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Abstract. This study assesses the impact of revised volatile
organic compound (VOC) and organic aerosol (OA) emis-
sions estimates in the GEM-MACH (Global Environmental
Multiscale–Modelling Air Quality and CHemistry) chemi-
cal transport model (CTM) on air quality model predictions
of organic species for the Athabasca oil sands (OS) region
in Northern Alberta, Canada. The first emissions data set
that was evaluated (base-case run) makes use of regulatory-
reported VOC and particulate matter emissions data for the
large oil sands mining facilities. The second emissions data
set (sensitivity run) uses total facility emissions and speci-
ation profiles derived from box-flight aircraft observations
around specific facilities. Large increases in some VOC and
OA emissions in the revised-emissions data set for four large
oil sands mining facilities and decreases for others were
found to improve the modeled VOC and OA concentration
maxima in facility plumes, as shown with the 99th percentile
statistic and illustrated by case studies. The results show that
the VOC emission speciation profile from each oil sand fa-
cility is unique and different from standard petrochemical-
refinery emission speciation profiles used for other regions
in North America. A significant increase in the correlation
coefficient is reported for the long-chain alkane predictions
against observations when using the revised emissions based
on aircraft observations. For some facilities, larger long-
chain alkane emissions resulted in higher secondary organic
aerosol (SOA) production, which improved OA predictions
in those plumes. Overall, the use of the revised-emissions

data resulted in an improvement of the model mean OA bias;
however, a decrease in the OA correlation coefficient and
a remaining negative bias suggests the need for further im-
provements to model OA emissions and formation processes.
The weight of evidence suggests that the top-down emission
estimation technique helps to better constrain the fugitive or-
ganic emissions in the oil sands region, which are a challenge
to estimate given the size and complexity of the oil sands op-
erations and the number of steps in the process chain from
bitumen extraction to refined oil product. This work shows
that the top-down emissions estimation technique may help
to constrain bottom-up emission inventories in other indus-
trial regions of the world with large sources of VOCs and
OA.

1 Introduction

Chemical transport models (CTMs) are useful tools to sup-
port clean energy policy decisions because they can be used
to assess the impact of past and future pollutant emission
changes on air quality (e.g., Schultz et al., 2003; Kelly et al.,
2012; Rouleau et al., 2013; Lelieveld et al., 2015). CTMs can
also be run in forecast mode with their output being used to
support air quality forecasts (Moran et al., 2013; Chai et al.,
2013). CTMs require pollutant emission inputs, typically at
hourly intervals, at the model grid spatial resolution (Dick-
son and Oliver, 1991; Houyoux et al., 2000; Pouliot et al.,
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2012, 2015; Zhang et al., 2018). The pollutant emission in-
put files are based on the processing of emission inventories
compiled for all emission sectors, usually at some geopoliti-
cal spatial resolution (e.g., county, province or state, or coun-
try), and may thus require the application of spatial disaggre-
gation factor fields to allocate emissions to the model grid.
North American emission inventories are typically derived
from bottom-up approaches, where representative pollutant
emission factors (e.g., pollutant mass emission per volume of
fuel burned) are multiplied by activity factors (e.g., volume
of fuel burned per unit time). In developed countries, indus-
trial facilities are usually required to report estimates of their
pollutant emissions to national inventories such as the Na-
tional Pollutant Release Inventory (NPRI) in Canada (Gov-
ernment of Canada, Canada Gazette, 2018) and the National
Emissions Inventory (NEI) in the United States (Office of the
Federal Register, Protection of Environment, 2015). Updates
of these inventories occur under a regulatory framework on a
regular basis. However, reporting requirements may be lim-
ited to aggregated mass emissions on an annual basis (e.g., a
total bulk mass of volatile organic compound, VOC, emitted
rather than a detailed and observation-based emissions of in-
dividual speciated VOCs), with the subsequent use of VOC
speciation profiles (splitting factors) to determine the relative
contribution of the individual VOCs to the total VOC emis-
sions. Uncertainties in the availability and assignment of ap-
propriate VOC speciation profiles, spatial and temporal allo-
cation factors (Mashayekhi et al., 2016), and/or unaccounted-
for emitting activities result in the need to evaluate the impact
of these assumptions through the comparison of CTM pre-
dictions with ambient observations.

The Athabasca region of northeastern Alberta, Canada,
has one of the largest reserves of oil sands (OS) in the world.
The OS deposits are composed of bitumen, minerals, sand
and clay. Oil sand near the surface is mined by open-pit min-
ing techniques. The oil sand is then transported by heavy-
hauler trucks to crushers, followed by the addition of hot wa-
ter to make the oil sand flow through pipelines to a bitumen
extraction facility. Here, the bitumen is separated from the
sand and clay by the use of organic solvents. The product is
used either directly, upgraded on-site to crude oil, or trans-
ported to a remote upgrader facility. Volatile organic com-
pounds from the bitumen have the potential to escape into
the atmosphere as fugitive emissions during the mining, ex-
traction, processing, or tailing discharge steps. The complex-
ity and vast size of the oil sands operations make generating
pollutant emission input files for CTMs a challenge (Cho et
al., 2012; ECCC & AEP, 2016).

Organic compounds in the atmosphere are oxidized over
time and, in the presence of sufficient levels of oxides of
nitrogen, are important precursors to ozone formation (Se-
infeld and Pandis, 1998). VOCs and semi-volatile organic
compounds (SVOCs) are also precursors to secondary or-
ganic aerosol (SOA) formation (Griffin et al., 1999; Kanaki-
dou et al., 2005; Robinson et al., 2007; Kroll and Seinfeld,

2008; Slowik et al., 2010; Stroud et al., 2011; Gentner et al.,
2017). If the organic compounds have sufficiently low satu-
ration vapor pressures, then upon release into the atmosphere
they remain particle bound and are classified as primary or-
ganic aerosol (POA). Many specific organic compounds can
also be toxic to human health and require explicit reporting
in emission inventories (Stroud et al., 2016).

The Joint Oil Sands Monitoring (JOSM) program was de-
veloped by the federal government of Canada and the Alberta
provincial government with input and consultation from the
local indigenous population and industry stakeholder groups
to monitor the potential impacts of pollutant emissions. Dur-
ing JOSM, top-down approaches to estimate emissions based
on atmospheric observations provided a unique opportu-
nity to compare with bottom-up-calculated emissions for the
Athabasca OS facilities in Alberta, Canada (Gordon et al.,
2015; Li et al., 2017). The mass-balance approach that was
used is based on using box-shaped aircraft flight patterns
around a facility and measuring pollutant concentrations and
meteorological variables (wind speed and direction, air den-
sity). In this approach, the difference in pollutant mass fluxes
entering and leaving the box is used to determine the total
facility-wide emission rate, subject to assumptions such as
minimal losses due to chemical oxidation between the emis-
sions location and the nearby aircraft observations.

Environment and Climate Change Canada’s (ECCC)
chemical transport model, GEM-MACH (Global Environ-
mental Multiscale–Modelling Air quality and CHemistry), is
being used in JOSM to assess the impact of current emissions
and future emission changes on local air quality and down-
wind regional-scale acid deposition (Makar et al., 2018). In
this model study, we make use of both regulatory-inventory-
based and aircraft-observation-derived emissions data for
VOCs and primary particulate emissions for six large OS
mining facilities as inputs to GEM-MACH in order to assess
the impact of these two different emission data sets on model
predictions of VOC concentrations and OA formation.

2 Methods

The GEM-MACH model uses the ECCC operational weather
forecast model (Global Environmental Multiscale, GEM) as
the core operator for dynamics and microphysical processes
(Côté et al., 1998a, b; Girard et al., 2014). GEM-MACH is
an “online” CTM – the chemistry, vertical diffusion, and pol-
lutant deposition routines exist as a set of subroutines con-
tained and called from within GEM’s meteorological physics
package (Moran et al., 2010; Makar et al., 2015a, b). The gas-
phase chemistry scheme is based on the ADOM-II mecha-
nism (Acid Deposition and Oxidant Model, version II), orig-
inally developed for continental boundary-layer oxidant for-
mation. The VOC lumped species used in GEM-MACH are
described in Stroud et al. (2008). The focus here is on eval-
uating volatile aromatic and alkane species of anthropogenic
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Table 1. Facility total emission rates for three lumped organic species and PM2.5 calculated with the bottom-up, base-case inventory, CEMA
facility-specific VOC profiles (labeled “base case”) and the top-down measurement-derived rates (labeled “revised-emission case”, scaled
to tonnes per year for VOCs or tonnes per August and September for PM2.5). Emission rate increase/decrease of more than ±500 tonnes
compared to base case is shown in bold/italic. M/S: Millennium and Steepbank; ML: Mildred Lake; M/J: Muskeg and Jackpine.

Suncor – M/S Syncrude – ML Shell – M/J CNRL – Horizon

Base Base Base Base
case Revised case Revised case Revised case Revised

Mono-substituted 486 1112 806 1539 6.8 72 135 393
Aromatics (TOLU)
Multi-substituted 1457 1569 5273 1696 746 88 1125 500
Aromatics (AROM)
Long chain 5636 13 488 12 348 10 022 1690 14 384 2651 23 779
Alkanes (ALKA)
Particulate 1251 2537∗ 1021 3648∗ 459 2423∗ 402 1015∗

Matter (PM2.5)

VOC revised emissions are based on annual estimates, derived in Li et al. (2017). The estimates consider monthly and annual oil
production yields reported by facilities for the plant stack emissions. For tailing ponds and mine faces, the VOC estimates are
calculated using a surface-to-atmosphere mass transfer model considering ambient temperature and wind speed.
∗ PM2.5 revised emissions are based on 2-month emission (August and September) rather than based on an annual estimate (Zhang et
al., 2018) due to uncertainties in calculating dust emissions in the winter months.

origin. The aerosol size distribution is described by a 12-
bin sectional approach based on the Canadian Aerosol Mod-
ule (CAM) (Gong et al., 2003; Park et al., 2011). The SOA
scheme is based on a two-product fit to smog chamber data
using the SOA yield equations derived from gas–particle par-
titioning theory (Pankow 1994; Griffin et al., 1999; Barsanti
et al., 2013). In the GEM-MACH model’s current SOA for-
mation algorithms, after initial particle formation, the or-
ganic compounds in the particle phase are assumed to be
converted rapidly to nonvolatile mass, as observed by recent
studies (Cappa and Jimenez, 2010; Cappa and Wilson, 2011;
Lopez-Hilfiker et al., 2016) and recommended by modeling
studies (Shrivastava et al., 2015). However, other recent ob-
servation studies suggest that SOA “chemical aging” over
hours to days is quite complex and involves further gas-phase
oxidation and fragmentation reactions (Jimenez et al., 2009;
Donahue et al., 2014), as well as potential particle-phase ox-
idation and oligomer reactions (McNeill et al., 2015). The
particle oligomer reactions are rapid, often acid catalyzed,
and can result in conversion to nonvolatile mass (Liggio et
al., 2005; Kroll et al., 2005). We discuss below the evidence
from this work on the likelihood that these additional miss-
ing processes are still impacting our model organic aerosol
bias.

2.1 Emissions

The Canadian base-case emissions were derived by combin-
ing several emission inventories, targeting 2013 as the base
year. This base year was chosen to align with the JOSM
2013 intensive field study period, which provided the ob-
servations for the model–observation comparisons that fol-
low. Canadian emissions for industrial facilities, including

the Athabasca OS mining facilities, were obtained from the
2013 NPRI. The US base-case emissions were obtained from
the 2011 US NEI version 1 (Eyth et al., 2013).

These base-case, bottom-up emissions inventories were
processed with the SMOKE (Sparse Matrix Operator Ker-
nel Emissions) emissions processing tool (https://www.
cmascenter.org/smoke, last access: 26 January 2018), which
includes three major steps corresponding to spatial alloca-
tion, temporal allocation, and chemical speciation (for NOx ,
VOC, and PM). The base-case VOC speciation profiles used
by SMOKE for the OS surface mining facilities were ob-
tained from the CEMA (Cumulative Environmental Manage-
ment Association) inventory (Davies et al., 2012; Zhang et
al., 2015).

For the sensitivity run, speciated VOC emissions from
the base case for four OS mining facilities (Suncor Millen-
nium and Steepbank, Syncrude Mildred Lake, Shell Canada
Muskeg and Jackpine, and CNRL Horizon) were revised by
replacing them with the top-down emission rates estimated
by Li et al. (2017) while primary PM emissions were revised
for six oil sand facilities (Suncor Millennium and Steepbank,
Syncrude Mildred Lake, Shell Canada Muskeg and Jackpine,
CNRL Horizon, Syncrude Aurora North, and Imperial Oil
Kearl) (Zhang et al., 2018). The VOC and PM chemical spe-
ciation profiles used for these facilities were also revised us-
ing the aircraft-observed VOC speciation (Li et al., 2017) and
ground-based PM filter analysis (Wang et al., 2015), respec-
tively. The set of emissions input files making use of these
revisions is hereafter referred to as the “revised emissions”,
while the original emissions input files without these changes
are referred to as the “base-case emissions”. A detailed de-
scription of the development of the emission inventory and
emissions processing steps to create the model-ready files
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(hourly gridded emission fields for the same domain and grid
spacing as the model) for the base case and revised version
are described in Zhang et al. (2018). Table 1 compares the
facility emission rates for four species for the base case and
revised-emissions case. The changes are not consistent from
species to species and are not uniform across facilities. In-
terestingly, the facilities that use paraffinic solvents for bitu-
men extraction (e.g., Shell Muskeg and Jackpine) were asso-
ciated with the largest ALKA emission (long-chain alkanes)
increases and aromatic decreases. The Supplement section
includes figures illustrating the emission difference maps for
the oil sand region (absolute and relative difference) showing
the spatial distribution of emission changes between revised
and base case. The changes are largest over the surface mines
and tailing ponds.

Depending on whether bitumen extracted from the oil sand
is upgraded on-site or not, the OS mining facilities can be
classified into two broad types:

1. integrated extraction and upgrading facilities (Suncor
Millennium and Steepbank, Syncrude Mildred Lake,
and CNRL Horizon) and

2. extraction-only facilities (Shell Canada Muskeg and
Jackpine, Syncrude Aurora North, and Imperial Oil
Kearl).

Table 2 shows a comparison of the CEMA plant-specific
VOC speciation profiles used in the base case for the two
types of OS plants compared to two standard VOC speciation
profiles for petrochemical facilities (no. 9012 “Petroleum In-
dustry – Average”, no. 0316 “Fugitive Emissions, Pipe/Valve
Flanges”) that were used by SMOKE to speciate more than
half of the refinery emissions in the Houston area, the
largest petrochemical cluster in the US. There are signifi-
cant differences between the base-case OS plant VOC spe-
ciation profiles and the two commonly used standard oil
refinery profiles. The OS integrated extraction and upgrad-
ing plant profiles are higher in long-chain alkenes (ALKE),
toluene, and other aromatics than the standard profiles, while
the extraction-only plant profile has the highest long-chain
alkane fraction. The two standard profiles used for the base
case and revised simulation (for speciating US and Canadian
refinery emissions) have higher less-reactive species (e.g.,
propane, acetylene) and formaldehyde (profile no. 9012) than
both of the CEMA OS plant profiles. Note also that these dif-
ferences in relative fractions result in substantial differences
in the absolute emissions of certain groups of VOCs between
the standard profiles for oil refineries and the facility-specific
oil sand profiles. For reference, the aircraft-measurement-
derived facility-specific VOC speciation profiles used for
four OS facilities in the revised-emissions case are presented
in Zhang et al. (2018). The aircraft-measurement-derived
profiles in Zhang et al. (2018), and used here for the revised
case, are composite profiles since they encompass plant, tail-
ing pond, and mining emissions. As such, they are not appro-

priate for comparison with the profiles in Table 2, which are
specific to plant emissions.

The primary PM emissions from the OS facilities originate
largely from off-road heavy-duty diesel trucks, plant stack
emissions, and fugitive and wind-blown dust. The 2009/2010
CEMA inventory was used to specify the tail-pipe emissions
from the off-road mining fleet and the 2013 NPRI inventory
was used for fugitive road-dust emissions. The base-case in-
ventory did not include wind-blown dust. For the revised in-
ventory, the PM size distribution was measured during the
2013 field study for all six facilities and these data were used
to constrain the revised PM emission input data set. Note that
the PM emissions estimates based on the aircraft-measured
aerosol data included the contribution of wind-blown dust
emissions. The aircraft-based PM emissions were re-binned
for the 12 GEM-MACH PM size bins. The first eight size
bins correspond to mass up to diameter 2.56 µm. Interest-
ingly, the aircraft measured a much higher fraction of partic-
ulate mass in bin 8 (bounded by diameters 1.28 and 2.56 µm)
compared to the mass fraction in bin 8 from the area-source
PM size-distribution profiles used by SMOKE in processing
the base-case emissions. In addition, a PM chemical specia-
tion profile specific to OS fugitive dust emissions was created
from an analysis of deposited dust collected from surfaces
in the OS region (Wang et al., 2015); this speciation pro-
file replaced the standard fugitive dust profile for unpaved
roads from the US EPA (Environmental Protection Agency)
SPECIATE v4.3 database in the revised-emissions process-
ing. The resulting organic carbon fraction in the observation-
derived PM speciation profile was higher than that of the
base-case emissions by about a factor of 3 (Zhang et al.,
2018). In general, significantly higher POA emissions were
observed over the open-pit mines for all facilities, except
for the Imperial Kearl mine. The impact of the revised POA
emissions will be discussed further in Sect. 3.4.

2.2 Modeling

The GEM-MACH model was run in a nested configura-
tion with an outer domain covering the continental US
and Canada and an inner domain covering Alberta and
Saskatchewan. The continental-scale GEM-MACH model
(10 km resolution) and the Canada-wide GEM weather
model (2.5 km resolution) were run first. These provided the
chemical and meteorological lateral boundary conditions, re-
spectively, for the high-resolution GEM-MACH 2.5 km res-
olution run, which has a domain covering the provinces of
Alberta and Saskatchewan (Fig. 1). The two models provid-
ing boundary conditions were run on a 30 h cycle, of which
the first 6 h were spun up and discarded, while the remain-
ing 24 h provided boundary conditions for the 2.5 km GEM-
MACH simulation. The initial conditions subsequent to the
starting model simulation for each overlapping 24 h 2.5 km
GEM-MACH simulation came from the end of the previous
2.5 km GEM-MACH simulation. This strategy was used to
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Table 2. Facility-specific VOC speciation profiles (mass fractions) applied to the surface mining facilities in the Athabasca oil sands region
compared to standard speciation profiles for Canadian and US petrochemical oil refineries (in ADOM-II chemical speciation). Data are based
on Zhang et al. (2018) and references therein. All four profiles are used in the base-case simulation. M/J: Muskeg and Jackpine; AN: Aurora
North; ML: Mildred Lake; M/S: Millennium and Steepbank; CEPS: Canadian Emissions Processing.

Shell M/J, Syncrude ML, CEPS database SPECIATE database
Syncrude AN, Suncor M/S, CNRL standard profile standard profile
Imperial Kearl base-case plant no. 9012 for oil no. 0316 for oil
base-case plant profile (CEMA) refineries in refineries in

Species profile (CEMA) base case base case

EC38 (propane, benzene, acetylene) 0.0 0.0 0.247 0.176
EA3 (alkane ≥C4) 0.90 0.71 0.623 0.781
EA2 (alkene ≥C3) 0.007 0.069 0.031 0.002
ETOL (toluene and other mono-aromatics) 0.001 0.057 0.005 0.008
EARO (multifunctional aromatics) 0.0003 0.099 0.003 0.003
EHCO (formaldehyde) 0.00001 0.0003 0.110 0.0

Columns do not add up to unity due to unaccounted-for or unassigned species and/or due to consideration of reactivity weighting for the ADOM-II mechanism.
Refinery profile no. 9012 is a profile from the Canadian Emissions Processing System (Moran et al., 1997).

Figure 1. The background image is the nested domain, at 2.5 km grid spacing, covering all of Alberta and Saskatchewan and encompassing
the Athabasca oil sands study region (white box). The model field shown is for the lumped toluene species (TOLU) mass mixing ratio
(µg kg−1 air). The inserted image on the right is the TOLU emission map (g s−1 grid cell) for the oil sands study region at the same hour as
mixing ratio image on the left. The oil sands facilities’ names are listed in white labels.
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allow the two boundary condition simulations to make use of
assimilated meteorological analyses. The sequence of model
simulations was started for 10 August 2013 and run until
7 September to cover the 2013 JOSM intensive field study
period.

2.3 Observations

The NRC (National Research Council) Convair two-engine
turboprop aircraft was used to collect air quality observations
during the JOSM 2013 intensive field study. The aircraft was
equipped with a suite of instruments to measure air quality
over 22 flights (see Li et al., 2017, Supplement Fig. S1).
Most of the flight hours focused on box-flight paths; these
took the aircraft around the periphery of facilities at differ-
ent heights, with the goal of deriving facility-wide emission
rates by using observations of chemical concentrations and
winds to estimate the mass of pollutants entering and leav-
ing the box enclosures. Coupled with a mass-conserving flux
model (Gordon et al., 2015), these aircraft data were used to
estimate emissions from the encircled facilities.

VOC and PM observations were collected by the in-
strumented research aircraft using different technologies. A
proton-transfer-reaction mass spectrometer (PTR-MS) was
used to measure a select number of VOCs at high tempo-
ral resolution (1 s) (Li et al., 2017). An aerosol mass spec-
trometer (AMS) was used to measure PM1 mass and non-
refractory chemical composition (Liggio et al., 2016). A sin-
gle particle soot photometer (SP2) was used to measure re-
fractory black carbon aerosol (Liggio et al., 2016). A num-
ber of canisters were filled with ambient air on each flight
and returned to the lab for GC-FID (gas chromatograph with
flame ionization detector) and GC-MS (gas chromatograph
with mass spectrometer) analysis of VOCs (Li et al., 2017).
The canister VOC analysis measured 154 different C2 to C12
hydrocarbons (Dann and Wang, 1995). The resulting obser-
vation data were compared to the model output generated as
described above. The 2.5 km GEM-MACH runs used a 120 s
chemistry time step; 120 s model output values were linearly
interpolated in time and space to the aircraft observation lo-
cations; all comparisons which follow make use of the result-
ing model–observation data pairs for the two simulations.

3 Results and discussion

We present our evaluation results for four species classes:
mono-substituted aromatics in Sect. 3.1, multi-substituted
aromatics in Sect. 3.2, long-chain alkane species in Sect. 3.3,
and organic aerosols in Sect. 3.4.

3.1 Toluene and other mono-substituted aromatics
(TOLU) evaluation

The aircraft PTR-MS measurement data set was averaged
to 10 s intervals for comparison to the GEM-MACH model

Figure 2. Histograms for (a) observed TOLU, (b) revised-
emissions TOLU, and (c) base-case-emissions TOLU volume mix-
ing ratios (ppbv). Points correspond to 10 s averaged aircraft and
model data, sorted into 20 bins by volume mixing ratio. The inset
boxes show the 50th and 99th percentile values for each histogram.

output. The model grid cell output was extracted along the
flight track and interpolated linearly between the 2 min model
output intervals to create a coincident model and measure-
ment time series. The model lumped TOLU species in-
clude toluene and other mono-substituted aromatics with
the two most important additional species being ethylben-
zene and propylbenzene. Therefore, we must derive an
equivalent observed lumped TOLU species for a compari-
son. We used all of the canister VOC data from the field
study to create ethylbenzene vs. toluene and propylben-
zene vs. toluene scatterplots. The corresponding slope, y in-
tercept, and correlation coefficient for both of these plots
(not shown) were as follows: (i) m= 0.376± 0.006, y =

0.0328± 0.006, and R= 0.91 and (ii) m= 0.0652± 0.0008,
y intercept= 0.0011± 0.0008, and R= 0.90, respectively.
Thus, we derived an observed TOLU equal to the PTR-MS
C7 aromatic multiplied by the factor 1.4412 (sum of m= 1.0
C7+ 0.376 C7+ 0.0652 C7). This new observation-derived
TOLU was used in the statistical comparison with model out-
put TOLU, which follows.

Histograms of mixing ratio were created using the ob-
served TOLU, the revised-emissions model output, and the
base-case model output. Figure 2 illustrates the histograms
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Table 3. Statistical scores from the model simulations with revised and base-case emissions; all statistics are relative to observations.

Lumped Mean bias RMSE Y intercept Correlation
species Simulation (ppbv) (ppbv) Slope (ppbv) coefficient, R

TOLU Base case −0.041 0.277 0.217 0.063 0.32
Revised emissions 0.049 0.386 0.426 0.125 0.31

AROM Base case 0.152 0.435 0.957 0.154 0.41
Revised emissions 0.044 0.227 0.383 0.083 0.37

ALKA Base case −0.123 5.556 0.378 2.028 0.24
Revised emissions 1.98 6.403 0.335 4.097 0.34

OA Base case −2.79 3.866 0.186 0.252 0.59
Revised emissions −2.37 3.632 0.292 0.273 0.49

RMSE is the root mean square error. Y intercept corresponds to the model intercept of a model vs. observation correlation
plot. Mean bias is the model–observation mean score. The better score for a given pair of statistics is shown in bold font.

using 20 mixing-ratio bins and an increment of 0.2 ppbv per
bin. It is clear that there are more high values (> 2 ppbv) pro-
duced by the sensitivity model run with revised emissions
compared to the base-case model run. The number of obser-
vations in the highest value bins lies between the results from
the revised and base-case versions. This can be quantified
by using the 99 % percentile statistic (obs= 1.258 ppbv, re-
vised= 1.906 ppbv, base= 0.934 ppbv). The 99 % percentile
means that 99 % of the data points are lower than the value.
The median concentration of the observations (0.061 ppbv)
is higher than both the revised (0.038 ppbv) and base-case
model (0.019 ppbv) simulated values, but is closer to the re-
vised version. Table 3 lists statistical scores for the TOLU
lumped species and the other species considered in this study.
The mean bias goes from a negative value with the base-case
run to a positive value with the revised emissions. There is lit-
tle difference in the correlation coefficient for the model vs.
observation scatterplot between the base-case and sensitiv-
ity run. The changes to the VOC emissions for the revised-
emissions run affected their total mass and speciation, and
the observations were made sufficiently close to the sources
that there was little time for oxidation. The main sources
for VOCs are the processing plants, tailing ponds, mine
faces, and off-road vehicles, and their spatial allocation (from
CEMA, 2010) did not change significantly between the two
model-emission versions. The main differences in the model
time series between the two simulations are thus in magni-
tude of concentrations, and hence relatively invariant corre-
lation coefficients might be expected. The correlation coeffi-
cient is more likely controlled by the meteorological model
accuracy in the placement of the plumes (i.e., wind direc-
tion).

The largest increases in the TOLU emission, between
the revised and base-case run, are noted for the Syncrude
Mildred Lake facility over the tailing ponds and open-pit
mine faces. Table 1 shows the changes on a facility-wide
level. Notable increases are also calculated for the Suncor

Millennium and Steepbank and the Canadian Natural Re-
sources Ltd. (CNRL) Horizon facilities. The flights on 14
and 23 August have the largest TOLU mixing ratios for
the aircraft study, and both flights correspond to box flights
around the Syncrude Mildred Lake facility. The SI section in-
cludes the model and measurement time series comparisons
(termed case studies) for the flights on 14 August (Supple-
ment Fig. S5) and 23 August (Supplement Fig. S6). Overall,
the magnitude of the mixing ratio maximum in the time se-
ries is better represented in the revised-emission simulation.
This is also reflected in the better slope statistic in Table 3 for
the revised-emission simulation.

3.2 Multi-substituted aromatics (AROM) evaluation

The model lumped AROM species includes all multi-
substituted aromatics, with the most important species be-
ing the xylene isomers and trimethylbenzene isomers. These
two species match with the PTR-MS C8 and C9 aromatic
fragments, respectively. However, the observed C8 aromatic
also includes ethylbenzene and the C9 aromatic also in-
cludes propylbenzene, which are lumped with TOLU in the
model VOC speciation. Thus, we need to subtract these un-
wanted species from the totals used to compare to the model
lumped AROM species. To do this, we use their correla-
tion slopes with PTR-MS C7 aromatic from Sect. 3.1. The
new observation-derived AROM was calculated from the
PTR-MS measurements as follows: C8+C9 − 0.376 C7 −
0.0652 C7.

Figure 3 shows the histograms for the lumped AROM
species for 10 s averaged points along all the flight tracks.
The base model has a large number of high value points
(> 2 ppbv), many more than the model simulations with
the revised emissions, and also more than the observa-
tions. This can be quantified by using the 99 % percentile
(obs= 0.7607, revised= 1.004, base case= 2.302). The me-
dian value for the observations is 0.0182 ppbv, smaller than
both of the model versions (revised= 0.0236 ppbv, base
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Figure 3. Histograms for (a) observed AROM, (b) revised-
emissions AROM, and (c) base model AROM volume mixing ra-
tios (ppbv). Points correspond to 10 s averaged aircraft and model
data, sorted into 20 bins by volume mixing ratio. The inset boxes
show the 50th and 99th percentile values for each histogram.

case= 0.0466 ppbv), but closer to the model driven by the
revised emissions. Table 3 lists other statistical scores for
the AROM lumped species. The mean bias and RMSE (root
mean square error) are smaller for the revised-emissions run
compared to the base case. However, there is a small degra-
dation in the correlation coefficient with the sensitivity run.

The largest decreases in the AROM emission field be-
tween the revised and base-case emissions are again over
the Syncrude Mildred Lake facility (refer to Table 1). There
were also notable decreases over the CNRL Horizon and
Shell Muskeg and Jackpine facilities, but positive changes
in AROM emissions were noted over the Suncor Millennium
and Steepbank facility (also refer to Supplement Fig. S2 for
the emission spatial difference map). The Supplement sec-
tion includes the model and measurement time series com-
parison for the flights on 23 August and 3 September. In gen-
eral, the observed mixing ratio changes are closer in magni-
tude to the predictions from the revised-emission simulation
compared to the base case for the plume intersects.

3.3 Long-chain alkanes (ALKA) evaluation

The long-chain alkanes (C4 to C12) were sampled by fill-
ing canisters with ambient air on-board the aircraft. Fig-

Figure 4. Histograms for (a) observed ALKA, (b) revised-
emissions ALKA, and (c) base-case emissions ALKA volume mix-
ing ratios (ppbv). Points correspond to canister grab samples and
model data, sorted into 20 bins by mixing ratio. The inset boxes
show the 99th percentile value for each histogram.

ure 4 presents the histogram for the long-chain alkanes. The
mixing ratios are divided into 20 bins each with a width of
3 ppbv. From the observed histogram, there is a wide range
to the mixing ratios with a small number of very large con-
centrations, but also the first bin (0 to 3 ppbv) has a high per-
centage of the points. The model gas-phase mechanism rep-
resents all higher-carbon-number alkanes by a single lumped
species, with chemical and physical properties derived from
C4 to C8 alkanes. The base-case run calculates lower ALKA
mixing ratios than the model version using revised emissions.
The model using revised emissions is much better at repro-
ducing the higher concentration points, particularly above
12 ppbv. This is quantified by the 99 % percentile of the data
sets (obs= 29.9, base= 18.0, revised= 24.6). Other statis-
tics for the lumped ALKA species are shown in Table 3. The
mean bias went from a small negative value to +1.98 ppbv.
The slope decreased by a small value, but the y intercept in-
creased, which also increased the RMSE for the run with the
revised emissions. The correlation coefficient improved sig-
nificantly for the model run with revised emissions.

The revised ALKA emissions are considerably higher for
the CNRL Horizon and Shell Muskeg and Jackpine facilities,
but have smaller changes for the other facilities (refer to Ta-

Atmos. Chem. Phys., 18, 13531–13545, 2018 www.atmos-chem-phys.net/18/13531/2018/



C. A. Stroud et al.: Improving air quality model predictions of organic species 13539

ble 1), possibly reflecting differences in the processing activ-
ities between the facilities. Overall, the time series analysis
for the aircraft flights (refer to Supplement Fig. S10 and re-
lated discussion in the Supplement) showed mixed improve-
ments for ALKA associated with the revised emissions. The
large increases in ALKA emissions in the sensitivity simu-
lation for the CNRL facility did improve the model maxima
for the plume intersects on 26 August. The analysis suggests
further improvement in spatial allocation for the Shell facility
may be needed. The higher ALKA mixing ratios also feeds
back to higher SOA formation downwind of these facilities,
as discussed below.

The use of aircraft observations to both derive emissions
data and evaluate the subsequent model simulations might
be taken as circular reasoning. We note first that observation-
derived emissions are frequently used in modeling (for ex-
ample, continuous emissions monitoring system concentra-
tion observations are used to generate emissions data for
large stack emitters), and, second, that the emissions are
only one component of the overall modeling system. An
improvement in the simulated VOC concentrations using
observation-based emissions is only guaranteed if the emis-
sions dominate the net model error. While our results show
that, in general, the new emissions information does improve
model performance, the results using those new data are not
perfect, indicating other sources of error are contributing to
the overall model performance.

3.3.1 Organic aerosol (OA) evaluation

Figure 5 illustrates the histograms for the organic
aerosol observations and model results with base-case
and revised emissions. A clear improvement is shown
in the highest concentration bins (> 15 µg m−3) with
the revised emissions. This can be quantified with
the 99th percentile of the data (obs= 13.4 µg m−3, re-
vised= 9.3 µg m−3, base= 4.9 µg m−3). The median statistic
also improved (obs= 2.8 µg m−3, revised= 0.84 µg m−3,
base= 0.70 µg m−3). The lower 5th percentile is also
significantly under-predicted compared to observa-
tions and does not change much between the two
model runs (obs= 0.49 µg m−3, revised= 0.036 µg m−3,
base= 0.035 µg m−3). This reflects an under-prediction in
the background OA predicted by the model, which is likely
due to low biogenic SOA formation and aging in both model
versions. The importance of widespread biogenic SOA
formation from boreal forests has been reported in other
work (Slowik et al., 2010; Tunved et al., 2006).

Additional statistics are presented in Table 3. The mean
bias, RMSE, and slope all improve for the revised-emissions
run, though the correlation coefficient decreases significantly
for this run. To investigate the variability in the OA bias,
we plotted the OA bias as a function of different measured
variables. Figure 6 is a plot of the OA bias as a function
of the observed black carbon (BC) aerosol for the base-case

Figure 5. Histograms for (a) observed organic aerosol (OA),
(b) revised-emissions OA, and (c) base-case emissions OA concen-
trations (µg m−3). Points correspond to 10 s averaged aircraft and
model data. The inset boxes show the 50th and 99th percentile val-
ues for each histogram.

and sensitivity runs. The BC is a marker for petrochemi-
cal combustion, particularly diesel. For the base-case run,
the OA negative bias is observed to increase in magnitude
with observed BC. Points with high observed BC correlate
well with emissions from the OS open-pit mines (Liggio et
al., 2017), where the BC is likely emitted from the heavy-
hauler trucks. The locations with the largest OA bias were
also consistent with the locations of mines and the transport
wind direction. A review of the OS emission inventories sug-
gests that about 70 % of the BC comes from the OS off-road
diesel fleet. Including all points, the mean bias improves from
−2.8 to −2.4 (see Table 3) when using the revised emis-
sions. Figure 6b shows a zoomed plot for points with high
observed BC (> 0.8 µg m−3). There is a clear improvement
in bias for most of these points. The average bias for these
high BC points improves from−6.8 µg m−3 for the base-case
to−2.6 µg m−3 for the revised emissions. For emissions pro-
cessing the increase in PM emissions was assigned to the pro-
cessing plants (particle bin diameter D < 1 µm) or the surface
mines (particle bin diameter D < 1 µm). Overall, Fig. 6 shows
that, while the negative OA bias improves for samples high in
BC concentration (i.e., influenced by petrochemical combus-
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Figure 6. (a), (b) Organic aerosol model bias as a function of
observed black carbon aerosol. The bottom panel is an enlarge-
ment of the upper panel showing only the data points for observed
BC > 0.8 µg m−3. The model results for the base-case emissions run
are plotted in blue and points in red correspond to the revised-
emissions run. The data plotted are for all the aircraft flights.

tion or collocated with petrochemical combustion sources),
there still remains an unaccounted-for negative OA bias.

Figure 7 is a scatterplot of the difference in predicted POA
between the revised and base-case emissions runs vs. the dif-
ference in predicted total OA. A large fraction of the points
fall along the 1 : 1 line, and hence for these points the differ-
ence between the two runs is almost completely due to the
increased total primary PM emissions, and increased POA
fraction of those emissions, of the revised-emissions simula-
tions. The points with largest concentrations along the 1 : 1
line correspond to flights over the Syncrude Mildred Lake
facility on 16 and 23 August and on 3 September. There is
a subset of points, however, that lies below the 1 : 1 line;
these correspond to points with significantly enhanced model

Figure 7. Difference in predicted POA concentrations between
revised-emissions and base-case runs plotted as a function of the
difference in predicted total OA concentration between the revised-
emissions and base-case runs for all flights. Points along the 1 : 1
line show a difference solely from POA emission changes. Points
below the 1 : 1 line show enhanced SOA formation.

SOA between the two runs (16 August flight over CNRL
Horizon and 21 August survey flight over Shell Muskeg and
Jackpine). The Supplement section includes the model and
measurement time series comparisons for the flights on 21
and 23 August and 3 September. Overall, the case studies
showed improved predictions for the magnitude of the or-
ganic aerosol change for the plume passages with the revised
emissions; however, the base line organic aerosol was over-
predicted for all case studies.

3.3.2 Organic aerosol model recommendations

The improvement in model PM1 OA bias due to the use of
the revised emissions is encouraging; however, the decrease
in correlation coefficient suggests that the spatial allocation
of PM1 emissions may need further refinement. The remain-
ing negative bias suggests that other important processes may
be missing or underrepresented in the model. Three recom-
mendations emerge from recent and current work:

1. SOA formation from fugitive IVOC emissions

Recent publications suggest that fugitive intermediate
volatile organic compound (IVOC) emissions from the
OS open-pit mines are needed to represent SOA forma-
tion downwind of the OS region (Liggio et al., 2016).
In our emissions revision, only a small portion of the
IVOCs (dodecane C12) were added and lumped into the
long-chain ALKA lumped species. IVOC species with
carbon number ≥ 13 were not measured by the Li et
al. (2017) aircraft study and thus we do not have revised
IVOC emissions included in this work. Furthermore,
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the ALKA lumped species has an SOA yield more rep-
resentative of a lower-molecular-weight range, and the
yield is known to increase with increasing carbon num-
ber, so the dodecane SOA contribution would be un-
derestimated. Work is currently underway with GEM-
MACH to implement a volatility basis set (VBS) ap-
proach to SOA formation. The VBS approach will more
adequately represent the intermediate and semi-volatile
volatility range and chemical aging of these lower-
volatility compounds (Robinson et al., 2007). Future
work will measure IVOC emissions using box flights
around the oil sand facilities and open-pit mines. This
will remove current uncertainties in models and help
improve the negative bias in plumes. Implementing the
VBS scheme will also enable the PM emissions used
here (in both data sets) to be distributed into volatility
bins.

Also, while the measurement-derived emissions are
missing the IVOCs, the measurement-derived POA
emissions may contain some gaseous VOC, IVOC, and
SVOC species that react quickly and in one oxidation
step yield products that condense onto particles. This
rapid SOA mass produced would be measured in the
box flights and, at least partially, accounted for in the
updated OA emissions; however, this is labeled here as
POA instead of fresh SOA. Furthermore, there is the
potential for double counting if some of the very re-
active gaseous precursors react to form SOA and this
is accounted for in the measured POA. In this paper,
we have tried to minimize this effect by examining the
model performance in the “near field” from emission
flights close to facilities. This will be the topic of future
box modeling work with the new 2018 measurement-
derived IVOC and SVOC emissions to determine how
much of the measurement-derived POA is derived from
the fugitive open-pit mining IVOC and SVOC emis-
sions and their rapid particle formation.

2. Background organic aerosol levels

The under-prediction in background OA was a general
finding from the study; the cause is believed to be due
to underestimated biogenic SOA, due to the lumping of
biogenic monoterpene emissions into the anthropogenic
ALKE model species in the model’s gas-phase mecha-
nism and the lack of speciated representation of other
biogenic SOA precursors such as sesquiterpenes. Future
work will update the biogenic SOA yield coefficients in
the VBS approach using recent smog chamber results
which account for gas-phase loss of organic species to
chamber walls (Ma et al., 2017).

3. Spatial allocation of emissions

Future field studies should also focus on improving
within-facility spatial allocation. For example, within-
facility data such as the GPS (Global Positioning Sys-

tem) location of the mining trucks would be helpful
to derive their activity diurnal profiles and to improve
truck emission spatial allocation within a facility. The
GPS data would also be useful to define the location of
freshly excavated open-pit mines within a facility.

4 Conclusions

Overall, the weight of evidence suggests that the top-down
emission estimation technique applied to the OS surface
mining facilities helps to better constrain reported facil-
ity total organic emissions including fugitive sources, as
shown by improved model results when the revised emis-
sions are employed. We note that emissions from these
sources are a challenge to calculate in bottom-up inven-
tories due to the potential for fugitive emissions. For the
mono- and multi-substituted aromatics (TOLU and AROM),
the measured emission rates were more finely adjusted com-
pared to the base emissions, as TOLU facility totals went
up, AROM totals went down and total aromatic emissions
(TOLU+AROM) were revised by only a small extent. The
negative bias compared to observations for TOLU became a
small positive bias and the large positive bias for AROM be-
came only a small positive bias. The model’s ability to pre-
dict very high aromatic concentrations in plumes improved
with the revised emissions, as shown by the 99th percentile
statistic and the case studies.

For the long-chain ALKA species, the revised emissions
may have overcorrected, on average, as shown by the in-
crease in mean bias for the entire aircraft data set. However,
the correlation coefficient did improve significantly for the
long-chain alkane predictions, suggesting the combination of
alkane emission increases for some facilities and decreases
for others helped to improve the spatial distribution of ALKA
emissions. The results for some facilities suggest that further
improvement could be achieved by putting more emissions at
extraction processing plant locations (i.e., adjusting within-
facility spatial allocation). Interestingly, the alkane emission
increases and aromatic emission decreases, derived from air-
craft data (Li et al., 2018), were associated with the facili-
ties that use paraffinic solvents for bitumen extraction (e.g.,
Shell Muskeg and Jackpine). Overall, the predictions of alka-
nes in high concentration plumes improved with the revised-
emission data set, as shown by the 99th percentile statistic.

For PM1 organic aerosol, the revised emissions improved
the mean bias for predictions; however, a negative bias still
exists and the improvement was associated with a decrease
in correlation coefficient. The increase in predicted PM1 OA
concentration was largely due to the increase in POA emis-
sions in the revised-emissions input files. The POA emissions
increased because of a combination of larger measurement-
derived PM1 emissions and the revised ground-observed PM
speciation profile having a larger POA fraction. The in-
creases in PM1 POA emissions were largely allocated spa-
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tially to stack locations and this allocation may be a key fac-
tor in the degradation of the correlation coefficient, especially
if the fine OA originates from mine-face fugitive emissions.
Future work should focus on improving within-facility spa-
tial allocation of emissions. The remaining negative bias in
plumes likely stems from missing IVOC emissions in both
of the emission data sets used here, as suggested by Lig-
gio et al. (2015). Ongoing field work to measure the IVOC
emissions using aircraft box flights is underway in a new
2018 measurement intensive field study. Upcoming model-
ing work with GEM-MACH will include the VBS approach
to better represent lower-volatility compounds.

Data availability. The model results are available upon request
to Craig Stroud (craig.stroud@canada.ca). GEM-MACH, the at-
mospheric chemistry library for the GEM numerical atmospheric
model (©2007–2013, Air Quality Research Division and National
Prediction Operations Division, Environment and Climate Change
Canada), is a free software which can be redistributed and/or
modified under the terms of the GNU Lesser General Public Li-
cense as published by the Free Software Foundation – either ver-
sion 2.1 of the license or any later version. The specific GEM-
MACH version used in this work may be obtained on request to
craig.stroud@canada.ca. Many of the emissions data used in our
model are available online at ECCC (2018a, b) and more recent up-
dates may be obtained by contacting Junhua Zhang or Mike Moran
(junhua.zhang@canada.ca; mike.moran@canada.ca). The aircraft
observations used in this study are publicly available on the ECCC
data portal (ECCC, 2018c).
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