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Abstract. Eastern China (27–41◦ N, 110–123◦ E) is heavily
polluted by nitrogen dioxide (NO2), particulate matter with
aerodynamic diameter below 2.5 µm (PM2.5), and other air
pollutants. These pollutants vary on a variety of temporal and
spatial scales, with many temporal scales that are nonperi-
odic and nonstationary, challenging proper quantitative char-
acterization and visualization. This study uses a newly com-
piled EOF–EEMD analysis visualization package to evaluate
the spatiotemporal variability of ground-level NO2, PM2.5,
and their associations with meteorological processes over
Eastern China in fall–winter 2013. Applying the package
to observed hourly pollutant data reveals a primary spatial
pattern representing Eastern China synchronous variation in
time, which is dominated by diurnal variability with a much
weaker day-to-day signal. A secondary spatial mode, repre-
senting north–south opposing changes in time with no con-
stant period, is characterized by wind-related dilution or a
buildup of pollutants from one day to another.

We further evaluate simulations of nested GEOS-Chem
v9-02 and WRF/CMAQ v5.0.1 in capturing the spatiotem-
poral variability of pollutants. GEOS-Chem underestimates
NO2 by about 17 µg m−3 and PM2.5 by 35 µg m−3 on aver-
age over fall–winter 2013. It reproduces the diurnal variabil-

ity for both pollutants. For the day-to-day variation, GEOS-
Chem reproduces the observed north–south contrasting mode
for both pollutants but not the Eastern China synchronous
mode (especially for NO2). The model errors are due to a
first model layer too thick (about 130 m) to capture the near-
surface vertical gradient, deficiencies in the nighttime nitro-
gen chemistry in the first layer, and missing secondary or-
ganic aerosols and anthropogenic dust. CMAQ overestimates
the diurnal cycle of pollutants due to too-weak boundary
layer mixing, especially in the nighttime, and overestimates
NO2 by about 30 µg m−3 and PM2.5 by 60 µg m−3. For the
day-to-day variability, CMAQ reproduces the observed East-
ern China synchronous mode but not the north–south oppos-
ing mode of NO2. Both models capture the day-to-day vari-
ability of PM2.5 better than that of NO2. These results shed
light on model improvement. The EOF–EEMD package is
freely available for noncommercial uses.
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1 Introduction

Eastern China (EC, 25–41◦ N, 110–123◦ E) has been heavily
polluted by anthropogenic emissions in recent years (Cui et
al., 2016; Klimont et al., 2017; Lin et al., 2015; Richter et al.,
2005; Y. Zhang et al., 2016). Pollutants from this region have
also raised concerns about long-range transport to downwind
areas (Cooper et al., 2010; Jiang et al., 2015; Lin et al., 2014,
2008; Zhang et al., 2014). Since 2013, the Ministry of Envi-
ronmental Protection (MEP) of China has greatly expanded
its air pollution monitoring network to measure hourly near-
surface mass concentrations of particulate matter with aero-
dynamic diameter less than 2.5 µm (PM2.5), PM10, nitrogen
dioxide (NO2), carbon monoxide, ozone, and sulfur dioxide.
These measurements have been used for air pollution analy-
ses and model evaluation (Wang et al., 2014; Xie et al., 2015;
Y. Zhang et al., 2016; Zhao et al., 2016).

Over Eastern China, NO2 and PM2.5 concentrations vary
diurnally and from one day to another. NO2 is short lived
(hours), and its diurnal cycle is affected by rush hour traffic
emissions (Chen et al., 2015; Hu et al., 2014), other emis-
sion sources, planetary boundary layer (PBL) mixing (Lin
and McElroy, 2010), and chemistry (Lin et al., 2012). Al-
though previous studies in the US, Germany, and Japan have
suggested a weekly cycle of NO2 due to variations in indus-
trial and traffic emissions, such an emission-driven weekly
cycle is not visible over developing countries such as China
and India (Beirle et al., 2003; Boersma et al., 2009; Cui et al.,
2016; Hu et al., 2014; Kaynak et al., 2009). Instead, ground-
based observations show that the day-to-day variation in NO2
over China is associated with changes in meteorological pa-
rameters such as wind speed, relative humidity (RH), sur-
face pressure, and temperature (He et al., 2017; Zhang et al.,
2015).

For PM2.5 over China, both the diurnal and the day-to-
day variations are complicated by its relatively long lifetime,
its various components from different sources, and meteorol-
ogy. Liu et al. (2016) suggested three types of PM2.5 diurnal
cycle within a year, with the peak concentration occurring
at distinctive hours in different seasons. In the summertime
(April to August), the diurnal cycle may follow human ac-
tivities (Gong et al., 2007; Liu et al., 2016), which is differ-
ent from the diurnal cycles in the biomass burning season
or in winter. Other studies suggested weak diurnal cycles of
PM2.5 in urban or suburban areas (Chen et al., 2015; Hu et
al., 2014). Moreover, some studies pointed to the lack of a
weekly cycle of PM2.5 (Liu et al., 2016), while others sug-
gested contrasting weekly cycles (for Beijing, Chen et al.,
2015; Hu et al., 2014). In winter, the frequent and irregular
weather systems prohibit a clear weekly cycle (Gong et al.,
2007).

This study analyzes the spatiotemporal variability of NO2
(with the shortest lifetime of hours and the greatest variabil-
ity among the pollutants measured by the official monitoring
network) and PM2.5 (the dominant air pollutant for prema-

ture mortality; Forouzanfar et al., 2015) over Eastern China
in fall–winter 2013. Given the complex and nonstationary na-
ture of pollutant variability over Eastern China, here we com-
pile an EOF–EEMD analysis visualization package to simul-
taneously distinguish and visualize the spatial and temporal
variability of pollutants. In sequence, the package consists
of an empirical orthogonal function (EOF) analysis (Lorenz,
1956) to separate spatial and temporal patterns, an ensemble
empirical mode decomposition (EEMD) analysis (Wu et al.,
2009) to separate different temporal modes, a Hilbert trans-
form (HT), a marginal spectrum analysis (MSA), and a vi-
sualization step to present all physically meaningful spatial
and temporal modes in a two-dimensional plot. In particular,
EEMD (Huang, 2005; Huang et al., 1998, 1999; Huang and
Attoh-Okine, 2005; Wu et al., 2009) is an effective tool to
extract signals from noisy nonlinear and nonstationary pro-
cesses (Wu et al., 2009). EEMD and its variants (e.g., multi-
dimensional ensemble empirical mode, MEEMD) have been
widely used in climate studies (Feng et al., 2014; Huang et
al., 2012a, b; Vecchio and Carbone, 2010; Wu et al., 2011,
2016). The EOF–EEMD package thus allows for quantita-
tive manifestation of the spatial, (regular) diurnal, and (irreg-
ular) day-to-day variations of pollutants and meteorological
drivers.

We further use the EOF–EEMD package to evaluate how
well chemical transport models (CTMs) can reproduce the
observed pollution variability. Although popularly used in
air pollution diagnosis, forecast and projection, and remote
sensing (Geng et al., 2015; Lin et al., 2015), models are sub-
ject to errors in emissions, chemistry, transport, PBL mix-
ing, and other processes (Lin et al., 2008, 2012; Zhang et
al., 2016b). This study evaluates two representative mod-
els, GEOS-Chem and WRF/CMAQ, with a note that such
an evaluation can be applied to other models.

The rest of the paper is organized as follows. Section 2
introduces in situ measurements of NO2, PM2.5, meteoro-
logical parameters, model simulations, and the EOF–EEMD
analysis visualization package. Section 3 analyzes the ob-
served spatiotemporal variations of NO2 and PM2.5, includ-
ing their relationships with meteorological parameters. Sec-
tion 4 evaluates the modeled spatiotemporal variations of
NO2 and PM2.5. Section 5 concludes the present study with
further discussion on the applicability of the EOF–EEMD
package.

2 Data and methods

2.1 Spatial and temporal domain

We focus on pollution over Eastern China (25–41◦ N, 110–
123◦ E). Guided by an EOF analysis, we contrast pollution
over the southern (SEC, south of 35◦ N) and northern (NEC)
parts to address the regional differences in day-to-day pol-
lution variability. Such latitudinal separation coincides with
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Figure 1. (a) Distribution of 163 measurement stations for NO2, 157 stations for PM2.5, and 36 meteorological stations (red diamonds) over
Eastern China (25–41◦ N, 110–123◦ E). (b) Distribution of 42 cities with NO2 and PM2.5 observations. Both dots denote stations (a) and
cities (b) with both NO2 and PM2.5 data. The blue dots indicates the same stations (cities) for both NO2 and PM2.5, while the green dots are
only used for NO2 and purple dots are only used for PM2.5. The orange line separates northern Eastern China (NEC) and southern Eastern
China (SEC), and the red line labels the location of the Huai River.

the Huai River climate transitional zone (Ye and Li, 2017).
The orange lines in Fig. 1 separate the two regions.

Our study period is from 25 October to 25 December 2013,
with a total of 1488 h in 62 days. Most air pollution data are
missing in January and February 2014 because of instrumen-
tal failure or data retrieval failure, and data before 25 October
are not available.

2.2 NO2 and PM2.5 observations

We retrieve hourly measurements of NO2 and PM2.5 from
193 air quality monitoring stations of the MEP. Most stations
are located in urban areas, and only six stations are suburban.
As almost every station has missing values in more than one
day, we exclude stations that have missing values at ≥ 30 %
of the 1488 h or during a consecutive 72 h period. We thus
select 163 stations for NO2 and 159 stations for PM2.5 in
the same 42 cities. The dots in Fig. 1a and b depict the sta-
tions and cities, respectively. The blue dots show stations and
cities with both valid NO2 and PM2.5, the green dots with
NO2 only, and the purple dots with PM2.5 only. The slight
difference between NO2 and PM2.5 stations does not affect
our analysis of the regional pattern of pollutants.

2.2.1 Correction of raw NO2 measurements

At the monitoring sites, NO2 is measured via molybdenum-
catalyzed conversion to nitric oxide (NO) and a subsequent
chemiluminescence measurement. The measurement tech-

nique suffers from interference by more oxidized nitrogen
species, since the heated molybdenum surface exhibits low
chemical selectivity (Boersma et al., 2009; Lamsal et al.,
2008; L. Zhang et al., 2016)

Here we follow Lamsal et al. (2008) to correct for the
interference by introducing a correction factor (CF) based
on GEOS-Chem-simulated nitrogen species (NO2, HNO3,
PAN, and all alkyl nitrates

(∑
AN

)
).

CF=
NO2

NO2+
∑

AN+ 0.95PAN+ 0.35HNO3
(1)

We multiply CF with the raw NO2 data to obtain “corrected”
NO2 concentrations. Our sensitivity test suggests that assum-
ing PAN and HNO3 to be fully converted to NO2 (i.e., as-
suming the coefficients to be unity for both PAN and HNO3
in Eq. 1) does not affect our spatiotemporal analysis of NO2.
Hereafter the NO2 corrected by Eq. (1) is discussed, unless
stated otherwise.

Figure 2 compares the regional mean hourly time series of
raw and corrected NO2. The correction reduces NO2 concen-
trations by about 2–30 µg m−3 over the whole period and is
higher at times when nitrogen is more oxidized. It slightly re-
duces the relative contribution of day-to-day variability to the
total variance of NO2 under the EOF–EEMD analysis (not
shown) because excluding the more oxidized species short-
ens the lifetime of NO2.
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12936 M. Liu et al.: Pollutant spatiotemporal analysis with a novel method

Figure 2. Regional mean hourly time series of raw and “corrected” NO2 from the observations. The gray shading indicates 1 standard
deviation across all stations.

2.2.2 Filling in missing values for EOF–EEMD analysis

Prior to an EOF–EEMD analysis, we fill in missing values
in hourly pollution observations. If data are missing for more
than a consecutive 12 h period, we fill in the missing value
in each hour with data on that hour averaged over all days;
as such, the diurnal cycle is maintained. In other cases, linear
interpolation from adjacent valid data is applied. Our inter-
polation does not introduce significant artificial information
for spatiotemporal analysis, as validated by a sensitivity test
with GEOS-Chem model data. Specifically, the EOF–EEMD
results based on the original GEOS-Chem data (i.e., no miss-
ing values) are similar to the results based on model data
sampled at times of valid observations with missing values
filled in with the same technique as for the observation data.

2.2.3 Conversion from station- to city-based datasets

Since different cities have different numbers of stations, we
calculate city mean observations by averaging across all sta-
tions of each city. Compared to a station-based analysis, the
city-based EOF–EEMD results reduce the spatial noise, lead-
ing to more distinctive temporal patterns. All analyses here-
after are based on city mean data. The longitude and latitude
of each city center are used to identify the respective model
grid cell.

2.3 Meteorological observations

We use 3-hourly measurements of 2 m air temperature, 2 m
relative humidity, and 10 m wind speed from meteorolog-
ical stations recorded at the National Oceanic and Atmo-

spheric Administration National Centers for Environment In-
formation (NOAA NCEI). We do not use surface pressure ad-
ditionally because it is highly correlated with air temperature
and relative humidity on the day-to-day scale. The locations
of these stations do not always coincide with air pollution
stations. Thus, we select 36 meteorological stations within
10 km of air pollution stations (red hollow dots in Fig. 1).
Despite the difference (in number and location) between pol-
lution and meteorological stations, an analysis of the regional
temporal patterns of pollutants and meteorology is still infor-
mative (see Sect. 3.2).

To fill in missing values, we apply an interpolation process
that accounts for diurnal variability using information for an
adjacent day. For example, if the temperature on 26 October
at 12:00 is missing, we calculate the temperature difference
between 09:00 and 12:00 on the 25th as well as the difference
between 15:00 and 12:00 on the 25th. We then use these dif-
ferences to adjust the temperatures at 09:00 and 15:00 on the
26th, and finally use the mean of the two adjusted tempera-
tures as the temperature on the 26th at 12:00.

For consistency with the hourly pollution data, we lin-
early interpolate the 3-hourly meteorological measurements
to each hour. This interpolation does not distort the EOF–
EEMD analysis, as confirmed by comparing the statistical
analysis on 1-hourly GEOS-FP meteorological parameters
versus an analysis on 3-hourly GEOS-FP data. Note that the
GEOS-FP meteorology is used to drive GEOS-Chem.

Atmos. Chem. Phys., 18, 12933–12952, 2018 www.atmos-chem-phys.net/18/12933/2018/



M. Liu et al.: Pollutant spatiotemporal analysis with a novel method 12937

2.4 Model simulations

2.5 GEOS-Chem

We use the nested GEOS-Chem CTM version 9-02 (L. Zhang
et al., 2016) to simulate NO2, PM2.5, and other pollutants
over China in October–December 2013. The model resolu-
tion is a 0.3125◦ long.× 0.25◦ lat. grid with 47 vertical lay-
ers, and the lowest 10 layers are of ∼ 130 m thickness each.
The model is driven by the GEOS-FP assimilated meteo-
rology from the National Aeronautics and Space Adminis-
tration (NASA) Global Modeling and Assimilation Office,
with the full Ox–NOx–VOC–CO–HOx gaseous chemistry
(Mao et al., 2013) and online aerosol calculations. Vertical
mixing in the PBL adopts a nonlocal scheme (Holtslag and
Boville, 1993; Lin et al., 2010). Model convection is simu-
lated with the relaxed Arakawa–Schubert scheme (Rienecker
et al., 2008).

Chinese anthropogenic emissions of NOx and other pol-
lutants adopt the monthly MEIC inventory with a base year
of 2010 (http://www.meicmodel.org, last access: 1 Decem-
ber 2015) (Geng et al., 2017). We further use the monthly
DOMINO v2 NO2 data to scale monthly anthropogenic NOx

emissions from 2010 to the simulation year (Lin et al., 2015).
The emission scaling improves the simulation of NO2 (Cui et
al., 2016). Other model setups are referred to Lin et al. (2015)
and Yan et al. (2016).

GEOS-Chem modeled PM2.5 includes secondary inor-
ganic aerosols (sulfate, nitrate, and ammonium), black car-
bon, primary organic carbon, natural dust, and sea salt. Sec-
ondary organic aerosols are not included in this study, con-
sidering the severe underestimate in China due to missing
precursor emissions and formation pathways (Fu et al., 2012;
L. Zhang et al., 2016). Anthropogenic dust is also not in-
cluded.

The nested model simulation is from 15 October to 25 De-
cember in 2013, allowing for a 10-day spin-up period. Its
lateral boundary conditions of chemicals are updated every
3 h by results from a corresponding global simulation on a
2.5◦ long.× 2◦ lat. grid. Modeled NO2 and PM2.5 in the first
layer are sampled at city centers and times with valid obser-
vations, unless stated otherwise.

2.5.1 CMAQ

We use the Weather Research and Forecasting (WRF) model
v3.5.1 (http://www.wrf-model.org/, last access: 1 Decem-
ber 2015) to drive CMAQ v5.0.1 (http://www.cmascenter.
org/cmaq/, last access: 1 December 2015). The simula-
tion covers East Asia at a horizontal resolution of 36×
36 km2 with 14 vertical layers. The lowest six layers are
of ∼ 80 m thickness each, and about eight layers are be-
low 1 km. The gas-phase chemistry uses the CB05 mech-
anism with active chlorine chemistry and updated toluene
mechanism (Whitten et al., 2010). The aqueous-phase chem-

istry adopts the updated Regional Acid Deposition Model
(RADM) (Chang et al., 1987; Walcek and Taylor, 1986). The
aerosol chemistry follows AERO6. PBL mixing in both WRF
and CMAQ adopts the ACM2 scheme (Pleim, 2007). Other
model physics are detailed in Zheng et al. (2015).

Chinese anthropogenic emissions are from MEIC (http:
//www.meicmodel.org, last access: 1 December 2015). Emis-
sions in 2013 are extrapolated from the base year (2012)
based on country-level statistics (Zheng et al., 2015). An-
thropogenic emissions in other Asian countries and biomass
burning emissions are taken from the MIX emission inven-
tory prepared for the Model Inter-Comparison Study Asia
Phase III (MICS-ASIA III).

The PM2.5 species in AERO6 include fine-mode sul-
fate, nitrate, ammonium, primary and secondary organic
aerosols, black carbon, sodium, calcium, aluminum, par-
ticulate chloride, and the remaining unspeciated fine-mode
primary PM (http://www.airqualitymodeling.org/cmaqwiki/
index.php?title=CMAQv5.0_PMother_speciation, last ac-
cess: 30 November 2017).

The simulation is from 15 October to 25 December 2013,
allowing for a 10-day spin-up period. Initial conditions and
boundary conditions are from GEOS-Chem (Zheng et al.,
2015). Modeled NO2 and PM2.5 in the first layer are sam-
pled at city centers and times with valid observations, unless
stated otherwise.

2.6 EOF–EEMD analysis visualization package

As shown in Fig. 3, our EOF–EEMD analysis visualiza-
tion package consists, in order, of an EOF analysis (Lorenz,
1956), an EEMD analysis (Wu et al., 2009), a Hilbert trans-
form (HT) with marginal spectrum analysis (MSA), and a vi-
sualization step to quantitatively depict the spatial–temporal
scales of measurement or model data.

The basic purpose of our package is to quickly and simul-
taneously identify and visualize various spatial and temporal
scales of interest in the observation or model datasets. As
shown by Feng et al. (2014) and Wu et al. (2016), combin-
ing EOF with EEMD to decompose the datasets leads to a
faster calculation than MEEMD by 1 or 2 orders of magni-
tude because here the EEMD is applied to the temporal com-
ponents (i.e., PCs) out of an EOF analysis rather than to all
dimensions. Also, our EOF–EEMD package conducts addi-
tional HT–MSA and provides visualization of all spatial and
temporal scales of interest.

– EOF analysis to decompose a two-dimensional dataset
(time series at multiple locations) into spatial and tem-
poral components.

Suppose there are n locations, each having a time series
of length p. The associated dataset Z is an n×p matrix.
An EOF analysis of Z gives

Z= U
∑

WT. (2)
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Figure 3. The flowchart of the EOF–EEMD analysis visualization package. The red boxes represent the quantities visualized.

Here 6 is a diagonal q × q matrix containing the first q
singular values of Z, and it represents the contribution
of each pattern to the total variance of Z. The diagonal
values of 6 are in a descending order, and thus the first
several modes are the dominant ones. U is an n×q ma-
trix representing the spatial component, and each col-
umn of U represents a spatial mode. W is a p×q matrix
representing the temporal component, and each column
of W represents a principal component (PC) for tempo-
ral variation associated with the corresponding spatial
mode.

– EEMD analysis of each PC time series to obtain its “in-
trinsic mode functions” (IMFs) of descending frequen-
cies.

Each PC is mixed with multiple scales, which requires
further decomposition in the time domain. Unlike fast
Fourier transform (FFT) or wavelet transform (WT),
EEMD does not need a priori bases, and it can be ap-
propriately applied to delineate nonlinear and nonsta-
tionary time series, as in our pollution study.

EEMD consists of an ensemble of empirical mode de-
composition (EMD) performed on each PC time se-
ries (denoted as x(t) in Eq. 3). Each EMD linearly de-
composes x(t) into individual IMFs cj (of ascending
timescales and descending frequencies) and a residual
rn:

x (t)=

n∑
j=1

cj (t)+ rn(t). (3)

EMD is based on finding the local maxima and min-
ima of the time series. A detailed decomposition pro-
cess can be found in Huang et al. (1998, 1999). EMD is
much less susceptible to missing values and data inter-
polation than approaches that are based on an analysis
of the whole time series (e.g., FFT and WT).

EMD may be sensitive to noise in the real data to en-
counter a “mode mixing” problem (Wu et al., 2009).
EEMD solves this problem by performing an ensem-
ble of hundreds of EMDs, each with certain white noise
added to x (t). Hence, the noise in the real data is in-
corporated as part of the white noise, and the ensemble
further minimizes the effects of noise. The white noise

is assumed to follow the standard Gaussian distribution
(Wu et al., 2009). Figure 4 shows an example of the
EEMD analysis.

– Hilbert transform and marginal spectrum analysis of
each IMF to reveal its representative frequency range.

There are no discrete periods or frequencies in the pol-
lution and meteorological time series. Correspondingly,
an IMF also has a continuous frequency range (rather
than a constant frequency) that can be determined by
HT–MSA. The HT reveals the IMF energy–frequency–
time distribution (Huang et al., 1999). The MSA further
shows the IMF distribution of variance (energy) with
respect to different frequencies. The spectral peak rep-
resents the largest contribution to total variance.

A spurious oscillation may occur near the edges of cer-
tain IMF time series, resulting in an inaccurate calcu-
lation of variance under HT–MSA. We apply a box-car
filter (Gubbins, 2004) to select the internal 60 % of an
IMF time series (from 20 % to 80 % of the 1488 h) to
perform HT–MSA. Figure 4b shows an example of the
visualized result of HT–MSA, in which the horizontal
axis is the number of occurrences within the whole pe-
riod (frequency, in h−1, multiplied by the time length,
1488 h) and the vertical axis is the energy contribution.
IMF2–IMF5 are visualized and analyzed in this study.
The higher-frequency IMF1 is noisy as the energy is
distributed over a wide range of occurrence numbers.
IMF6–IMF10 represent the longest temporal scales that
contribute little to the total variance of the decomposed
PC. Thus IMF1 and IMF5–IMF10 are not further ana-
lyzed.

Based on HT–MSA, we determine a representative fre-
quency range (RFR) such that the range encompasses
the peak frequency and that the frequencies within the
range contribute 50 % of the total variance of an IMF.
The frequencies below and above the RFR bounds each
contribute 25 % of the total variance of the IMF. Before
calculating the RFR, we smooth the marginal spectrum
by connecting all local maxima of the spectrum with a
cubic spline.

– Visualization of the spatial and temporal scales in a two-
dimensional plot.

Atmos. Chem. Phys., 18, 12933–12952, 2018 www.atmos-chem-phys.net/18/12933/2018/
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Finally, we simultaneously visualize the spatial and
temporal scales as well as their contributions to the total
variance of Z in a two-dimensional plot for easy obser-
vational diagnosis and model evaluation. In this plot, an
IMF is represented by a vertical “error bar” and a hor-
izontal bar. The length of the error bar stands for the
representative period range (RPR, the inverse of RFR),
and a shorter length means a more stationary variation
mode (i.e., towards a fixed frequency or period). The
length of the horizontal bar stands for the contribution
to the total variance. For clearer presentation, the plot
does not include IMFs that do not pass the white noise
examination, that lay outside the range of scales consid-
ered here (hours to days), or that contribute little to the
total variance of the original data (e.g., less than 1 %).

3 Observational analyses of NO2, PM2.5, and
meteorological variables

3.1 General characteristics

The colored dots in Fig. 5a and b show the observed spa-
tial distributions of city mean NO2 and PM2.5 averaged
over the time period. Both NO2 and PM2.5 are largest over
Beijing–Tianjin–Hebei (BTH) in the north and the Yangtze
River Delta (YRD) in the east. NO2 concentrations exceed
60 µg m−3 at many sites. The range of PM2.5 is larger, from
below 10 µg m−3 in some northern and coastal cities to about
200 µg m−3 in several cities of BTH.

Figure 6a and b show the diurnal variations of NO2 and
PM2.5 over Eastern China, NEC, and SEC averaged over all
days. Similarly, over the three regions, NO2 peaks around
19:00 due to evening rush hour emissions, reduced PBL mix-
ing, and a lengthened lifetime. NO2 reaches a minimum at
14:00 because of the shortest lifetime and strongest PBL
mixing. The diurnal range (maximum minus minimum) is
about 30 µg m−3. The PM2.5 level also reaches a minimum
in the early afternoon. It has a much smaller diurnal range at
10 µg m−3. The vertical error bars in Fig. 6a and b depict the
standard deviation for the day-to-day variation of NO2 and
PM2.5 at any given hour. At a given hour, the PM2.5 level is
much more variable across the days than NO2. In particular,
the day-to-day standard deviation for PM2.5 at a given hour
is as large as the diurnal range of PM2.5.

Figure 6c and d further show the time series of daily
mean NO2 and PM2.5. All data are de-trended (trends are
at 0.01 µg m−3 h−1 for NO2 and 0.05 µg m−3 h−1 for PM2.5).
Although local maxima and minima (peaks and troughs of
the time series) occur every several days, there is no sin-
gle period or amplitude for the variation of each species.
For NO2 over Eastern China (black line in Fig. 6c), the
local maxima vary from 60 to 100 µg m−3, and the local
minima vary from 20 to 40 µg m−3. For PM2.5 over East-
ern China (black line in Fig. 6d), the local maxima vary

from 100 to 300 µg m−3, and the local minima vary from 20
to 120 µg m−3. Furthermore, comparing the green and blue
lines reveals that pollutants over NEC and SEC synchronize
on some days but are out of phase on others; this feature is
quantitatively analyzed in Sect. 3.2. These day-to-day vari-
ation patterns are associated with meteorological conditions
and pollutant lifetimes.

Figure 7 shows day-to-day anomalies of observed pollu-
tant concentrations and meteorological parameters over NEC
and SEC. All data are de-trended. Over NEC, wind speed
is clearly anticorrelated with pollutant levels. The correla-
tion coefficient reaches −0.73 between NO2 and wind speed
and −0.60 between PM2.5 and wind speed. Over this region,
stronger winds are often associated with lower RH and lower
temperature, characteristic of a cold air passage that brings
cleaner, colder, and drier air from the north to NEC and trans-
ports the NEC pollution out of the region. Correspondingly,
RH is strongly positively correlated with NO2 (R = 0.62)
and PM2.5 (R = 0.69). The meteorology-associated day-to-
day variability is more apparent after mid-November, when
the variations of the two pollutants are more synchronous.

Over SEC (Fig. 7), the relationship between pollutant lev-
els and meteorological parameters is more complex. The cor-
relation between daily mean PM2.5 and wind speed is rela-
tively weak (R =−0.44 compared to −0.60 over NEC), and
its correlation with RH is even weaker (R = 0.29). This indi-
cates that the northerly air does not reduce PM2.5 levels over
SEC as effectively as over NEC, as PM2.5 from NEC may be
transported to SEC. By comparison, NO2 is still highly an-
ticorrelated with wind speed (R =−0.77) over SEC, likely
a result of the short lifetime of NO2. Compared to PM2.5
whose lifetime is sufficiently long (several days) for trans-
port from NEC to SEC (Hu et al., 2014), NO2 has a much
shorter lifetime (below 1 day; Lin et al., 2012) and cannot un-
dergo effective long-distance transport. However, almost all
pollution measurement sites are urban, and weaker (stronger)
winds allow for rapid accumulation (removal) of urban NO2
pollution.

3.2 EOF–EEMD analyses of pollutants and
meteorological parameters

Although informative, the time series analyses of regional
mean pollution in Sect. 3.1 do not provide adequate quanti-
tative information on the spatiotemporal variability and em-
bedded scales. In fact, the separate discussion on NEC and
SEC in Sect. 3.1 is largely inspired by the following EOF–
EEMD analysis that suggests distinctive features between
these two subregions. In this section, we use the EOF–EEMD
package to distinguish and visualize the quantitative contri-
butions of individual spatial and temporal modes to varia-
tions in the pollutant and meteorological data.

The columns in Fig. 8 show the EOF–EEMD results for
the observed temperature, RH, wind speed, NO2, and PM2.5.
The first two rows show the first two spatial patterns (EOF1
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Figure 4. EEMD–HT–MSA result for PC1 of observed NO2.

and EOF2) from the EOF analysis. The third row visualizes
the EEMD–HT–MSA results for PC1 and PC2, the temporal
counterparts of EOF1 and EOF2. For all variables, the first
two PCs contribute more than 50 % of the total variance of
the original data. The following PCs (PC3, PC4. . . ) contain
small variances and are not discussed here.

3.2.1 EOF–EEMD analyses of pollutants

The fourth column in Fig. 8 for NO2 shows a primary pattern
(EOF1 and PC1) with synchronous variation over the entirety
of Eastern China. This pattern contributes 42 % of the total
variance of NO2. The two dominant IMFs of PC1 have time
periods at 24 and 12 h, respectively, and together they con-
tribute 30.4 % of the total variance of NO2. Thus, PC1 mainly
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Figure 5. Observed (filled circles) and modeled (color maps) NO2 and PM2.5 averaged over 25 October–25 December 2013. Here the model
results are averaged over all days rather than sampled at times of valid observations.

reflects the diurnal variation of NO2. PC1 also contains some
day-to-day variability in IMFs, which contribute about 10 %
of the total variance of NO2. The second pattern (EOF2) of
NO2 reveals opposite temporal variations between NEC and
SEC. This temporal contrast is mainly reflected in the day-
to-day variability, with RPRs around 2–5 days contributing
10.9 % of the total variance in NO2. The day-to-day compo-
nents of PC1 and PC2 correspond to the finding in Sect. 3.1
that NO2 over NEC and SEC is synchronous on some days
but out of phase on others.

We further investigate the physical meanings of PC1 and
PC2 for NO2. The red solid and red dashed lines in Fig. 6a

and c show the diurnal and day-to-day variations of PC1 and
PC2 in comparison to regional mean NO2 levels over Eastern
China (black line), NEC (green line), and SEC (blue line).
Table 1 shows the associated correlation coefficients. PC1 is
synchronous with Eastern China mean NO2 for both diurnal
and day-to-day variations (R reaches 1.0), confirming this
regionally synchronous pattern. The day-to-day variation of
PC2 is correlated with NEC NO2 (R = 0.66) but anticorre-
lated with SEC NO2 (R =−0.45, Table 1), again confirming
this NEC–SEC contrasting pattern.

The last column in Fig. 8 shows the EOF–EEMD result
for PM2.5. As for NO2, EOF1 and PC1 of PM2.5 reflect a
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Figure 6. (a) Diurnal variation of observed NO2 averaged over 25 October–25 December 2013. The black vertical bars represent 1 standard
deviation across the days. PC1 from the EOF analysis is overlaid in red. (b) Similar to (a) but for PM2.5. (c) Day-to-day variation of daily
mean NO2 over 25 October–25 December 2013. Data are de-trended. The black vertical bars represent 1 standard deviation due to the diurnal
variation. PC1 and PC2 from the EOF analysis are overlaid in red. (d) Similar to (c) but for PM2.5.

Figure 7. Daily anomalies of observed meteorological parameters and pollutant concentrations averaged over NEC and SEC, as well as their
correlations. All data are de-trended. Correlation coefficients with “*” and “**” are statistically significant with P values below 0.05 and
0.01, respectively.

temporally synchronous pattern over Eastern China, which
contributes 44 % of the total variation of PM2.5. Again, PC1
is synchronous with Eastern China mean PM2.5 (red versus
black lines in Fig. 6b, d) in terms of both diurnal and day-to-
day variations, with correlation coefficients approaching 1.0
(Table 2). However, the IMFs of PC1 representing diurnal
variation are relatively weak, consistent with the noisy diur-
nal cycle of PM2.5 discussed in Sect. 3.1. The dominant IMF

of PC1 shows a period of around 7 days. PC2 of PM2.5 re-
flects the day-to-day contrast between NEC and SEC (Fig. 6d
and Table 2) with RPRs of 2–5 days, similar to PC2 of NO2.
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Figure 8. EOF–EEMD–HT–MSA results for the observed temperature, RH, wind speed, NO2, and PM2.5. The first two rows depict EOF1
and EOF2, and the third row shows the EEMD–HT–MSA result for PC1 and PC2. In each panel of the third row, the length of the vertical
“error bar” shows the RPR of an IMF, while the length of the horizontal bar represents the percentage contribution of the IMF to the total
variance of the original data (as such, the horizontal lengths for different IMFs across different PCs can be compared). The blue (red) color
indicates diurnal (day-to-day) variation.

Table 1. Correlation between PCs and regional mean values in
terms of diurnal and day-to-day variability for NO2.

PC

PC1 PC2

Region Diurnal Day-to-day Day-to-day

Eastern China (obs.) 1.0** 0.96** 0.0
NEC (obs.) 1.0** 0.77** 0.66**
SEC (obs.) 1.0** 0.84** −0.45**
Eastern China (GEOS-Chem) 1.0** 0.97** −0.07
NEC (GEOS-Chem) 1.0** 0.56** 0.81**
SEC (GEOS-Chem) 1.0** 0.78** −0.47**
Eastern China (CMAQ) 1.0** 0.99 ** 0.12
NEC (CMAQ) 1.0** 0.82** 0.74**
SEC (CMAQ) 1.0** 0.94** −0.32**

** The correlation coefficient is statistically significant with the P value < 0.01.

3.2.2 EOF–EEMD analyses of meteorological
parameters

For comparison, the first three columns in Fig. 8 show the
EOF–EEMD results for the observed temperature, RH, and
wind speed. The EOF–EEMD result for wind speed (the third
column in Fig. 8) is closest to that for NO2, with a regionally
synchronous pattern (EOF1 and PC1), an NEC–SEC con-

Table 2. Correlation between PCs and regional mean values in
terms of diurnal and day-to-day variability for PM2.5.

PC

PC1 PC2

Region Diurnal Day-to-day Day-to-day

Eastern China (obs.) 0.99** 0.97** −0.23
NEC (obs.) 0.99** 0.89** 0.41**
SEC (obs.) 0.99** 0.78** −0.62**
Eastern China (GEOS-Chem) 1.0** 0.98** −0.13
NEC (GEOS-Chem) 1.0** 0.85** 0.55**
SEC (GEOS-Chem) 1.0** 0.72** −0.68**
Eastern China (CMAQ) 1.0** 0.99** −0.20
NEC (CMAQ) 1.0** 0.89** 0.32**
SEC (CMAQ) 1.0** 0.90** −0.62**

** The correlation coefficient is statistically significant with the P value < 0.01.

trasting pattern (EOF2 and PC2), and a dominant IMF with
a period of 24 h. The day-to-day wind speed variability is
also reflected in the IMFs of PC1 and PC2 with RPRs of 2–
5 days, consistent with that for NO2. The EOF–EEMD result
for wind speed is also fairly comparable with that for PM2.5,
although the latter shows a dominant IMF (in PC1) with a
period of 7 days. These results are consistent with Sect. 3.1

www.atmos-chem-phys.net/18/12933/2018/ Atmos. Chem. Phys., 18, 12933–12952, 2018



12944 M. Liu et al.: Pollutant spatiotemporal analysis with a novel method

but with a more quantitative analysis on the spatiotemporal
scales.

The EOF–EEMD analysis for temperature (the first col-
umn in Fig. 8) shows that PC1 contributes 88 % of the total
variance, and it is dominated by the IMF with a period of
24 h. The contribution of PC2 is negligible (4 %). For RH (the
second column in Fig. 8), PC2 plays a minor role, and there
are IMFs of PC1 with periods near 3 and 12 days, contribut-
ing to the correlation between RH and PM2.5. These results
indicate a complex association in the day-to-day variability
between temperature–RH and pollutants broadly consistent
with the discussion in Sect. 3.1.

4 Evaluation of GEOS-Chem and WRF/CMAQ
simulations

4.1 General evaluation

The color contours in Fig. 5a–d show the horizontal distri-
butions of NO2 and PM2.5 simulated by GEOS-Chem and
CMAQ. The model results here are averaged from all days
over the time period rather than sampled from days with
valid observations. Both models capture the general spatial
patterns of observed NO2 and PM2.5, with the heaviest pol-
lution over the north and east.

Figure 9 evaluates the regional mean diurnal and day-to-
day variations of modeled pollutant levels over NEC and
SEC. Here model data are sampled from days and loca-
tions with valid observations. All trends are negligible and
have been removed, consistent with the observational anal-
ysis. GEOS-Chem underestimates the observations by about
17 µg m−3 (21 µg m−3 over NEC and 13 µg m−3over SEC)
for NO2 and by 35 µg m−3 over Eastern China (31 µg m−3

over NEC and 41 µg m−3 over SEC) for PM2.5 averaged over
the whole period. The model bias is relatively consistent
across individual hours. GEOS-Chem captures the observed
diurnal variability for both pollutants as well as the day-to-
day variability of PM2.5, although it greatly underestimates
the day-to-day variability of NO2. More model evaluation
statistics are shown in Table 3.

Figure 9 also shows that WRF/CMAQ overestimates the
nighttime observations by about 30 µg m−3 for NO2 and
60 µg m−3 for PM2.5 averaged over Eastern China, although
it reproduces the daytime pollutant levels. This means an
overestimate of the diurnal range, as is also revealed by the
EOF–EEMD analysis in Sect. 4.2. CMAQ captures the day-
to-day variability of daily mean NO2 and PM2.5 much bet-
ter than GEOS-Chem (R = 0.63–0.84 versus 0.25–0.37 over
NEC and SEC for NO2; and 0.87–0.88 versus 0.55–0.75 for
PM2.5). Note that the correlations shown here mainly reflect
the model capabilities to capture Eastern China synchronous
day-to-day variation, and they do not imply the model per-
formance in simulating the NEC–SEC contrast, which is

revealed in Sect. 4.2. More model evaluation statistics are
shown in Table 3.

4.2 Model evaluation based on the EOF–EEMD
analysis

Figures 10 and 11 evaluate the EOF–EEMD results for mod-
eled NO2 and PM2.5, respectively. Prior to the EOF–EEMD
analysis, modeled NO2 and PM2.5 were sampled at times
and locations with valid observations and then underwent the
same interpolation procedure to fill in the missing values. In
these figures, the last three rows visualize the EOF–EEMD–
HT–MSA results in different ways (manifested in different
lengths of the horizontal bar for each IMF). In the third row,
the variance of each IMF is normalized to the total variance
of the original data (NO2 or PM2.5). In the fourth row, the
variance of each IMF is normalized to the variance of its re-
spective PC in order to better visualize the signals from PC2
(which has a much smaller variance than PC1); as such, only
the IMFs from the same PC are intercomparable. The fifth
row visualizes the absolute variance of each IMF without any
normalization.

The first two rows in Fig. 10 show EOF1 and EOF2
of NO2. Both GEOS-Chem and CMAQ exhibit a syn-
chronous pattern (EOF1) and an NEC–SEC contrasting pat-
tern (EOF2), consistent with the observation. However, the
CMAQ-simulated NEC–SEC contrast in EOF2 is much
weaker than the observed. Table 1 shows that for modeled
NO2, PC1 is highly correlated with Eastern China mean
NO2 for diurnal (R = 1.0 for GEOS-Chem and CMAQ) and
day-to-day (R = 0.56–0.97) variability and that PC2 is cor-
related with NEC NO2 (R = 0.74–0.81) and anticorrelated
with SEC NO2 (R =−0.47 to−0.32) in terms of day-to-day
variability, in line with the observational analysis.

The last three rows in Fig. 10 show that both models under-
estimate the contribution of day-to-day variability to the to-
tal variance of NO2 (with a shorter length of horizontal bar).
For PC1, CMAQ captures the RPR (position of “error bar”)
and variance (length of horizontal bar) of the observed IMFs
fairly well. By comparison, GEOS-Chem underestimates the
day-to-day variance (too-small horizontal length) and does
not capture its RPR. These results are consistent with the
analysis in Sect. 4.1 (Fig. 9) showing that CMAQ is cor-
related with the observed Eastern China synchronous NO2
time series much better than GEOS-Chem. For PC2, which
reflects the NEC–SEC contrasting pattern, GEOS-Chem out-
performs CMAQ in capturing the RPR and variance of the
observed day-to-day IMFs (red colored in fourth row). This
model characteristic is not seen from the time series discus-
sion in Sect. 4.1.

Figure 11 shows that both GEOS-Chem and CMAQ cap-
ture the synchronous pattern (EOF1) and the NEC–SEC con-
trasting pattern (EOF2) of PM2.5. For PC1, GEOS-Chem
captures the variance of each IMF but not its RPR (espe-
cially for the day-to-day IMFs). CMAQ simulates too-strong
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Figure 9. Observed and simulated diurnal and day-to-day variations of (a) NO2 and (b) PM2.5 over NEC and SEC (µg m−3).

diurnal IMFs, consistent with its overestimated diurnal cycle
discussed in Sect. 4.1. CMAQ outperforms GEOS-Chem in
capturing the RPR of day-to-day IMFs of PC1, in line with
its better correlation with the observations (Fig. 9). For PC2,
GEOS-Chem captures the variance and RPR of the observed
day-to-day IMFs better than CMAQ.

4.3 Discussion on model deficiencies

WRF/CMAQ overestimates the diurnal variation of NO2
and PM2.5. The causes are multifaceted. The ACM2 PBL
mixing scheme in WRF v3.5.1 and CMAQ v5.0.1 (used
here) assumes the same value for the eddy diffusivity of
momentum (Km) and heat (Kh), which implies a Prandtl

number (Pr =Km/Kh) of unity and too-weak mixing under
stable atmospheric conditions (i.e., at night). This deficiency
has been alleviated in WRF v3.7 and CMAQ v5.1. Also,
there is inconsistency between CMAQ and WRF in the
Monin–Obukhov length in the surface layer module. This
error has been corrected in CMAQ v5.1. For more model
update details, please refer to the online document (https:
//www.airqualitymodeling.org/index.php/CMAQ_version_
5.1_(November_2015_release)_Technical_Documentation,
last access: 3 September 2018).

GEOS-Chem (the first model layer) underestimates sur-
face NO2 by about 17 µg m−3 and PM2.5 by 35 µg m−3 av-
eraged over Eastern China. The underestimate of PM2.5 is
in part because this simulation of GEOS-Chem does not in-
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Figure 10. EOF–EEMD–HT–MSA results for observed, GEOS-Chem, and CMAQ NO2. See Sect. 4.2 for detailed descriptions.
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Figure 11. EOF–EEMD results for observed, GEOS-Chem, and CMAQ PM2.5. See Sect. 4.2 for detailed descriptions.
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Table 3. Observed and simulated pollutants and their correlations.

NEC SEC

Mean Median R1 Mean Median R1

NO2 (hourly) Observation 62.4 62.3 / 56.0 55.8 /
GEOS-Chem 41.0 41.5 0.96** 43.3 45.7 0.96**
R_GEOS-Chem2 50.7 52.3 0.96** 54.9 57.5 0.96**
CMAQ 78.4 79.4 0.94** 68.7 68.3 0.95**

NO2 (daily mean) Observation 62.4 65.2 / 56.0 57.2 /
GEOS-Chem 41.0 40.4 0.25* 43.3 43.0 0.37**
R_GEOS-Chem2 50.7 51.9 0.24 54.9 52.6 0.29*
CMAQ 78.4 79.4 0.84** 68.8 67.0 0.63**

PM2.5 (hourly) Observation 92.1 95.1 / 111.4 115.6 /
GEOS-Chem 61.1 65.6 0.83** 69.8 74.7 0.86**
R_GEOS-Chem 2 88.4 104.0 0.76** 81.9 92.2 0.80**
CMAQ 130.4 144.3 0.81** 135.4 144.1 0.81**

PM2.5(daily mean) Observation 92.1 90.6 / 111.4 111.7 /
GEOS-Chem 61.1 56.3 0.75** 69.8 63.5 0.55**
R_GEOS-Chem2 88.4 81.8 0.75** 81.9 76.4 0.56**
CMAQ 130.4 128.6 0.87** 135.4 128.0 0.88**

1 Correlation between observed and simulated variables. ** indicates the correlation coefficient is statistically significant with the P

value < 0.01, while * indicates it passed a statistical test with the P value < 0.01. 2 Revised GEOS-Chem NO2 and PM2.5 by
multiplying the ratio of the first layer to the second layer of CMAQ values.

clude secondary organic aerosols, which likely contribute as
much as 21 % of PM2.5 over Eastern China (Fu et al., 2012).
Also, the model does not include anthropogenic dust. Fur-
thermore, although the observation stations are close to the
ground, the first layer of GEOS-Chem is too thick (130 m) to
fully capture the vertical gradient of pollution concentrations.
Figure 12 shows Eastern China mean vertical profiles of NO2
in the two models. The center of the first layer of CMAQ
(40 m) is closer to the ground, and the center of its second
layer is located at a height similar to the center of the first
layer of GEOS-Chem. CMAQ shows a strong vertical gradi-
ent of NO2 from its first to second layer. Had we used the
CMAQ-simulated ratio of the first over the second layer to
extrapolate GEOS-Chem first-layer NO2 to 40 m, this would
significantly increase the model’s “ground-level” NO2 (by
24 % over NEC and 17 % over SEC) and PM2.5 (by 45 %
and 17 %). However, the extrapolation does not improve the
day-to-day correlation to the observations, indicating the im-
portant roles played by other factors. See Table 3 for more
evaluation statistics.

GEOS-Chem (the first model layer) also underestimates
the Eastern China synchronous day-to-day variation of NO2.
When averaged over the 10 lowest layers (below 850 hPa),
GEOS-Chem NO2 captures the day-to-day variability of
observed surface NO2. This suggests that the model defi-
ciency in day-to-day variability may be specific to the first
layer. Moreover, the first layer of GEOS-Chem captures
the day-to-day variation of observed NO2 in the afternoon

Figure 12. Eastern China mean NO2 vertical profiles simulated by
GEOS-Chem and CMAQ averaged over 25 October–25 Decem-
ber 2013. The black and red dots denote the center of each verti-
cal layer in the two models. The evening is from 20:00 to 23:00 LT,
while the afternoon is from 12:00 to 15:00 LT.

(12:00–15:00 LT, R = 0.9 over NEC and 0.8 over SEC),
but the model performance is rather poor in the evening
(20:00–23:00 LT, R = 0.1 over NEC and SEC), suggesting
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nighttime-specific model inadequacies. A further analysis of
nighttime ozone and the NO : NO2 ratio suggests that GEOS-
Chem greatly underestimates the observed nighttime ozone
by 49.2 % on average over NEC and 54.6 % over SEC, par-
ticularly on days when its NO : NO2 ratio is much greater
than the CMAQ-modeled ratio. The mean NO : NO2 ratio in
GEOS-Chem is 1.8 over NEC and 1.4 over SEC, greater than
the ratio in CMAQ (1.0 over NEC and 0.4 over SEC) by a
factor of 2–3. Overall, it appears that the nighttime chem-
istry is poorly represented in the first layer of GEOS-Chem,
the causes of which warrant further investigations.

The magnitude of emission differences between the two
models plays an insignificant role in the differences between
their simulated NO2 or PM2.5 concentrations. The Chinese
anthropogenic emissions in 2010 used in GEOS-Chem (ex-
cept for NOx) are close to the emissions in 2013 used in
CMAQ (within 10 % for both gases and primary aerosols,
mostly within 5 %; see Zheng et al., 2018). NOx emissions
in GEOS-Chem are scaled to 2013 using satellite NO2 data,
which further eliminates the differences from those used in
CMAQ. The difference in the spatial distribution of emis-
sions is also small (Geng et al., 2017; Zheng et al., 2018).

We further use CMAQ simulations to investigate whether
the inclusion of SOA affects our analysis of the spatiotem-
poral patterns of PM2.5. Supplement Fig. S1 compares the
time series of CMAQ-simulated PM2.5 with versus without
including SOA. Although SOA contributes about 8–9 µg m−3

of PM2.5 averaged over the days, inclusion of SOA does not
affect the temporal variability. The EOF–EEMD results in
Supplement Fig. S2 further confirm that the spatiotemporal
scales are very consistent whether or not SOA is included.

5 Conclusions and discussion

This study uses a newly compiled EOF–EEMD analysis vi-
sualization package to evaluate the spatiotemporal variations
of hourly NO2 and PM2.5 data over Eastern China during
fall–winter 2013. The observed NO2 data exhibit an Eastern
China synchronous pattern (EOF1) and a north–south con-
trasting pattern (EOF2). EOF1 of NO2 consists of a dominant
signal for diurnal variation and a weaker signal for day-to-
day variation. EOF2 of NO2 is dominated by the day-to-day
variation. Although the diurnal cycle is relatively consistent
across the days, the day-to-day variation exhibits an RPR at
2–5 days with no constant amplitude, a feature intended to
be properly accounted for in the EOF–EEMD analysis. The
day-to-day variation is largely driven by cold air passage, as
revealed from analyses of observed wind speed, temperature,
and RH. In particular, wind speed is most closely related to
NO2 based on an EOF–EEMD analysis and a complemen-
tary correlation calculation (R =−0.77 to −0.73 over NEC
and SEC).

An EOF–EEMD analysis of the observed PM2.5 also re-
veals an Eastern China synchronous (EOF1) and a north–

south contrasting (EOF2) pattern. However, the diurnal vari-
ation of PM2.5 is much noisier than that of NO2. The day-to-
day variation dominates for PM2.5, and it is highly associated
with wind speed, especially over NEC (R =−0.60).

Further evaluation of GEOS-Chem and WRF/CMAQ sim-
ulations shows that both models simulate the observed EOF1
and EOF2 patterns well. Both models capture the day-to-day
variability of PM2.5 better than that of NO2. CMAQ outper-
forms GEOS-Chem in Eastern China synchronous day-to-
day IMFs, especially for NO2, whereas GEOS-Chem bet-
ter captures the north–south contrasting day-to-day IMFs.
CMAQ overestimates the diurnal variability of NO2 and
PM2.5 such that the IMFs from the EOF–EEMD analysis
are overly dominated by the diurnal signal (especially for
NO2). This is likely due to its underestimate of PBL mix-
ing, for which deficiencies have been alleviated by the latest
model updates. GEOS-Chem underestimates the concentra-
tions of both pollutants due in part to missing secondary or-
ganic aerosols and anthropogenic dust (affecting PM2.5) and
a first layer too thick (130 m) to capture the vertical gradient
near the ground. GEOS-Chem captures the diurnal variations
of NO2 and PM2.5. It underestimates the day-to-day variabil-
ity of nighttime NO2 likely due to chemical inaccuracies in
the first layer.

This study suggests that the EOF–EEMD package is a use-
ful tool providing a simultaneous and quantitative view of
the spatial and temporal (both stationary and nonstationary)
scales embedded in a dataset. The package can be applied
to other chemical, meteorological, or climatic variables and
will be freely accessible to the public.

Data availability. Air pollution observations are taken from the
Ministry of Environmental Protection (http://106.37.208.233:
20035, last access: 1 December 2016). Meteorologi-
cal measurements are taken from the NOAA 90 NCEI
(http://gis.ncdc.noaa.gov/map/viewer/\T1\textbackslash#app=
clim&cfg=cdo&theme=_hourly&layers=1&node=gis, last access:
1 December 2016). The EOF–EEMD package and model sim-
ulations are available upon request. EOF–EEMD will also be
freely accessible for noncommercial purposes (http://www.phy.
pku.edu.cn/~acm/acmProduct.php\T1\textbackslash#EOF-EEMD,
last access: 4 September 2018).
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