Interim, JRA-
55, JRA-55C and MERRA-2) to produce synthetic satellite
observations, which we directly compare to retrieved satel-
lite temperatures from COSMIC, HIRDLS and SABER and
to brightness temperatures from AIRS for the 10-year pe-
riod of 2003–2012. We explicitly sample standard public-
release products in order to best assess their suitability for
typical usage. We find that all-time all-latitude correlations
between limb sounder observations and synthetic observa-
tions from full-input reanalyses are 0.97–0.99 at 30 km in al-
titude, falling to 0.84–0.94 at 50 km. The highest correlations
are seen at high latitudes and the lowest in the sub-tropics,
but root-mean-square (RMS) differences are highest (10 K
or greater) in high-latitude winter. At all latitudes, differences
increase with increasing height. High-altitude differences be-
come especially large during disrupted periods such as the
post-sudden stratospheric warming recovery phase, in which
zonal-mean differences can be as high as 18 K among differ-
ent datasets. We further show that, for the current generation
of reanalysis products, a full-3-D sampling approach (i.e. one
which takes full account of the instrument measuring vol-
ume) is always required to produce realistic synthetic AIRS
observations, but is almost never required to produce realistic
synthetic HIRDLS observations. For synthetic SABER and
COSMIC observations full-3-D sampling is required in equa-
torial regions and regions of high gravity-wave activity but
not otherwise. Finally, we use cluster analyses to show that

full-input reanalyses (those which assimilate the full suite of
observations, i.e. excluding JRA-55C) are more tightly cor-
related with each other than with observations, even obser-
vations which they assimilate. This may suggest that these
reanalyses are over-tuned to match their comparators. If so,
this could have significant implications for future reanalysis
development.

1 Introduction

One of the most important tools in the atmospheric sci-
ences is the reanalysis. These are are weather models which
assimilate observations from the historical record, using a
fixed analysis scheme to consistently simulate an extended
period, typically decades. Particularly in the stratosphere,
where measurements remain comparatively sparse even in
the modern era, reanalyses are widely used as a proxy to the
true atmospheric state for purposes as diverse as tuning mod-
els and understanding geophysical processes. This is because
they provide a spatially and temporally uniform estimate of
the atmospheric state, with a wide range of variables such as
temperature, wind and vorticity available in a standard for-
mat (Parker, 2016).

For reasons of numerical stability and dynamical balance,
reanalyses must always favour the model state in which sig-
nificant conflicts exist (e.g. Sakov and Sandery, 2017). Thus,
although they are observation driven in a much more di-
rect way than standard atmospheric models, biases remain
between the reanalysis and observed states. Given the ex-
tremely wide use of reanalysis data, it is very important to
quantify and understand these biases.
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This quantification is typically carried out in two main
ways. The first of these is to implement a forward-model soft-
ware chain, often referred to as an “observation operator”, in
the reanalysis system (e.g. Dee et al., 2011). This method
is commonly used for quality control and validation inside
reanalysis centres, but requires direct access to the reanaly-
sis system rather than the final output product. A second ap-
proach, common when developing new satellite instruments
but also applicable to validating data from existing ones, is
to run a high-resolution variant of the reanalysis system, of-
ten known as a “nature run” (e.g. Nolan et al., 2013; Holt
et al., 2016). The nature run is then combined with an observ-
ing system simulation, which properly samples the model
as the satellite, including the full data retrieval chain. Both
of these methods inherently customise the reanalysis output
rather than use the standard output formats common in non-
observational research. The latter method also requires a re-
implementation of the full satellite data retrieval.

Here, we wish to assess standard public-release reanaly-
sis products in order to quantify the validity of their de facto
broad use as an observational substitute. This rules out the
above approaches. We instead develop and apply a compar-
ison method based on (1) oversampling the reanalysis data
grid and (2) re-weighting the oversampled fields in a close
approximation to how the instruments weight observations
of the true atmosphere. This allows us to produce weighted
composite reanalysis samples of equivalent form to the satel-
lite measurements. In this study, we will refer to these sam-
ples as “synthetic measurements”.

We specifically compare synthetic temperature measure-
ments produced from six reanalyses (CFSR, ERA-Interim,
ERA-5, JRA-55, JRA-55C and MERRA-2) to three observa-
tional datasets (COSMIC, HIRDLS and SABER). Low-level
bending angle data from COSMIC are assimilated by all six
reanalyses, whilst HIRDLS and SABER are not assimilated.
We compare the reanalyses to all temperature measurements
from these three instruments for the 10-year period 2003–
2012. We also produce synthetic temperature measurements
using the sampling characteristics of AIRS brightness tem-
perature measurements and use these to demonstrate the im-
portance of using a full sampling approach for comparisons
to instruments of this type. Our method is generalisable to
other atmospheric models, instruments and variables.

Sections 2 and 3 describe the observational and reanaly-
sis datasets used. Section 4 describes the sampling method
used, including an explanation of the motivation underlying
our approach. Section 5 then assesses the performance of our
sampling method relative to the simpler approach of interpo-
lating the reanalysis to the measurement location. Section 6
compares the observed and sampled data as global all-time
scatter plots, Sect. 7 as zonal-mean time series, Sect. 8 as
Taylor diagrams, and Sect. 9 as a function of time of year,
height and geographic location. Finally, Sect. 10 analyses the
bulk-scale differences between each dataset before we sum-
marise and draw conclusions in Sect. 11.

2 Data

2.1 Satellite instruments

We consider observed data from and the scanning patterns
of four satellite instruments. These are the Atmospheric In-
frared Sounder (AIRS), the Constellation Observing System
for Meteorology, Ionosphere and Climate (COSMIC), the
High Resolution Dynamics Limb Sounder (HIRDLS) and
Sounding of the Atmosphere using Broadband Emission Ra-
diometry (SABER).

Of these, two (HIRDLS and SABER) are limb-sounding
radiometers, one (AIRS) is a hyperspectral nadir sounder and
one (COSMIC) is a multi-satellite constellation which uses
GPS radio occultation to infer atmospheric parameters. GPS
radio occultation is arguably a special case of limb sounding,
and thus throughout this paper we will refer to COSMIC,
HIRDLS and SABER collectively as limb sounders and to
AIRS as a nadir sounder.

2.2 AIRS

The Advanced Infrared Sounder (AIRS) is an instrument
on NASA’s Aqua satellite, launched in May 2002 (Aumann
et al., 2003). Part of NASA’s A-Train satellite constella-
tion, Aqua has a 98 min sun-synchronous polar orbit, with
an Equator-crossing local solar time of 13:30 in the ascend-
ing node. AIRS has 2378 spectral channels, which provide a
continuous swath of radiance measurements. Its cross-track
footprint width averages ∼ 20 km, varying from 13.5 km at
the centre of the instrument track to 40 km at the edges across
90 parallel tracks (Olsen et al., 2007). This across-track vari-
ation is due to the interaction of the rotated scanning volume
with atmospheric density in the vertical plane.

We use brightness temperatures derived from AIRS Level
1 (version 5) radiance data in the 667.67 cm−1 channel,
which is centred at∼ 42 km in altitude. We refer to these data
subsequently as AIRS-L1. These radiance data are available
at considerably higher horizontal resolution than the standard
AIRS Level 2 temperature product (Hoffmann and Alexan-
der, 2009) and are consequently useful for studying small-
scale phenomena such as gravity waves. This is because this
preserves wave features in the vertical, which the methods
used to optimise the standard AIRS Level 2 product suppress
(Alexander and Barnet, 2007). The noise-equivalent 1T for
measurements at these altitudes is ∼ 0.7 K (Hoffmann et al.,
2014).

Accordingly, our sampled measurements, while well-
suited to measuring small-scale perturbations to tempera-
ture, are not useful for absolute temperature comparisons. In
this paper, we therefore include AIRS-L1 in comparisons be-
tween two reanalysis-derived properties, but not otherwise.
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2.3 COSMIC

The Constellation Observing System for Meteorology, Iono-
sphere and Climate (COSMIC) is a constellation of six mi-
crosatellites launched in 2006, of which three remain active
at the time of writing. Each satellite carries a radio occulta-
tion receiver, which is used to intercept GPS signals trans-
mitted through the atmosphere. The phase delay in these sig-
nals allows the bending angle of the signal path through the
atmosphere to be computed, which can then be analysed to
produce profiles of dry temperature (Anthes et al., 2008).

COSMIC measurements are distributed pseudo-randomly
across the globe. Around 1000–2000 such profiles are mea-
sured globally per day, with the number declining as satel-
lites have aged. Temperature soundings typically cover the
5–50 km altitude range. The vertical resolution in the strato-
sphere, estimated based on the size of the signal Fresnel
zone, is ∼ 1.5 km (Kursinski et al., 1997), with a precision
of∼ 0.5 K (Anthes et al., 2008). Horizontal resolution is also
∼ 1.5 km in the across-line-of-sight direction but is approxi-
mately 270 km in the along-line-of-sight direction due to path
integration (Hindley et al., 2015). We use COSMIC version
2013 data, which currently extend from the beginning of data
availability in June 2006 until the end of April 2014.

2.4 HIRDLS

The High Resolution Dynamics Limb Sounder (HIRDLS)
is a 21-channel radiometer on NASA’s Aura satellite. De-
signed to measure stratospheric dynamics and chemistry at
high vertical resolution, HIRDLS is also part of NASA’s
A-Train satellite constellation. Thus, Aura also has a sun-
synchronous orbit, with an Equator-crossing time a few min-
utes after Aqua.

Due to an optical blockage discovered shortly after launch,
HIRDLS data products have required significant corrections
to be usable for scientific purposes (Gille et al., 2008). Fol-
lowing these corrections, validation has shown that tem-
perature products are comparable to those from other data
sources, with an estimated precision of ∼ 0.5 K and a ver-
tical resolution of 1 km throughout the stratosphere, falling
to 2 km in the mesosphere (Gille et al., 2013). Horizontal
resolution for individual measurements is ∼ 200 km in the
along-line-of-sight direction and ∼ 20 km in the across-line-
of-sight direction. Due to the nature of the blockage, the in-
strument line of sight is directed 47◦ off-track in the oppo-
site direction to satellite travel. Data are available from early
2005 until early 2008, when a problem with the optical chop-
per terminated data collection.

2.5 SABER

Sounding of the Atmosphere by Broadband Emission Ra-
diometry (SABER) is a 10-channel limb-sounding infrared
radiometer aboard the TIMED satellite. SABER provides

∼ 2200 profiles globally per day, with a vertical resolution
of ∼ 2 km and an along-track profile spacing alternating be-
tween 200 and 550 km, and a line of sight lying 90◦ off-
track. Kinetic temperature profiles cover the 15–120 km al-
titude range, with a precision of ∼ 0.8 K in the stratosphere
(Remsberg et al., 2008). Horizontal resolution for individual
measurements is ∼ 300 km in the along-line-of-sight direc-
tion and ∼ 50 km in the across-line-of-sight direction. Cov-
erage is continuous between 50◦ S and 50◦ N throughout the
year, extending to either 80◦ S or 80◦ N on an alternating 60-
day yaw cycle.

2.6 Relative sensitivity

Figures 1 and 2 show the approximate sensitivity of each in-
strument to atmospheric temperature (or 667.67 cm−1 radi-
ances for AIRS). This is shown in Fig. 1 as geolocated 3-D
volumes, which are defined to contain 99 % of the total esti-
mated weight associated with each measurement. This figure
consequently gives an indication of the relative measurement
volumes and spacing associated with the standard instrument
scanning patterns. Figure 2, meanwhile, shows the sensitivity
associated with a single measurement (specifically at nadir in
the case of AIRS and below 60 km in altitude in the case of
HIRDLS), plotted as 2-D cuts through a sensing volume cen-
tred at the origin. These show that the majority of the signal
in all cases comes from near the measurement centre (Sect. 5
quantifies this further), but also that the total integrated sig-
nal in each case can represent quite different total volumes
even for perfectly overlapping measurements.

Note that, in our analysis, we linearly down-sample all
three limb sounders to their estimated vertical resolution (i.e.
1 km for HIRDLS, 1 km for COSMIC and 2 km for SABER),
rather than use their original measurement locations (typ-
ically spaced hundreds of metres apart). This reduces the
number of samples significantly, providing a large reduction
to our overall computational requirements, but ensures that
we still recover a full vertical profile of independent measure-
ments. A full-resolution approach was tested and was found
not to affect results significantly.

3 Reanalyses

In this study, we produce synthetic measurements from
six reanalyses using the sampling patterns and sensitivity
functions of the above four instruments. These reanalyses
are CFSR, ERA-Interim, ERA-5, JRA-55, JRA-55C and
MERRA-2. Each of them is widely used in the scientific
community for a variety of purposes (except ERA-5, which
has only recently been released). With the exception of JRA-
55C, they are all generated using full-input reanalysis sys-
tems, i.e. they assimilate both surface and upper-atmospheric
(in this context, stratospheric and mesospheric) conventional
and satellite data. JRA-55C assimilates a full suite of sur-
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Figure 1. Approximate averaging volumes for (a) HIRDLS, (b) SABER, (c) AIRS-L1 and (d) COSMIC, shown over northwestern Europe
for scale. Solid volumes show the regions which contribute the largest 99 % of the signal for each measurement. For (a) and (b), solid lines
show the scan track at the reference altitude for that instrument (20 km for HIRDLS, 30 km for SABER), dashed lines show the track at 15
and 60 km in altitude, and dotted lines show the track at 0 km in altitude. For (d), black lines indicate the centre of measurement volume
for each profile at each height, black circles indicate the surface geographic location corresponding to the profile centre at 15 km in altitude,
and a continuation of the main line joins these. Alternating colours are used for contrast between individual averaging volumes and do not
indicate any technical difference.

face and near-surface observations, but no upper-atmospheric
satellite data, and thus provides a useful test of how well the
model physics transmits information to the middle and up-
per atmosphere: in particular, this is useful for assessing how
well constrained the other reanalyses can be considered to be
before the satellite era.

Table and Fig. 3 describe the key relevant properties to our
study of each reanalysis, including the horizontal and verti-

cal resolutions of the products used and whether they assim-
ilate the instruments we consider. COSMIC is assimilated by
all reanalyses except JRA-55C, AIRS by all except for JRA-
55 and JRA-55C, and SABER and HIRDLS by none. The
S-RIP introductory paper Fujiwara et al. (2017) provides a
detailed summary of the key features of each reanalysis, and
thus we omit a general description for brevity. Relevant de-
tails will be referenced directly in the text where appropri-
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Figure 2. Sensitivity functions for each instrument in (a) the vertical direction and (b–e) the horizontal plane. 1X is the major axis and 1Y
the minor axis in the horizontal plane, and 1Z is the vertical axis, with 0 in each direction defined as the peak sensitivity. Sensitivities are
normalised to a peak value of 1.

ate. Further details on each reanalysis system can be found
in Saha et al. (2010) [for CFSR], Herbach and Dee (2016)
[ERA-5], Dee et al. (2011) [ERA-Interim], Kobayashi et al.
(2014) and Kobayashi et al. (2015) [JRA-55 and JRA-55C],
and Gelaro et al. (2017) [MERRA-2].

4 Sampling method

Figure 4a illustrates our sampling approach. The blue circles
show a 100 km resolution grid, intended for illustrative pur-
poses. For comparison, our lowest-resolution analysis, ERA-
Interim, has a horizontal resolution of ∼ 84 km at the Equa-
tor. Thus, while this grid is slightly coarser than reality to
clarify our explanation, it is not excessively so.

The shaded cyan oval, meanwhile, shows a horizontal sen-
sitivity function typical of SABER. Any real SABER tem-
perature measurement will be a single number representing
the weighed average of temperature across this ovoid (i.e.
including its vertical extent, not shown). There is an obvi-
ous spatial mismatch between the ovoid and the reanalysis
grid point locations, which makes direct comparison chal-
lenging. The same fundamental concept holds true for any
other remote-sensing measurement, which will have a defi-
nite weighted volume of some form which does not usually
correspond to a comparator model.

If we are working with standard reanalysis products, as is
the case here, this mismatch can be overcome in three main
ways. The first such approach is simply to interpolate the
model to the centre of the measurement volume, i.e. (0,0)
on these axes. This is a viable approach for many uses, if not

most, since the majority of the sensing weight is here. Sec-
tion 5 assesses the accuracy of this relative to the approach
we do adopt.

A second approach is to produce a weighted sum of the
model grid points inside the sensing region. This can work
well for coarse measurements, for example those of the SSU
and AMSU sounders, but breaks down where the instrument
resolution is comparable to the model grid. Indeed, for high-
resolution instruments this can produce a less representative
result than simple interpolation.

This is illustrated by Fig. 4b. Here, the brown circles indi-
cate points on the reanalysis grid which lie inside the SABER
averaging volume. If we computed a SABER-equivalent re-
analysis value using only values inside the weighting vol-
ume, only these points would be included. The red circles,
meanwhile, indicate points which would not be included us-
ing this approach, but which should have a larger contribu-
tion than the brown points. This method can thus discard
highly relevant local data, while overweighting more distant
points. While in practice for SABER, more points would lie
inside the ovoid at the resolution of a real reanalysis, this
would not be the case for HIRDLS and COSMIC, for which
it is quite possible no points will lie inside a given volume.

A third approach, and the one we use in this study, is to
first oversample the model data onto a much finer grid (grey
dots). By weighting these fine grid points appropriately and
then summing, we can combine all relevant information and
ameliorate the problems of the second approach significantly,
while still providing an improvement in accuracy over simple
interpolation.
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Figure 3. (a) Vertical and (b–g) horizontal resolution of each dataset used. For each of the panels (b)–(g), the reanalysis grid is shown at
an arbitrary centre latitude of 70◦ N to demonstrate the curvature of the spatial grid at high latitudes and overlaid with the approximate
horizontal weighting volume for each instrument, rotated to a different angle to minimise overlap.

Table 1. Key properties of the six reanalyses used in this study. “Relevant period” refers to the time period covered by both the reanalysis
and at least one of the instruments we use in this study; in all cases, we terminate data analysis at the end of 2012 if it continues past that
date.

Reanalysis Relevant period Resolution Does it assimilate...?
(yyyy/mm) Time (h) Long (◦) Lat (◦) Vertical AIRS COSMIC HIRDLS SABER

CFSR 2003/01–2011/03 6 0.5 0.5 64 levels, top 0.625 hPa Y Y N N
ERA-Interim 2003/01–2012/12 6 0.75 0.75 60 levels, top 0.1 hPa Y Y N N
ERA-5 2010/01–2012/12 1 0.3 0.3 137 levels, top 0.01 hPa Y Y N N
JRA-55 2003/01–2012/12 6 0.56 0.56 60 levels, top 0.1 hPa N Y N N

JRA-55C 2003/01–2012/12 6 0.56 0.56 60 levels, top 0.1 hPa N N N N
MERRA-2 2003/01–2012/12 3 0.625 0.5 72 levels, top 0.01 hPa Y Y N N

Appendix A describes the technical implementation of this
approach in detail. In brief, we implement (i) an observation
import function (OIF, Sect. A1) for each instrument we wish
to sample with the characteristics of (ii) a model import func-
tion (MIF, Sect. A2) for each reanalysis we wish to sample
and then feed the output from these functions into (iii) a core
analysis routine (Sect. A3), which generates the desired sam-
ples using an approach generalised to work over as broad a
range of OIFs and MIFs as possible.

This software scheme provides significant flexibility of
analysis. Both the OIF and MIF can be easily substituted,
allowing the analysis of a wide range of datasets. In this
study, we use four OIFs and six MIFs, representing the in-
struments and reanalyses described above, and we plan to de-
velop more for future model–observation comparison work.
Further, no inherent assumptions are made as to the nature of

the data being analysed, provided a suitable sensitivity func-
tion is provided. For example, while in this study we consider
only temperature data, it is perfectly possible to instead sam-
ple reanalysis wind speeds or chemical distribution fields for
comparison to observations.

5 Full sampling vs. single-point sampling

Our sampling approach is relatively computationally ex-
pensive. A much cheaper approach would be to instead
simply interpolate the reanalysis temperature field to the
measurement-centre locations, i.e. a single-point approxima-
tion (SPA) to the satellite sensing function. It is thus useful to
quantify how large a difference the more complex approach
makes to the final results. The full details of this comparison
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Figure 4. A 2-D schematic illustrating the motivation underlying our sampling approach. See text for further details.

are shown in Appendix C, and we only outline the conclu-
sions here. We refer to these approaches as the “SPA” and
“full” approaches and to the difference between the resulting
temperature estimates as 1TSPA.

When considering bulk temperatures (as opposed to per-
turbations), we find that, while the vertical form of the AIRS
weighting function must be considered – without doing so,
> 70 % of samples have a difference greater than 3 K – the
full-3-D approach is usually unnecessary. For limb sounders,
the full approach also remains unnecessary even with the
most advanced current reanalyses: while1TSPA can be com-
parable to instrument precision in some cases, it is usually
much smaller than uncertainties due to instrument accuracy,
which is affected by other factors in the retrieval process.

However, when considering smaller-scale perturbations to
the data, which are important in fields such as gravity wave
and turbulence studies, the size of 1TSPA relative to instru-
ment precision and to the magnitude of the signals under in-
vestigation becomes more significant. For this type of work,
we find the following.

1. The full sampling approach is justified for comparisons
to AIRS-L1 data. While bulk temperatures can gener-
ally be produced well using a simplified 1-D-only ap-
proach, more than 50 % of samples have a measurable
(i.e. above instrument noise) difference between a 1-D
and 3-D sampling approach, of up to ∼ 5 K in extreme
cases.

2. While we do so for the rest of this study for reasons of
internal consistency, no current reanalysis justifies the
use of full rather than SPA sampling when comparing to
HIRDLS data. This is because 1TSPA is almost always
(100 % of the time for JRA-55, JRA-55C and ERA-I,;
99.7 % of the time for CFSR and MERRA-2) smaller
than the instrument precision at HIRDLS length scales.

This is an especially important point given the relatively
large sampling time per day required (∼ 20 min per day
of data, compared to ∼ 5 min day−1 per SABER, due
mostly to the larger number of profiles).

3. In some cases, the full sampling approach is justified
for COSMIC and SABER data, in particular when us-
ing high-resolution reanalyses such as ERA-5. Cases
in which it is useful to do so include sampling near
the Equator and in regions of high gravity wave activ-
ity. While the global percentage of samples with1TSPA
comparable to instrumental precision is only ∼ 5 % or
less, such samples are preferentially located in these re-
gions (Fig. C3). Furthermore, the use of pairs of vertical
profiles for typical gravity wave analyses (e.g. Ern et al.,
2004; Alexander et al., 2008), with each profile contain-
ing dozens of individual samples, means that a relatively
small percentage of large 1TSPA samples in such a re-
gion could easily affect a significant proportion of wave
estimates made using SPA-sampled reanalysis data.

The remainder of this paper will use our synthetic mea-
surements to compare bulk temperatures among COSMIC,
HIRDLS, SABER and our six reanalyses. Based on the above
conclusions, we expect the difference from the results that
would be obtained using a SPA approach to be extremely
small, such that the majority of differences will arise due to
scanning patterns and retrieval methods rather than the use
of full-3-D sampling. However, our results show that as re-
analyses continue to improve in resolution, using a full sam-
pling approach will become an increasingly important factor
in producing accurate comparisons.
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6 Relative scatter

Figure 5 compares observed and synthetic temperatures
for each of the three limb sounders at the 30 km altitude
level. Results are plotted as a scatter-density plot for each
instrument–reanalysis combination. All profiles at all lati-
tudes are included in the comparison, and thus each panel
summarises at least 1.4 million like-for-like comparisons be-
tween an instrument and a reanalysis.

In all cases, agreement is, to first order, very close. No
correlation coefficient is less than 0.968, with the HIRDLS–
ERA-I pairing generating the highest correlation of 0.9901.
Fitted gradients are also extremely close, with a minimum of
0.98 and with several pairs showing a perfect linear fit, i.e. a
fit gradient of 1.00 with zero offset.

JRA-55C exhibits the worst agreement with the observa-
tions, consistent with the lack of stratospheric data assimi-
lation in this reanalysis. However, even this pairing shows a
minimum correlation of 0.968 (with COSMIC) and a maxi-
mum spread about the 1 : 1 line ∼ 15 K in the most extreme
case (a few dozen samples in 3.9 million). This suggests that
the model physics is still doing a good job of reproducing the
bulk characteristics of the observed atmosphere at the 30 km
level, and thus that pre-satellite-era reanalyses are potentially
scientifically useful at these altitudes.

COSMIC comparisons exhibit more scatter than HIRDLS
and SABER comparisons. Since all individual comparisons
are shown on the chosen colour scale (the minimum coloured
value, 10−7.67, is smaller than the smallest possible bin
value), this is not an artefact of the number of points, and
in any case, the number of samples is broadly comparable
to SABER (∼ 75 % as many samples). This may suggest
greater noise on the COSMIC measurements. While it could
also in principle be due to their different spatial coverage,
study of regional correlations and differences in Sect. 9 be-
low suggests that, at this height at least, this is not the case.

Figure 6 shows equivalent results at 50 km in altitude. This
is more than a decade of pressure above Fig. 5, and thus both
simulating and retrieving atmospheric temperature is a much
larger scientific challenge.

While this altitude is well within the coverage range of
HIRDLS and SABER, it is very close to the upper limit of
COSMIC data. Here, measurement effects can significantly
affect the retrieved dry temperature, resulting in much greater
retrieval noise than at lower altitudes. At low temperatures
and densities, the refractive index of the atmosphere is also
low, and hence the phase delays measured by the COSMIC
GPS radio occultation receivers are very close to the instru-
mental noise limit imposed by thermal noise effects (Tsuda
et al., 2011). This leads to a positive bias at low temper-

1Note that no comparison is shown between HIRDLS and ERA-
5 in this or any other figure since at time of writing the ERA-5
dataset begins in 2010, 2 years after the end of HIRDLS data col-
lection.

atures since the phase delay noise is often larger than the
temperature-induced phase delay, which the retrieval aims
to measure. In addition to a general widening of the scat-
ter cloud, this also manifests itself as a characteristic “ba-
nana” form visible in the comparisons with all six reanaly-
ses. We also see a slight cold bias in HIRDLS temperatures
of a few Kelvin, consistent with previous studies (e.g. Gille
et al., 2013).

Aside from these known features, some clear trends in the
comparisons can be seen. Firstly, an increase in scatter for
all comparisons is clearly visible. In particular for JRA-55C,
correlation coefficients have dropped from 0.974 to 0.759
for HIRDLS and from 0.971 to 0.751 for SABER. This is
a large drop and shows that the model is performing much
worse as we get further from assimilative constraints in the
lower atmosphere. Even discounting comparisons involving
either COSMIC or JRA-55C, correlation coefficients now
range from 0.842 to 0.942 at this height, compared to 0.984–
0.990 at 30 km in altitude, a substantive drop indicative of our
poorer state of knowledge of the atmosphere at these heights.

Another noticeable effect is that, while the ERA-I, ERA-
5, JRA-55, MERRA-2 and even JRA-55C comparisons with
HIRDLS and SABER all have a linear trend very close to
the 1 : 1 correspondence line, CFSR has a noticeably differ-
ent gradient – observed cold temperatures are modelled as
too warm in CFSR and vice versa. As a result of this, CFSR
comparisons have a lower correlation with observations than
any reanalysis other than JRA-55C.

7 Time series comparisons

To further characterise the differences between the observa-
tions and observation-sampled reanalyses, Figs. 7, 8 and 9
show zonal mean time series of each dataset at the 30 and
50 km altitude levels for the Equator, 60◦ N and 60◦ S lati-
tude bands respectively. COSMIC, HIRDLS and SABER are
all shown at the Equator, but SABER is omitted from the
other two latitude bands since it only provides coverage for
part of the year. For each comparison, the main panel shows
a time series over the full period of comparison, while the
smaller panel at the right shows an annualised comparison
over the whole period.

In all cases, and consistent with Sect. 6, a much closer
agreement is seen between the observations and synthetic re-
analysis temperatures at the 30 km level than the 50 km level.
Some biases are clearer in this format however. In particular,
relative to the reanalyses, SABER (30 km, Equator) exhibits
a high bias of∼ 1–2 K all year, while HIRDLS (50 km, Equa-
tor) exhibits a low bias of∼ 1–3 K between July and January.

Key geophysical features are clearly resolved in all obser-
vations and reanalyses. A very clear annual cycle is seen in
the 60◦ N and 60◦ S comparisons at both heights, a quasi-
biennial pattern in the 30 km equatorial time series, and a
mixed annual–semi-annual signal in the higher-altitude equa-
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Figure 5. Scatter-density plots comparing each instrument (rows) to synthetic measurements generated from each reanalysis (columns) at
30 km in altitude. For each panel, pixels indicate the proportion of all samples with the (vertical axis) observed and (horizontal axis) simulated
temperature. The solid black line indicates a 1 : 1 correspondence among the datasets, and the dashed line is a linear fit to the results – note
that the dashed line very closely overlies the solid line. Text annotations show the number of contributing sample pairs (N , in thousands of
samples), the Pearson linear correlation coefficient of the two datasets (r), and the equation of the linear fit line (in the form y =mx+ c,
where y is the instrument, x the sampled model, m the gradient and c the y-axis intercept.)

Figure 6. As in Fig. 5, but at 50 km in altitude.
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Figure 7. Time series of observed and sampled-reanalysis temperature, averaged over 5◦ S–5◦ N, at (a–c, g–i) 50 km and (d–f, j–l) 30 km
in altitude. Panels (a)–(f) show time series over the period 2003–2012, and panels (g)–(l) the annual cycle derived from the extended time
series.

torial time series. While these features are extremely large
and should be well resolved in all datasets, it is encourag-
ing to see how strong the temporal agreement is. A possible
exception is CFSR at 50 km, which in both hemispheres has
trouble resolving winter temperature minima at 50 km in al-
titude.

Less consistency is seen in how well the different datasets
reproduce the dramatic temperature variations associated
with sudden stratospheric warmings (SSWs). The SSWs of
January 2006, January 2009, March 2010 and January 2012
(Butler et al., 2017) are clearly visible at both altitudes, and
all datasets show a near-identical response at the 30 km level.
However, this is the case in both the original observations
and the sampled reanalyses and is thus likely to be due to
geophysical differences among the SSW events rather than
instrument or reanalysis performance.

For the well-resolved SSWs, all datasets show a near-
identical response at the 30 km level. However, at 50 km
much more spread is seen among different datasets. Con-
sidering first the 2006 warming with HIRDLS sampling
(Fig. 8b), the temperature peak in late January is very well
reproduced across the different datasets but the period of re-
duced temperatures after this peak shows very large inter-
dataset differences. While the observations, JRA-55 and
ERA-I all reach a low of 226 K in this period, MERRA-2 es-
timates a temperature of 231 K, JRA-55C 238 K and CFSR

244 K (recall that HIRDLS has a known cold bias at these
altitudes, and thus the true value is likely to be a few Kelvin
higher than the observed). Thus, we see a range of 18 K for
a zonal mean estimate made using a relatively densely sam-
pling instrument scan pattern (HIRDLS typically measured
∼ 300–400 profiles in this latitude range per day). Smaller
differences are seen in the February 2007 warming, with only
CFSR diverging significantly from the consensus tempera-
ture estimate.

Considering now the SSWs resolved in the COSMIC-
sampled record at 50 km (Fig. 8a), we again see the ini-
tial temperature peak being measured similarly across all
the datasets, but the temperature trough afterwards being re-
solved very differently in each dataset. For the 2009 and 2012
warmings, the spread in temperature is similar to 2006 in
HIRDLS-sampled data, with the exception that the obser-
vational dataset is one of the larger-valued datasets, consis-
tent with the challenges of measuring cold temperatures with
COSMIC (Sect. 6). ERA-5, which is only currently available
post-2010, joins ERA-I and JRA-55 in simulating very cold
temperatures in the 2012 event.

Finally, Fig. 9 shows equivalent time series at 60◦ S. As
at 60◦ N, the reanalysis-sampled zonal means reproduce ob-
servations and each other well at 30 km and more poorly at
50 km.
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Figure 8. Time series of observed and sampled-reanalysis temperature, averaged over 55–65◦ N, at (a, b, e, f) 50 km and (c, d, g, h) 30 km
in altitude. Panels (a)–(d) show time series over the period 2003–2012, and panels (e)–(h) the annual cycle derived from the extended time
series.

8 Taylor diagrams

To investigate how well the synthetic measurements from
each reanalysis reproduce the true measurements for each in-
strument, Fig. 10 shows Taylor diagrams (Taylor, 2001) for
each limb-sounder sampling pattern at three altitude levels:
30, 50 and 70 km. For each panel, the standard deviation of
the observational dataset is shown as a black circle on the
horizontal axis and acts as a “true” estimate, which the re-
analyses attempt to approximate. Each sampled reanalysis
is then shown as a marker somewhere in the quadrant, with
the angular distance between this marker and the black cir-
cle encoding the Pearson linear correlation between the two
datasets and the linear distance between the marker and the
black circle (grey circles) showing the root-mean-square dif-
ference (RMSD) between them. The correlation and the stan-
dard deviation in each case are computed using the entire
dataset, across all times and at all locations.

If the observations were perfectly true, these diagrams
would allow us to quantitatively estimate reanalysis per-
formance. The assumption of observational truth is how-
ever somewhat problematic given the technical challenge of
stratospheric remote-sensing measurements, and this distinc-
tion between measurement and truth must be borne in mind
when considering the information these diagrams present:
these diagrams are best thought of as describing how sim-

ilar the reanalyses are to the observations rather than how
true they are. Section 10.1 and 10.2 below will generalise
these results to all combinations of true and synthetic obser-
vations.

Considering first the 30 km level (Fig. 10f–h), we see very
close correspondence among all reanalyses and all three in-
struments. RMSDs in all cases are less than 3 K, and corre-
lations are greater than 0.95 (consistent with the scatter plots
in Sect. 6). Interestingly, in all cases the reanalyses are all
tightly clustered around a location close to each other but dif-
ferent from the observations, which will be discussed further
below.

At the 50 km level (Fig. 10c–e) differences start to emerge.
Clear differences are seen in the standard deviations, with
CFSR consistently the lowest and the observations consis-
tently the highest. This is consistent with expectations: in
Sects. 6 and 7 we saw that CFSR temperatures were com-
paratively narrowly distributed at this level, while real obser-
vations are likely to have a small but consistent random noise
component, which will increase their standard deviation even
in the case of otherwise perfect agreement. JRA-55C has the
largest RMSD from the observations at this height in all sam-
pling patterns, again consistent with Sect. 6.

Finally, at the 70 km level (Fig. 10a–b) we compare
HIRDLS to MERRA-2 and SABER to MERRA-2 and ERA-
5. The RMSD between observations and models is typically
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Figure 9. Time series of observed and sampled-reanalysis temperature, averaged over 55–65◦ S, at (a, b, e, f) 50 km and (c, d, g, h) 30 km
in altitude. Panels (a)–(d) show time series over the period 2003–2012, and panels (e)–(h) the annual cycle derived from the extended time
series.

∼ 9 K, with correlations of ∼ 0.75. The ability of the reanal-
yses to reproduce the observational record is broadly com-
parable between HIRDLS and SABER; however, it is also
low in absolute terms due to the difficulties of modelling this
atmospheric region and the limited data constraints available.

9 Correlations by latitude and height

To further investigate the relative differences between our
synthetic and true observations, Figs. 11–14 decompose the
data as functions of (Figs. 11–12) zonal-mean latitude and
altitude and (Figs. 13–14) geographic location at 50 km, in
all cases decomposed by season. The 50 km level is deliber-
ately selected here in preference to the 30 km level due to the
wider spread of the above comparisons.

For reasons of space, these figures compare the observa-
tional data to a multi-reanalysis mean (MRM) rather than the
individual reanalyses. This MRM is constructed as the arith-
metic mean of all six synthetic measurements corresponding
to each true measurement, i.e. it is at the individual measure-
ment level. We also include full latitude–height comparisons
to each individual reanalysis as Supplement Figs. S1–S12;
we note that each of these individual comparisons is very
similar to the MRM comparison, and thus that the MRM
figures characterise general differences between the obser-
vations and reanalyses well.

We consider first correlations and RMSDs as a function of
latitude and altitude, Figs. 11–12 and S1–S12. Correlations
are highest, and RMSDs lowest at high latitudes and low al-
titudes in all seasons. Lower correlations are seen in tropi-
cal and equatorial latitudes, but with the same vertical trend.
Lower correlations are observed in all cases at the summer
pole, falling to near-zero correlation for the southern sum-
mer pole in mesospheric SABER comparisons.

The maps, Figs. 13–14, generally show similar results,
with the exception that very large RMSDs are seen at win-
ter high altitudes, consistent with the zonal-mean time series
studied above. Additionally, one key feature is much clearer
in this figures; namely that, while correlations are low across
the tropics, the region directly above the Equator (latitudes
<∼ 10◦) exhibits stronger positive correlations than the rest
of the tropics in all three comparisons and in all four seasons.
Since model development often focuses on reproducing the
stratospheric quasi-biennial oscillation at these latitudes as a
proxy for accurate atmospheric wave simulation, this may in-
dicate that this region is especially well tuned by comparison
to the surrounding latitudes.
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Figure 10. Taylor diagrams for each reanalysis–instrument pairing. For each panel, the radial axis shows the standard deviation of each
sampled-reanalysis dataset (indicated by coloured symbols), and the curved axis indicates the correlation of that dataset with the equivalent
observational dataset. Black circles indicate the observational datasets themselves, which by definition perfectly autocorrelate. Grey arcs
show the root-mean-square difference between the observational and sampled datasets. Multiple black circles are plotted on each panel and
outlined with colours; this is because each reanalysis covers a slightly different time range, and thus there is a small amount of variability in
the observational standard deviation; RMSD arcs are based upon the MERRA-equivalent observational standard deviation in each case (i.e.
the red outlined circles). Each row shows a different height level, and each column a different instrument.

10 Cluster analysis

10.1 Cluster circles

An interesting feature of the Taylor diagrams presented in
Sect. 8 is that, at each height level and for each instrument
sampling pattern, a clear cluster is seen consisting of all the
reanalyses (except CFSR and JRA-55C at 50 km), as op-
posed to a wide scatter. The MRM comparisons presented in
Figs. 11–14 and the individual-reanalysis comparisons pre-
sented in Figs. S1–S12 also show a close geographic cor-
respondence in the magnitude and pattern of the difference
between true and synthetic measurements.

However, this does not itself tell us if the reanalyses are
similar to each other. It is plausible that they could all differ
from the observations to a similar quantitative degree but dif-
fer strongly from each other at the same time. This is an im-

portant distinction and requires further clarification. Accord-
ingly, we have also computed the correlation and RMSD be-
tween each pair of datasets for each sampling pattern, which
we present in Figs. 15 and 16.

In both figures, each panel shows all pairwise comparisons
for a given instrument sampling pattern at one of three height
levels. Individual datasets (both reanalysis and observational)
are evenly distributed around the exterior of the shaded cir-
cle. Lines then join each pair of datasets, the colour and
width of which indicate the correlation coefficient (Fig. 15)
or RMSD (Fig. 16) between that pair of datasets using that
sampling pattern. For example, Fig. 15f shows the corre-
lations between all synthetic and real measurements using
the HIRDLS sampling pattern at 30 km in altitude, while
Fig. 16b shows the RMSD between each pair of datasets us-

www.atmos-chem-phys.net/18/13703/2018/ Atmos. Chem. Phys., 18, 13703–13731, 2018



13716 C. J. Wright and N. P. Hindley: Reanalysis – satellite temperature comparisons

Figure 11. Correlations between multi-reanalysis mean (MRM) sampled temperatures and each instrument, decomposed by latitude, altitude
and season. Dashed line at 60 km in altitude indicates the approximate height of the transition from a six-reanalysis MRM to a two-reanalysis
MRM; dashed lines at 50◦ S and 50◦ N indicate the boundary of full and partial SABER coverage. See Supplement Figs. S1–S6 for individual
satellite–reanalysis comparisons.

Figure 12. Root-mean-square differences between multi-reanalysis mean (MRM) sampled temperatures and each instrument, decomposed
by latitude, altitude and season. Dashed line at 60 km in altitude indicates the approximate height of the transition from a six-reanalysis
MRM to a two-reanalysis MRM; dashed lines at 50◦ S and 50◦ N indicate the boundary of full and partial SABER coverage. See Supplement
Figs. S7–S12 for individual satellite–reanalysis comparisons.
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Figure 13. Maps at the 50 km altitude level of the correlation between MRM sampled temperatures and each instrument.

Figure 14. Maps at the 50 km altitude level of the RMSD between MRM sampled temperatures and each instrument.

ing the COSMIC sampling pattern at 50 km in altitude. Ob-
servational datasets are shown at the right of each panel.

Thick blue lines show the best agreement between a pair of
datasets, and thin red lines the worst. In each case, these lines
are scaled across the range of values measured for that panel:
specifically, thin red lines show the lowest correlation (or
highest RMSD) measured, thick blue lines show the highest
correlation (or lowest RMSD) measured and the other lines
are scaled linearly into the range between these values based
on their numerical value, as opposed to their ordering. This

internal normalisation is chosen due to the large inter-panel
differences in value (as seen in Sects. 6, 8 and 9). Full numer-
ical correlations and RMSDs are provided for each pairing as
Supplement Tables S1–S14.

Firstly, we note that the worst inter-dataset pairings are al-
most always with JRA-55C, in each case shown at the bottom
of the circle. CFSR also compares poorly at the 50 km level.
These tendencies are consistent with our previous results and
expectations.
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Figure 15. Pairwise correlation between each dataset at three height levels. Black dots and coloured squares around each circle indicate
nodes representing each model or observational dataset, with coloured squares indicating comparisons performed and black dots indicating
unavailable comparisons due to spatial and temporal coverage constrains. Coloured lines joining nodes indicate pairwise correlations between
the data sources associated with those nodes, described by the key at the top left.

The second feature we note is that no observation–
reanalysis relationship is ever the strongest relationship
within that panel. This is the case for all sampling patterns
and for both correlation and RMSD analyses. For RMSD
comparisons, this is clear from Fig. 16 since no observational
point has a thick blue line connecting it to any reanalysis. For
the correlation comparisons, in Fig. 15, this is less clear since
two connections (HIRDLS to MERRA-2 at 50 km and ERA-
5 to SABER at 50 km) are shown as thick blue lines; how-
ever, even in these two cases the measured value (Tables S10
and S11) is the lowest correlation of the thick-blue-line pair-
ings.

This is especially interesting in the case of COSMIC
at 30 km in altitude, panel (e) in Figs. 15 and 16. While
HIRDLS and SABER are independent of the reanalyses and
COSMIC is itself unreliable at 50 km in altitude due to noise
effects, at 30 km in altitude COSMIC is both highly reliable
at a technical level and, crucially, is actually assimilated by
every model considered. Given this, we would expect all the
synthetic measurements to be highly similar to COSMIC-
retrieved temperatures, with which they share a sizable frac-

tion of the detection and analysis chain. Even more unexpect-
edly, COSMIC is actually the worst-correlated dataset of the
seven considered and has the highest RMSD, even including
JRA-55C. We discuss this further in Sect. 10.2.

Less surprisingly, but still interestingly, the same is largely
true for SABER and HIRDLS comparisons. Compared to
the relationships among most reanalyses, the RMSD between
observational and reanalysis datasets is much larger and the
correlations lower. This implies a significant dissimilarity in
every case between real and synthetic observations. While
some of this difference could be due to limited instrumental
precision, this does not explain all or even the majority of the
observed effect size: typical RMSDs between synthetic and
real observations (Tables S1–S14) are ∼ 1–2 K at the 30 km
level rising to ∼ 4–9 K at the 50 and 70 km levels, while in-
strument precision is typically ∼ 0.5 K.

10.2 Co-located cluster analysis

The previous section suggests that there are meaningful dif-
ferences between observational and synthetic datasets, in
terms of both form (i.e. correlation) and magnitude (i.e.
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Figure 16. Pairwise RMSD between each dataset at three height levels. Black dots and coloured squares around each circle indicate nodes
representing each model or observational dataset, with coloured squares indicating comparisons performed and black dots indicating unavail-
able comparisons due to spatial and temporal coverage constrains. Coloured lines joining nodes indicate pairwise RMSDs between the data
sources associated with those nodes, described by the key at the top left.

RMSD). However, the methods we have used so far cannot
distinguish between two possible reasons why this may be
the case:

1. the reanalyses are overly similar to each other relative
to the differences among observations, or

2. the observations are overly similar to each other relative
to the differences among reanalyses.

This is an important distinction, with possible implica-
tions for the tuning of both reanalysis model and satellite
retrieval development. In the former case, the models may
be too tightly tuned against each other, while in the latter
case the different instrumental retrievals may be too tightly
tuned against each other. To assess this, we must compare
satellite instruments against each other as well as against
their synthetic equivalents. Accordingly, we have produced
a subset of the full dataset consisting only of measurements
co-located between each pair of instruments, allowing us to
make direct comparisons across the full range of instrument–
reanalysis combinations.

We define profiles as co-located if they are within 100 km
and 15 min of each other, following the argument of Wright
et al. (2011). For this subset of the data, we then compute
the RMSDs and correlation coefficients among the samples
from all 20 datasets, i.e. the three observed datasets and the
17 sampled datasets, and use these to compute a hierarchical
tree. As a caveat, we note clearly that the set of measurements
is not exactly identical in each combination since measure-
ments from all three satellite instruments only very rarely co-
incide; thus, the samples correlated between (e.g.) HIRDLS-
as-CFSR and SABER-as-JRA-55 will not be the same set of
samples as (e.g.) HIRDLS-as-CFSR and COSMIC-as-JRA-
55. However, there are a sufficient number of pairwise cor-
relations between each observational track (of the order of
thousands), and the samples are geographically sufficiently
widely distributed, that all of the correlations and RMSDs
can be collected into a single hierarchical tree with trace-
ability across the full set. This co-location was carried out
at the 30 km altitude level, and our subsequent analysis and
discussion focus only on this level for brevity. The same anal-
ysis was performed at 50 km in altitude and gave broadly
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Figure 17. Dendrogram illustrating results of cluster analysis on co-located measurement pairs. This shows each dataset as a leaf on a
hierarchical tree. The vertical distance up the page at which two branches split indicates the relative dissimilarity of the datasets joined by
the branches. Horizontal distance does not imply any information, and the leaves are distributed horizontally to produce a simple tree. All
co-located measurements have been compared at 30 km in altitude.

similar results, except that differences with observed COS-
MIC data and with CFSR synthetic temperatures were much
larger, consistent with the issues described previously.

Once the data have been subsetted, we carry out a hier-
archical cluster analysis (Hastie et al., 2009; Wright et al.,
2013) of these correlations and differences. We first combine
RMSDs and correlations into a single composite metric of
dissimilarity. Specifically, we define the maximum range of
measured RMSDs and the maximum range of measured cor-
relation coefficients to both equal 1 and then combine them
as

Combineddifference= ScaledRMSD
+ (1−ScaledCorrelation). (1)

A dataset pair with the minimum correlation and the max-
imum RMSD across the full set of combinations will thus
score close to 2. This choice of a 1 : 1 weighting of RMSD
and correlation coefficient is arbitrary, but our results show
minimal sensitivity to varying their fractional weight, and
the same conclusions are reached using either metric indi-
vidually.

We then perform a hierarchical clustering analysis on the
combined difference between each possible pair of sampled
and observed datasets, using the single (i.e. minimum dif-
ference) linkage and a Euclidian distance metric. The order-
ing of our results is invariant to the choice of linkage and
distance metric used over a wide range of feasible options
including the complete, average and centroid linkages and

the Ward and standardised-Euclidian linkages. This analy-
sis essentially partitions the inter-dataset comparisons into
a hierarchical tree, starting at the lowest possible difference
between any two datasets and then producing a new branch
when a rising difference floor reaches a critical level of dis-
similarity. The results of this are illustrated as a dendrogram,
shown in Fig. 17.

Although there are some subtleties to a precise interpre-
tation, to first order this diagram can be conceptualised as
showing the relative difference between each dataset, with
the maximum height reached on the path through the tree
which joins them indicating their relative difference from
each other (in bioscience applications, this separation would
be their co-phenetic distance). Horizontal distance does not
imply any information, and the ordering is chosen purely to
produce a simple tree. We thus obtain an idea of the relative
overall difference for all possible combinations of sampled
and real datasets.

We first note that each reanalysis forms a distinct branch
of the tree, with all sampled forms of any given reanalysis
tightly connected. This suggests that the smallest differences
are between different forms of the same dataset. This is an
intuitively sensible result since we would expect any given
model to correlate well with itself.

Beyond this, we see three main groups of results. The first
of these is JRA-55C, at the right of the panel, where all three
forms of the dataset are closely related to each other (i.e. they
join the hierarchical tree only a short way up the panel), but
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are relatively much more dissimilar from any other dataset
(i.e. they join the rest of the tree at the extreme top of the
panel). This tells us that, again in relative terms, the sam-
pled JRA-55C data have significant dissimilarities with all
other reanalyses and with all the instrumental datasets. This
is again an intuitively sensible conclusion, due to the lack of
observational constraints at these altitudes in JRA-55C.

The second main group of results is the set of observa-
tional datasets, i.e. COSMIC, HIRDLS and SABER, to the
left of the JRA-55C cluster. The defining characteristic of this
group is not their relative closeness but instead the exact op-
posite. Each of the observational datasets is highly dissimilar
from both the others and from all the reanalyses, regardless
of sampling pattern. Of the three, HIRDLS and SABER join
each other in the tree most closely, while COSMIC is more
dissimilar to the other observational datasets but less so than
JRA-55C.

Our final, third, group is of the full-input reanalyses. This
is the majority of the tree, extending from the far left right-
wards. All of these datasets join the tree at a point approxi-
mately halfway up the panel relative to where HIRDLS and
SABER join it, suggesting that this group is significantly
more similar to each other (on the basis of our distance met-
ric) than to any observational dataset. Within this group,
ERA-5 samples form a distinct subset, while the others are
all relatively tightly clustered to each other.

From this analysis, we conclude that, of the two options
outlined at the start of this section, option (1) is the more
likely, i.e. the set of (full-input) reanalyses exhibits a high
degree of internal similarity relative to any individual obser-
vational dataset. Indeed, our analysis suggests that each of
the observational datasets is more different from any other
observational dataset than any full-input reanalysis is from
any other full-input reanalysis.

Of special note is the relatively large dissimilarity be-
tween COSMIC and any other dataset. Since all of the full-
input reanalyses assimilate low-level COSMIC data, this sug-
gests either that the COSMIC temperature retrieval intro-
duces large additional errors relative to the assimilated form
or that the relative importance of COSMIC data in the reanal-
ysis schemes used is too low.

11 Summary and conclusions

In this study, we develop and apply a method of sampling
output reanalysis temperature fields to produce synthetic
satellite observations. This allows us to carry out a like-for-
like comparison between final-output reanalysis products and
final-output satellite data products, i.e. at the end of their
respective analysis chains, where a typical user would en-
counter the data.

We first compare the synthetic measurements produced us-
ing this approach to a simplified scheme in which the reanal-
ysis is simply interpolated to the centre of the satellite mea-

surement volume. We show that, with the current generation
of reanalyses, the more complex approach is always required
when comparing to AIRS, almost never required when com-
paring to HIRDLS and may be required in equatorial regions
and regions of high gravity wave activity but not otherwise
for COSMIC and SABER.

We then assess the relative differences between each of
the three limb sounder datasets (i.e. COSMIC, HIRDLS and
SABER) and six modern reanalyses at the 30 and 50 km alti-
tude levels. Unsurprisingly, agreement between observations
and reanalyses is significantly better at the 30 km level than
the 50 km level: all-latitude all-time correlations between ob-
servations and full-input reanalyses (i.e. excluding JRA-55C)
range from 0.979 to 0.990 at the 30 km level, reducing to
0.842–0.942 at the 50 km level (also excluding COSMIC at
50 km, which is known to have measurement difficulties at
this altitude).

The reanalysis and observed datasets generally show ex-
cellent agreement at the zonal mean level. Exceptions typi-
cally occur at higher altitudes, the largest of which is a gen-
eral mismatch following sudden stratospheric warmings.

Inter-dataset correlations are lowest (i) in the tropics at all
heights except for the region immediately above the Equator,
(ii) at all latitudes at high altitudes and (iii) at high altitudes
over the summer pole. RMS differences are highest at high
altitudes and over the winter pole.

Finally, we use both intra-sampling-pattern all-dataset
and inter-sampling-pattern co-located-profile-only correla-
tions and RMSDs to investigate how similar the reanalyses
and individual observational datasets are to each other at a
bulk level. Our results show strong evidence that, with the
exception of JRA-55C, the agreement between any pair of
reanalysis datasets is significantly better than that between
any two observational datasets or between any observational
dataset and any reanalysis, even in the case of COSMIC for
which the reanalyses assimilate that data. This may be evi-
dence of over-tuning of reanalysis models against their com-
parators, and if so presents significant implications for future
development of these models.

Code and data availability. The original reanalysis and satellite
datasets are available from their respective sources, as described in
the acknowledgements. All code developed for this study is avail-
able as MATLAB scripts on request from the lead author, and the in-
termediate data products used can be generated using these scripts.
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Appendix A: Sampling method

Figure A1 outlines our sampling method. We divide this de-
scription, and the software which implements it, into three
parts: an observation import function (OIF), a model import
function (MIF) and the core analysis (core).

A1 Observation import function

The OIF reads in the observational data in its original for-
mat and outputs observational parameters needed for the later
stages of the analysis. These parameters can be divided into
two groups of parameters: (a) geolocation and (b) sensing
volume. All values are computed and stored at the individual
measurement level.

The geolocation parameters we use are the (i) latitude φ,
(ii) longitude θ and (iii) pressure level p of the centre of each
measurement, together with the (iv) horizontal α and (v) ver-
tical β viewing angle at which the measurement was taken.
For all observations used in this study, the latitudes, longi-
tudes and pressures are provided in the original data files
used and are simply duplicated into the appropriate format
for feeding into the core.

Horizontal viewing angles are defined as clockwise from
geographic north. For COSMIC, the original files provide
this information, which is simply duplicated. For AIRS-
L1, SABER and HIRDLS, we combine the known scanning
geometries of these instruments (47◦ off-reverse-track for
HIRDLS, 90◦ off-track for SABER, directly below for AIRS)
with the time-varying measurement latitudes and longitudes
to compute horizontal viewing angles for each data point.

Vertical viewing angles are defined as anticlockwise from
instrument nadir. These are defined as 90◦ for COSMIC,
HIRDLS and SABER since all three instruments observe in
the Earth’s limb from a considerable distance and are thus
near horizontal at any given height in the vertical plane on the
scales under consideration. For AIRS-L1, the vertical view-
ing angle is defined as the angle of the individual cross-track
row from the primary travel axis, which ranges from −49.5◦

to +49.5◦.
The sensing volume parameters are specified based on

prior knowledge about the instrumentation used. For the limb
sounders, we approximate the sensing volumes using 1-D
Gaussians. In the along line-of-sight (LOS) and cross-LOS
directions, this arises from the interaction between the ex-
ponential dependence of density on height and the spheric-
ity of the Earth – density, and thus signal, hence fall away
from the tangent point of the measurement exponentially in
both the along-LOS and cross-LOS directions. In the ver-
tical this is an approximation rather than a true form. For
SABER and HIRDLS the exact form varies with height and
latitude slightly due to the precise details of their retrievals
(for HIRDLS, see e.g. Fig. 1 of Khosravi et al., 2009); nev-
ertheless, due to the coarse vertical resolution of reanalyses
in the stratosphere this should not affect our results signifi-

cantly if at all. For COSMIC the vertical resolution is approx-
imately defined by the first Fresnel zone (Kursinski et al.,
1997), which is bounded by a function of square-root form.
This is again sufficiently close to a Gaussian not to affect our
results significantly given reanalysis resolution limitations.

Thus, the OIF specifies for each point simply the stan-
dard deviation of an appropriately sized Gaussian function
in each dimension, which is combined in the core to produce
a 3-D sensitivity weighting volume. For AIRS, we use the
same approximation in the horizontal plane, but use a vertical
function of an appropriate form for AIRS sensitivity (Fig. 2),
which is specified precisely by the OIF.

A2 Model import function

The MIF imports the model data and uses it to produce a lin-
ear interpolant field for later use. Specifically, for each model
time step, the MIF imports the data from the original format
and reformats it to a binary-search-suitable fast-lookup for-
mat. This allows us to rapidly interpolate the model data field
to any geographic location without additional data reformat-
ting, a capability which is exploited in the core analysis be-
low.

An important choice at this stage is whether to interpolate
the data in time as well as space. For the reanalyses used,
the data fields are instantaneous, i.e. a snapshot of the model
at a particular time as opposed to an average over the time
surrounding the time step. Thus, small-scale features, such as
internal gravity waves and chemical laminae, are preserved
in the fields.

If we wish to preserve these features in our sampling, it
would be unwise to interpolate in time. However, we find that
if we do not interpolate in time, the difference between the
sampled and observed temperature fields depends strongly
on the time difference between the model time and observa-
tion time, due to effects such as the diurnal cycle. In extreme
cases, this can create additional deviations as large as 10 K.
Accordingly, throughout this study, we linearly interpolate
our input data to the sampling location in time as well as
space.

A3 Core

The core takes the output of the OIF and the MIF and then
resamples the model data appropriately onto the satellite
measurement track to produce the required synthetic mea-
surements. The core analysis consists of 10 distinct steps
(Fig. A1); of these, nine are scientifically motivated, while
one (C.v) exists to reduce processing time.

A3.1 Produce fine grid (steps C.i to C.ii)

We first identify the measurement centre location supplied by
the OIF and produce a fine spatial grid around this location.
This grid is defined such that the x axis lies along the major
axis of the measurement and the y axis lies along the minor
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Figure A1. Schematic outline of the sampling process. See text for further details.

Table A1. Fine sampling point spacings used for each instrument

Pressure Across-track Along-track
(dec. pres.) (km) (km)

AIRS-L1 1/20 (∼ 800 m) 3.0 10.0
COSMIC 1/80 (∼ 200 m) 0.5 10.0
HIRDLS 1/80 (∼ 200 m) 3.0 10.0
SABER 1/80 (∼ 200 m) 2.0 10.0

axis, with the pressure (z) axis vertically aligned through the
measurement centre. The limits of the fine grid are defined
as the 3 standard deviation points for weights specified as
Gaussians, i.e. all cases in this study except for AIRS-L1 in
the vertical. For AIRS-L1 we terminate the grid half a decade
of pressure above and below where the weight falls to 2 % of
its peak value.

This coordinate system ensures that, regardless of the den-
sity of the fine points, at least one (the centre) point will al-
ways be contained in the measurement volume. However, in
practice, significantly more points are used. Specifically, we
use the fine grid spacings shown in Table A1, chosen using
the sensitivity tests described in Appendix B.

A3.2 Produce and rotate weighting volume (steps C.iii
to C.vii)

We next define the fractional contribution of each point on
the fine grid to the final synthetic measurement. To do this,
we first compute the appropriate Gaussian in each dimension
separately (except AIRS-L1, for which we use the specified

vertical function) and then multiply these 1-D functions to-
gether appropriately to produce a 3-D weighting volume.

Of the several thousand points typically contained in this
volume, the great majority make no significant contribution
to the total weighted sum. Passing these points through the
subsequent analysis is thus computationally expensive for
minimal benefit. Accordingly, we sequence the points in de-
scending order by fractional contribution to the total signal
and then select the points needed to reach a cumulative to-
tal of 99 % of the total weight. Tests show that this makes no
discernible difference to the final result (typically differences
are < 1× 10−4 K), but reduces runtime by 90 %.

We then need to rotate the volume into the appropriate
horizontal and vertical viewing angle. For horizontal angles,
this is simply achieved by applying the necessary coordinate
transform.

In the vertical, this is more complex due to the strong de-
pendence of the weights on atmospheric density. Thus, to
rotate in the vertical, we first un-scale the weights at each
height using a density climatology derived from SABER ob-
servations. We then apply the appropriate rotation matrix for
the necessary coordinate transform before rescaling by den-
sity in the new height coordinates. In this study we only do
this for AIRS; the curved extensions visible at the bottom
of each coloured volume on the edge of the swath in Fig. 1
arise due to this rotation, leading to reduced horizontal reso-
lution at track edge consistent with how the real instrument
observes the atmosphere.
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A3.3 Interpolate and weight (steps C.viii to C.x)

Finally, we convert our fine grid x, y and p coordinates to φ,
θ and p coordinates using their geometric location relative
to the centre location of the original measurement. We then
interpolate the global model onto these coordinates, apply
the weights and sum to produce a single temperature value.
This is our final synthetic temperature measurement, which
we treat in subsequent analyses as if it were a satellite tem-
perature measurement. The whole process then repeats in-
dependently until all measurements required have been sam-
pled.

Appendix B: Selection of fine grid parameters

Our results are potentially highly sensitive to the fine grid
spacing used in the analysis. Too coarse of a spacing will
lead to results which do not represent the reanalysis temper-
ature in the sampling volume accurately, while too fine of a
grid will be prohibitively computationally expensive. To as-
sess the best fine grid spacing to use, we performed a series
of sensitivity tests prior to carrying out the main analysis, us-
ing data from 1 January 2007 as a proxy for the mission as
a whole. Figure B1 shows the results of these tests for each
instrument sampled from the CFSR reanalysis. The other re-
analyses were also sensitivity tested (using data from 1 Jan-
uary 2012 for ERA-5) but produced very similar results and
are consequently omitted for brevity.

For each instrument, the top panel shows the results of
our horizontal sensitivity test. In each case, the vertical axis
shows the spacing of the fine sampling grid in the minor (Y )
direction, and the horizontal axis the grid spacing in the ma-
jor (X) direction. For each test in this panel, a fixed vertical
fine grid spacing of 1/80 decades of pressure (∼ 200 m) was
used. We imposed a maximum runtime of 6 h per day of data
on this test, and black squares indicate tests which did not
sample a complete day of data within this time.

We first define a baseline result, chosen as the highest-
resolution test to run within 6 h. This baseline is assumed to
best represent an optimally sampled reanalysis temperature
field and is indicated by the orange diamond in each panel.
For each other test, we then find the sensitivity testing tem-
perature difference |1TST| between every sample extracted
that day in the test and in the baseline and plot the maximum
value of this difference. By definition, the baseline test thus
has a1TST of 0 K, with all other tests having positive values.
The values shown thus represent the largest difference across
the whole globe at all heights between the highest-resolution
fine grid used and the fine grid being assessed in that test.
Line contours indicate the runtime required to achieve each
result, in minutes.

Intuitively, it seems odd at first that AIRS-L1 sampling
is much more sensitive to the nominally minor Y direction
than the nominally majorX direction since the input horizon-

tal weighting functions are circularly symmetric. However,
when the functions are rotated vertically to account for the
across-track scanning pattern of the instrument, a significant
asymmetry arises in the Y direction, causing this increased
sensitivity. Otherwise, the dependencies are as one would in-
tuitively expect, with an extremely strong Y sensitivity for
the very narrow COSMIC weights, weaker Y sensitivity for
the broader HIRDLS and SABER, and the weakest depen-
dency in all cases in the X direction for all instruments.

The lower panels show equivalent results for vertical sen-
sitivity, in each case performed at the chosen horizontal sen-
sitivity. These are plotted as differences from the finest ver-
tical spacing used (1/160 decades of pressure, ∼ 100 m).
The results are shown on logarithmic axes, and thus the
1/160 decade spacing, which by definition has a 1TST of
0 K, is not shown. The 1/80 decade spacing used in the hor-
izontal tests is indicated by the black outlined point.

Finally, the same analysis was repeated using data pre-
smoothed by 5 km in the vertical, to counter any effect of
random noise. No significant change was observed.

Based on these results, we choose our final fine sampling
grid for each instrument as an empirical balance between
time and small 1TST. These are the values shown in Ta-
ble A1, and they have a maximum 1TST in each case of less
than 0.1 K, i.e. significantly below satellite sensitivity.

Appendix C: Full sampling vs. single-point sampling

In addition to our full-3-D approach, our analysis routine also
samples the reanalyses by simple linear interpolation to the
centre of the measurement volume. This allows us to make
a direct comparison to our more expensive approach, to as-
sess how useful it is. We refer to these approaches as, respec-
tively, the “SPA” and “full” approaches and to the difference
between the resulting temperature estimates as 1TSPA. We
note clearly that the magnitude of 1TSPA is not a metric of
reanalysis quality (although it does inherently arise out of re-
analysis resolution and small-scale variability, both of which
may relate to quality), but is instead intended to determine
whether the full sampling approach is justified for compar-
ing satellite data to said reanalysis.

C1 Overall differences

Figure C1 shows the results of this analysis at a bulk all-
measurements level, plotted as cumulative distributions of
1TSPA for all synthetic measurements at all height levels.

For all reanalyses sampled as COSMIC, HIRDLS and
SABER, mean differences between the SPA and full ap-
proaches are ≤ 0.17 K in all cases. This is better than the
measurement error of these instruments, the precisions of
which are estimated as ∼ 0.5 K for HIRDLS and COS-
MIC and ∼ 0.8 K for SABER. For AIRS-L1, differences are
larger, with mean 1TSPA values of ∼ 6–8.5 K compared to a
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Figure B1. Sensitivity testing results. The top row shows the results of horizontal sensitivity tests, plotted as the maximum difference in
temperature between the test and a baseline indicated by the orange diamond; line contours show the required runtime. The lower panels
show the results of vertical sensitivity tests, plotted as the maximum difference from a reference level of 1/160 decades of vertical spacing.

precision of ∼ 0.7 K, i.e. an order of magnitude larger than
instrument noise.

These results are consistent with the broad nature of the
sensing methods used. Atmospheric temperature typically
varies much more rapidly in the vertical than the horizontal,
and thus the SPA will tend to approximate the fine vertical
sensitivity of a limb sounder better than a nadir sounder’s
coarser vertical sensitivity. We note also that our AIRS sam-
pling is only at a single height level, whereas the limb
sounders are sampled across a range of heights, and that this
may affect the results, particularly since the AIRS weight-
ing functions we use are centred close to the ozone-induced
temperature peak usually present in the upper stratosphere.

For the limb sounders, ERA-5 has the largest 1TSPA, then
CFSR followed by MERRA-2, and then a cluster consisting
of ERA-I, JRA-55 and JRA-55C with broadly equivalent re-
sults. For ERA-5 and CFSR, this is presumably due to their
very fine horizontal resolution, which means that informa-
tion from more individual reanalysis points contributes in the
full-sampling analysis. MERRA-2 then follows, with a final
cluster made up of JRA-55, JRA-55C and ERA-I. The equiv-
alence of ERA-I to these models in this analysis is interest-
ing, as it has a much coarser horizontal resolution than the
other models.

AIRS has a different ordering: ERA-5 still exhibits the
largest 1TSPA, with the other five reanalyses more tightly
clustered after it (note that the form of the ERA-5 distribution
changes at∼ 8 K, which we believe to be due to the relatively
small number of ERA-5 points sampled). The difference in
ordering compared to the limb sounder comparisons is likely

due to the relatively low vertical resolution of some of the re-
analyses at ∼ 4 km in altitude. In particular, while CFSR has
tightly spaced levels in the lower stratosphere, vertical grid
spacing is extremely coarse in the upper stratosphere (Fig. 3),
explaining why it goes from one of the smallest differences
in the limb sounder case to more typical behaviour relative to
other reanalyses in the AIRS case.

C2 Is a 1-D approach sufficient for AIRS?

Atmospheric temperature typically varies much faster in the
vertical than in the horizontal. Therefore, since the AIRS-L1
sampling volume is of comparable size in the vertical and
the horizontal, it is possible that a significant runtime saving
with only a small accuracy trade-off could be made for AIRS
comparisons if we consider only the vertical dimension.

We test this by implementing a modified form of the AIRS
sampling volume as a new OIF, which we refer to as the
pseudo-1-D AIRS-L1 OIF. Since our software chain can then
remain otherwise identical, like-for-like comparisons can be
made without introducing additional inconsistencies in the
comparison.

Specifically, the pseudo-1-D OIF is identical to our stan-
dard 3-D OIF, but with two key exceptions: (i) it has an
extremely narrow horizontal spread, with a FWHM in the
along-track and across-track dimensions of only 100 m and
(ii) all samples are assigned a vertical rotation angle of 90◦;
i.e. they do not slant horizontally with height. Since we re-
tain the fine grid spacing used for the AIRS-L1 analyses of
the order of kilometres in the horizontal, these two changes
cause the new OIF to produce a single column of reanalysis
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Figure C1. Cumulative distributions of the absolute difference between full sampling and single-point sampling. Note that panel (a) has a
different abscissa from the other three panels, due to the very different width of the distribution.

Figure C2. Cumulative distributions of the absolute difference (a) pseudo-1-D sampling and the SPA (b) pseudo-1-D sampling and full-3-D
sampling. CFSR has been omitted since it only covers a small fraction of this year.
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Figure C3. Geographic variability in 1TSPA. The leftmost six columns show maps of the column-integrated proportion of samples with
1TSPA > 0.5 K on a 2.5◦ grid, while the rightmost column shows the globally integrated samples with 1TSPA > 0.5 K at each height.
Colour bars are the base-10 logarithm of the proportion of samples. Black regions on maps indicate a lack of coverage.

values for each AIRS measurement, which we weight verti-
cally in the same way as a standard AIRS measurement. The
samples produced by the the pseudo-1-D OIF are therefore
broadly equivalent to simply convolving the interpolated re-
analysis field with the vertical AIRS weighting function, as
carried out in many other studies.

We apply the the pseudo-1-D OIF to all AIRS-L1 samples
from 2011. Figure C2 shows the results of this analysis in
the same format as Fig. C1, i.e. as a histogram of cumulative
difference.

Figure C2a shows differences between the pseudo-1-D
samples and the values obtained from the SPA. We see that
differences between the pseudo-1-D samples and the SPA
samples are overall slightly smaller than differences between
the 3-D samples and the SPA samples, and that in particular
there are much fewer samples with a difference > 10 K.

Figure C2b then shows differences between the pseudo-
1-D samples and the 3-D samples. Differences are much
smaller than between either dataset and the SPA but are still
meaningful, with nearly 50 % of samples having a difference
greater than the approximate instrument precision. Almost
no samples have a difference > 5 K in this comparison, sug-
gesting that the pseudo-1-D approach achieves a large frac-
tion of the improvement needed to produce meaningful sam-
ples

Based on these results we conclude that, while the pseudo-
1-D approach of convolving the reanalysis temperature field
with the AIRS vertical averaging kernel does provide most
of the benefit of our full-3-D approach, there are still mean-
ingful gains to be made from applying the full-3-D approach
to producing synthetic AIRS-L1 samples.

C3 Geographic variability in 1TSPA

Figure C3 shows the geographic distribution of synthetic
measurements with 1TSPA > 0.5 K for the three limb-
sounding instruments. We omit AIRS-L1 since the mis-
matches are present in almost every sample, and thus a geo-
graphic distribution does not provide useful additional infor-
mation. A value of 0.5 K is chosen as representing an approx-
imate level at which 1TSPA is comparable to the uncertainty
on the comparator satellite measurements, but the form of the
results is broadly equivalent over a wide range of values.

Figure C3a–q show the column-integrated proportion of
samples with 1TSPA > 0.5 K for each reanalysis sampled as
each instrument, computed on a 2.5◦×2.5◦ grid. Most panels
show a peak around the Equator, particularly for MERRA-
2 in which almost no large values are observed poleward of
30◦ in either hemisphere. This is consistent with the complex
mesoscale dynamics of this region, where model-resolved
Kelvin waves and mixed Rossby-gravity waves are a signif-
icant factor, as are gravity waves. The relatively fine height
layering of the quasi-biennial oscillation in this region may
may also contribute.

We also see secondary maxima around the southern
Andes–Antarctic Peninsula region and across the Southern
Ocean. These regions are known to have significant grav-
ity wave activity at all length scales (e.g. Eckermann and
Preusse, 1999; Jiang, 2002; Alexander and Teitelbaum, 2011;
Hindley et al., 2015), and the spatial correspondence with
this activity is very precise, suggesting this as a possible
mechanism for the mismatch between SPA and full sampling
in this region. Maxima are also observed over other known
gravity wave hotspots (e.g. SE Asia, Scandinavia, the con-
vective equatorial regions), supporting this hypothesis. This
does not necessarily imply that the reanalyses can resolve
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gravity waves at length scales shorter than the satellites ob-
serve. A more likely explanation is that the major axes of
the satellite sampling volumes lie along the rising or falling
temperature gradient of a single wavefront at a moderate an-
gle, which would manifest as a large1TSPA value even if the
wave was physically much larger in scale than the sampling
volume.

Figure C3r–t show the globally integrated proportion of
synthetic measurements with1TSPA > 0.5 K for each reanal-
ysis, as a function of altitude. There are slight height trends in
some cases, but the differences are fundamentally dominated
by noise and spikes rather than a strong height dependence or
relationship to geophysical features such as the stratopause.
Thus, we conclude that 1TSPA exhibits no systematic height
dependence at the global scale.

Atmos. Chem. Phys., 18, 13703–13731, 2018 www.atmos-chem-phys.net/18/13703/2018/



C. J. Wright and N. P. Hindley: Reanalysis – satellite temperature comparisons 13729

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-18-13703-2018-supplement.

Author contributions. CJW designed the study, wrote the software,
carried out the analyses, and produced the text and figures. NPH
provided technical expertise and contributed to the scientific inter-
pretation of the results at all stages of the process.

Competing interests. The authors declare that they have no conflict
of interest.

Special issue statement. This article is part of the special is-
sue “The SPARC Reanalysis Intercomparison Project (S-RIP)
(ACP/ESSD inter-journal SI)”. It is not associated with a confer-
ence.

Acknowledgements. Corwin J. Wright is funded by a Royal
Society University Research Fellowship (ref. UF160545) and by
Natural Environment Research Council grant NE/R001391/1. Neil
P. Hindley is also funded by this NERC grant. This research made
use of the Balena High Performance Computing service at the
University of Bath. Reanalysis data were provided by the European
Centre for Medium-Range Weather Forecasts (ERA-Interim and
ERA-5), the NASA Goddard Global Modeling and Assimilation
Office (MERRA-2), the Japan Meteorological Agency (JRA-55
and JRA-55C) and the US National Centers for Environmental
Prediction (CFSR). Satellite data were provided by NASA JPL
(AIRS) NASA, Colorado University and NCAR (HIRDLS), NCAR
(COSMIC), and GATS, Inc. (SABER). Corwin J. Wright also
acknowledges useful conversations with James Anstey (CCCma),
which helped to originally motivate this work, and with various
colleagues at the 2017 SPARC Dynamics Workshop in Kyoto,
Japan and at the EGU General Assembly 2018 in Vienna, Austria,
which helped to refine it.

Edited by: Gabriele Stiller
Reviewed by: Marvin A. Geller and Simon Chabrillat

References

Alexander, M. J. and Barnet, C.: Using Satellite Observa-
tions to Constrain Parameterizations of Gravity Wave Ef-
fects for Global Models, J. Atmos. Sci., 64, 1652–1665,
https://doi.org/10.1175/JAS3897.1, 2007.

Alexander, M. J. and Teitelbaum, H.: Three-dimensional
properties of Andes mountain waves observed by satel-
lite: A case study, J. Geophys. Res.-Atmos., 116, 1–10,
https://doi.org/10.1029/2011JD016151, 2011.

Alexander, M. J., Gille, J., Cavanaugh, C., Coffey, M., Craig, C.,
Eden, T., Francis, G., Halvorson, C., Hannigan, J., Khosravi, R.,
Kinnison, D., Lee, H., Massie, S., Nardi, B., Barnett, J., Hepple-
white, C., Lambert, A., and Dean, V.: Global estimates of grav-
ity wave momentum flux from High Resolution Dynamics Limb

Sounder observations, J. Geophys. Res.-Atmos., 113, D15S18,
https://doi.org/10.1029/2007JD008807, 2008.

Anthes, R. A., Ector, D., Hunt, D. C., Kuo, Y.-H. Y. H. Y.-H.,
Rocken, C., Schreiner, W. S., Sokolovskiy, S. V., Syndergaard,
S., Wee, T.-K. K., Zeng, Z., Bernhardt, P. a., Dymond, K. F.,
Chen, Y., Liu, H.-L., Manning, K., Randel, W. J., Trenberth,
K. E., Cucurull, L., Healy, S. B., Ho, S.-P. P., McCormick, C.,
Meehan, T. K., Thompson, D. C., Yen, N. L., Dymond, K. F.,
Ector, D., Healy, S. B., Ho, S.-P. P., Hunt, D. C., Kuo, Y.-H.
Y. H. Y.-H., Liu, H.-L., Manning, K., McCormick, C., Meehan,
T. K., Randel, W. J., Rocken, C., Schreiner, W. S., Sokolovskiy,
S. V., Syndergaard, S., Thompson, D. C., Trenberth, K. E., Wee,
T.-K. K., Yen, N. L., and Zeng, Z.: The COSMIC/Formosat-
3 mission: Early results, B. Am. Meteorol. Soc., 89, 313–333,
https://doi.org/10.1175/BAMS-89-3-313, 2008.

Aumann, H., Chahine, M., Gautier, C., Goldberg, M., Kalnay,
E., McMillin, L., Revercomb, H., Rosenkranz, P., Smith, W.,
Staelin, D., Strow, L., and Susskind, J.: AIRS/AMSU/HSB on
the aqua mission: design, science objectives, data products, and
processing systems, IEEE T. Geosci. Remote, 41, 253–264,
https://doi.org/10.1109/TGRS.2002.808356, 2003.

Butler, A. H., Sjoberg, J. P., Seidel, D. J., and Rosenlof, K. H.:
A sudden stratospheric warming compendium, Earth Syst. Sci.
Data, 9, 63–76, https://doi.org/10.5194/essd-9-63-2017, 2017.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli,
P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,
Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bid-
lot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer,
A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V.,
Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally,
A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey,
C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The
ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.

Eckermann, S. D. and Preusse, P.: Global Measurements of Strato-
spheric Mountain Waves from Space, Science, 286, 1534–1537,
1999.

Ern, M., Preusse, P., Alexander, J. M., and Warner, C. D.:
Absolute values of gravity wave momentum flux de-
rived from satellite data, J. Geophys. Res., 109, D20103,
https://doi.org/10.1029/2004JD004752, 2004.

Fujiwara, M., Wright, J. S., Manney, G. L., Gray, L. J., Anstey,
J., Birner, T., Davis, S., Gerber, E. P., Harvey, V. L., Hegglin,
M. I., Homeyer, C. R., Knox, J. A., Krüger, K., Lambert, A.,
Long, C. S., Martineau, P., Molod, A., Monge-Sanz, B. M., San-
tee, M. L., Tegtmeier, S., Chabrillat, S., Tan, D. G. H., Jack-
son, D. R., Polavarapu, S., Compo, G. P., Dragani, R., Ebisuzaki,
W., Harada, Y., Kobayashi, C., McCarty, W., Onogi, K., Paw-
son, S., Simmons, A., Wargan, K., Whitaker, J. S., and Zou,
C.-Z.: Introduction to the SPARC Reanalysis Intercomparison
Project (S-RIP) and overview of the reanalysis systems, At-
mos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-
17-1417-2017, 2017.

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A.,
Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Re-
ichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella,
S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-
K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Par-

www.atmos-chem-phys.net/18/13703/2018/ Atmos. Chem. Phys., 18, 13703–13731, 2018

https://doi.org/10.5194/acp-18-13703-2018-supplement
https://doi.org/10.1175/JAS3897.1
https://doi.org/10.1029/2011JD016151
https://doi.org/10.1029/2007JD008807
https://doi.org/10.1175/BAMS-89-3-313
https://doi.org/10.1109/TGRS.2002.808356
https://doi.org/10.5194/essd-9-63-2017
https://doi.org/10.1002/qj.828
https://doi.org/10.1029/2004JD004752
https://doi.org/10.5194/acp-17-1417-2017
https://doi.org/10.5194/acp-17-1417-2017


13730 C. J. Wright and N. P. Hindley: Reanalysis – satellite temperature comparisons

tyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D.,
Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2),
J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-
0758.1, 2017.

Gille, J. C., Barnett, J. J., Arter, P., Barker, M., Bernath, P. F.,
Boone, C. D., Cavanaugh, C. C., Chow, J., Coffey, M. T., Craft,
J., Craig, C., Dials, M., Dean, V., Eden, T. D., Edwards, D. P.,
Francis, G., Halvorson, C. M., Harvey, V. L., Hepplewhite, C. L.,
Khosravi, R., Kinnison, D. E., Krinsky, C., Lambert, A., Lee,
H., Lyjak, L., Loh, J., Mankin, W., Massie, S. T., McInerney,
J., Moorhouse, J., Nardi, B., Packman, D., Randall, C. E., Re-
burn, W. J., Rudolf, W., Schwartz, M. J., Serafin, J., Stone, K. A.,
Torpy, B., Walker, K. A., Waterfall, A., Watkins, R. E. J., Whit-
ney, J., Woodard, D., Young, G., Harvey, L., Hepplewhite, C. L.,
Khosravi, R., Kinnison, D. E., Krinsky, C., Lambert, A., Lee,
H., Lyjak, L., Loh, J., Mankin, W., Massie, S. T., McInerney,
J., Moorhouse, J., Nardi, B., Packman, D., Randall, C. E., Re-
burn, J., Rudolf, W., Schwartz, M. J., Serafin, J., Stone, K. A.,
Torpy, B., Walker, K. A., Waterfall, A., Watkins, R. E. J., Whit-
ney, J., Woodard, D., Young, G., Harvey, V. L., Hepplewhite,
C. L., Khosravi, R., Kinnison, D. E., Krinsky, C., Lambert, A.,
Lee, H., Lyjak, L., Loh, J., Mankin, W., Massie, S. T., McIner-
ney, J., Moorhouse, J., Nardi, B., Packman, D., Randall, C. E.,
Reburn, W. J., Rudolf, W., Schwartz, M. J., Serafin, J., Stone,
K. A., Torpy, B., Walker, K. A., Waterfall, A., Watkins, R. E. J.,
Whitney, J., Woodard, D., and Young, G.: High Resolution Dy-
namics Limb Sounder: Experiment overview, recovery, and vali-
dation of initial temperature data, J. Geophys. Res.-Atmos., 113,
1–23, https://doi.org/10.1029/2007JD008824, 2008.

Gille, J. C., Gray, L. J., Cavanaugh, C. C., Coffey, M. T., Dean,
V., Halvorson, C. M., Karol, S., Khosravi, R., Kinnison, D. E.,
Massie, S. T., Nardi, B., Belmonte Rivas, M., Smith, L., Torpy,
B., Waterfall, A., Wright, C. J., Choi, K. Y., Coffey, M. T., Craig,
C. T., Hepplewhite, C. L., Karol, S., Khosravi, R., Kinnison,
D. E., Massie, S. T., Nardi, B., Belmonte Rivas, M., Smith, L.,
Waterfall, A., Wright, C. J., Dean, V., Halvorson, C. M., Karol,
S., Khosravi, R., Kinnison, D. E., Massie, S. T., Nardi, B., Bel-
monte Rivas, M., Smith, L., Torpy, B., Waterfall, A., Wright,
C. J., Choi, K. Y., Coffey, M. T., Craig, C. T., Hepplewhite, C. L.,
Karol, S., Khosravi, R., Kinnison, D. E., Massie, S. T., Nardi, B.,
Belmonte Rivas, M., Smith, L., Waterfall, A., and Wright, C. J.:
High Resolution Dynamics Limb Sounder Data Description and
Quality, version 7, Tech. rep., 2013.

Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Sta-
tistical Learning, Springer Series in Statistics, Springer New
York, New York, NY, https://doi.org/10.1007/978-0-387-84858-
7, 2009.

Herbach, H. and Dee, D.: ECMWF Newsletter 147, Tech. rep.,
2016.

Hindley, N. P., Wright, C. J., Smith, N. D., and Mitchell, N. J.: The
southern stratospheric gravity wave hot spot: individual waves
and their momentum fluxes measured by COSMIC GPS-RO, At-
mos. Chem. Phys., 15, 7797–7818, https://doi.org/10.5194/acp-
15-7797-2015, 2015.

Hoffmann, L. and Alexander, M. J.: Retrieval of stratospheric tem-
peratures from Atmospheric Infrared Sounder radiance measure-
ments for gravity wave studies, J. Geophys. Res., 114, D07105,
https://doi.org/10.1029/2008JD011241, 2009.

Hoffmann, L., Alexander, M. J., Clerbaux, C., Grimsdell, A. W.,
Meyer, C. I., Rößler, T., and Tournier, B.: Intercomparison of
stratospheric gravity wave observations with AIRS and IASI, At-
mos. Meas. Tech., 7, 4517–4537, https://doi.org/10.5194/amt-7-
4517-2014, 2014.

Holt, L. A., Alexander, M. J., Coy, L., Molod, A., Putman, W., and
Pawson, S.: Tropical Waves and the Quasi-Biennial Oscillation
in a 7-km Global Climate Simulation, J. Atmos. Sci., 73, 3771–
3783, https://doi.org/10.1175/JAS-D-15-0350.1, 2016.

Jiang, J. H.: Upper Atmosphere Research Satellite (UARS) MLS
observation of mountain waves over the Andes, J. Geophys.
Res.-Atmos., 107, 8273, https://doi.org/10.1029/2002JD002091,
2002.

Khosravi, R., Lambert, A., Lee, H., Gille, J., Barnett, J., Fran-
cis, G., Edwards, D., Halvorson, C., Massie, S., Craig, C.,
Krinsky, C., McInerney, J., Stone, K., Eden, T., Nardi, B.,
Hepplewhite, C., Mankin, W., and Coffey, M.: Overview and
characterization of retrievals of temperature, pressure, and at-
mospheric constituents from the High Resolution Dynamics
Limb Sounder (HIRDLS) measurements, J. Geophys. Res., 114,
D20304, https://doi.org/10.1029/2009JD011937, 2009.

Kobayashi, C., Endo, H., Ota, Y., Kobayashi, S., Onoda, H.,
Harada, Y., Onogi, K., and Kamahori, H.: Preliminary Re-
sults of the JRA-55C, an Atmospheric Reanalysis Assim-
ilating Conventional Observations Only, SOLA, 10, 78–82,
https://doi.org/10.2151/sola.2014-016, 2014.

Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda,
H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka,
K., and Takahashi, K.: The JRA-55 Reanalysis: General Spec-
ifications and Basic Characteristics, J. Meteorol. Soc. Jpn., 93,
5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.

Kursinski, E. R., Hajj, G. A., Schofield, J. T., Linfield, R. P.,
and Hardy, K. R.: Observing Earth’s atmosphere with ra-
dio occultation measurements using the Global Position-
ing System, J. Geophys. Res.-Atmos., 102, 23429–23465,
https://doi.org/10.1029/97JD01569, 1997.

Nolan, D. S., Atlas, R., Bhatia, K. T., and Bucci, L. R.: Development
and validation of a hurricane nature run using the joint OSSE
nature run and the WRF model, J. Adv. Model. Earth Sy., 5, 382–
405, https://doi.org/10.1002/jame.20031, 2013.

Olsen, E. T., Fishbein, E., Granger, S., Lee, S.-Y., Manning, E.,
Weiler, M., Blaisdell, J., and Susskind, J.: AIRS/AMSU/HSB
Version 5 Data Release User Guide, 2007.

Parker, W. S.: Reanalyses and Observations: What’s the
Difference?, Bull. Am. Meteorol. Soc., 97, 1565–1572,
https://doi.org/10.1175/BAMS-D-14-00226.1, 2016.

Remsberg, E. E., Marshall, B. T., Garcia-Comas, M., Krueger, D.,
Lingenfelser, G. S., Martin-Torres, J., Mlynczak, M. G., Russell,
J. M., Smith, A. K., Zhao, Y., Brown, C., Gordley, L. L., Lopez-
Gonzalez, M. J., Lopez-Puertas, M., She, C.-Y., Taylor, M. J.,
and Thompson, R. E.: Assessment of the quality of the Version
1.07 temperature-versus-pressure profiles of the middle atmo-
sphere from TIMED/SABER, J. Geophys. Res., 113, D17101,
https://doi.org/10.1029/2008JD010013, 2008.

Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S.,
Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes,
D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-
y., Juang, H.-M. H., Sela, J., Iredell, M., Treadon, R., Kleist, D.,
Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei,

Atmos. Chem. Phys., 18, 13703–13731, 2018 www.atmos-chem-phys.net/18/13703/2018/

https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1029/2007JD008824
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.5194/acp-15-7797-2015
https://doi.org/10.5194/acp-15-7797-2015
https://doi.org/10.1029/2008JD011241
https://doi.org/10.5194/amt-7-4517-2014
https://doi.org/10.5194/amt-7-4517-2014
https://doi.org/10.1175/JAS-D-15-0350.1
https://doi.org/10.1029/2002JD002091
https://doi.org/10.1029/2009JD011937
https://doi.org/10.2151/sola.2014-016
https://doi.org/10.2151/jmsj.2015-001
https://doi.org/10.1029/97JD01569
https://doi.org/10.1002/jame.20031
https://doi.org/10.1175/BAMS-D-14-00226.1
https://doi.org/10.1029/2008JD010013


C. J. Wright and N. P. Hindley: Reanalysis – satellite temperature comparisons 13731

H., Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang,
W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K.,
Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W.,
Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds,
R. W., Rutledge, G., and Goldberg, M.: The NCEP Climate Fore-
cast System Reanalysis, B. Am. Meteorol. Soc., 91, 1015–1058,
https://doi.org/10.1175/2010BAMS3001.1, 2010.

Sakov, P. and Sandery, P.: An adaptive quality control pro-
cedure for data assimilation, Tellus A, 69, 1318031,
https://doi.org/10.1080/16000870.2017.1318031, 2017.

Taylor, K. E.: Summarizing multiple aspects of model performance
in a single diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001.

Tsuda, T., Lin, X., Hayashi, H., and Noersomadi: Analysis of ver-
tical wave number spectrum of atmospheric gravity waves in the
stratosphere using COSMIC GPS radio occultation data, Atmos.
Meas. Tech., 4, 1627–1636, https://doi.org/10.5194/amt-4-1627-
2011, 2011.

Wright, C. J., Rivas, M. B., and Gille, J. C.: Intercomparisons
of HIRDLS, COSMIC and SABER for the detection of strato-
spheric gravity waves, Atmos. Meas. Tech., 4, 1581–1591,
https://doi.org/10.5194/amt-4-1581-2011, 2011.

Wright, C. J., Scott, R. B., Furnival, D., Ailliot, P., and
Vermet, F.: Global Observations of Ocean-Bottom Subiner-
tial Current Dissipation, J. Phys. Oceanogr., 43, 402–417,
https://doi.org/10.1175/JPO-D-12-082.1, 2013.

www.atmos-chem-phys.net/18/13703/2018/ Atmos. Chem. Phys., 18, 13703–13731, 2018

https://doi.org/10.1175/2010BAMS3001.1
https://doi.org/10.1080/16000870.2017.1318031
https://doi.org/10.1029/2000JD900719
https://doi.org/10.5194/amt-4-1627-2011
https://doi.org/10.5194/amt-4-1627-2011
https://doi.org/10.5194/amt-4-1581-2011
https://doi.org/10.1175/JPO-D-12-082.1

	Abstract
	Introduction
	Data
	Satellite instruments
	AIRS
	COSMIC
	HIRDLS
	SABER
	Relative sensitivity

	Reanalyses
	Sampling method
	Full sampling vs. single-point sampling
	Relative scatter
	Time series comparisons
	Taylor diagrams
	Correlations by latitude and height
	Cluster analysis
	Cluster circles
	Co-located cluster analysis

	Summary and conclusions
	Code and data availability
	Appendix A: Sampling method
	Appendix A1: Observation import function
	Appendix A2: Model import function
	Appendix A3: Core
	Appendix A3.1: Produce fine grid (steps C.i to C.ii)
	Appendix A3.2: Produce and rotate weighting volume (steps C.iii to C.vii)
	Appendix A3.3: Interpolate and weight (steps C.viii to C.x)


	Appendix B: Selection of fine grid parameters
	Appendix C: Full sampling vs. single-point sampling
	Appendix C1: Overall differences
	Appendix C2: Is a 1-D approach sufficient for AIRS?
	Appendix C3: Geographic variability in TSPA

	Supplement
	Author contributions
	Competing interests
	Special issue statement
	Acknowledgements
	References

