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Abstract. Based on the high-resolution measurement of
black carbon (BC) at the Qomolangma (Mt. Everest)
Station (QOMS, 28.36◦ N, 86.95◦ E, 4276 m a.s.l.) from
15 May 2015 to 31 May 2017, we investigated the seasonal
and diurnal variations in BC and its potential source regions.
Both monthly and daily mean BC concentrations reached
the highest values in the pre-monsoon season and the low-
est values in the monsoon season. The highest monthly and
daily mean BC concentrations were at least 1 order of mag-
nitude higher than the lowest concentrations. For the diur-
nal variation, the BC concentrations remained significantly
high from late at night to morning in the pre-monsoon sea-
son. Meanwhile, the westerly winds prevailed during this pe-
riod, implying the potential for pollutants to be transported
across the Himalayas from long-distance sources to QOMS
along the valley. In the monsoon season, the BC concentra-
tions remained low but peaked in the morning and at noon,
which might be caused by local emissions from cooking. By
analyzing the simulation results from the backward trajec-
tories of air masses and the fire spot distribution from the
MODIS data, we found that the seasonal cycle of BC was
significantly influenced by the atmospheric circulation and
combustion intensity in the Mt. Everest region. The transport
mechanisms of BC were further revealed using a WRF-Chem
simulation during severe pollution episodes. For the pollu-
tion event in the monsoon season, BC aerosols in southern
Asia were uplifted and transported to the Mt. Everest region

by the southerly winds in the upper atmosphere. However,
for the events in the pre-monsoon season, BC from northern
India was transported and concentrated on the southern slope
of the Himalayas by the northwesterly winds in the lower at-
mosphere and then transported across the Himalayas by the
mountain-valley wind. A relatively smaller amount of BC
from northwestern India and central Asia was transported to
the Mt. Everest region by the westerly winds in the upper
atmosphere.

1 Introduction

Black carbon (BC), resulting mainly from the incomplete
combustion of fossil fuels or biomass, has received much
attention due to its influences on the environment and hu-
man health (Bond, 2004; Ramanathan et al., 2005; Anen-
berg et al., 2012). In addition to greenhouse gases, it is
seen as an important factor that may lead to global warming
(Hansen et al., 2000; Jacobson, 2002; Bond et al., 2013; Ra-
manathan and Carmichael, 2008). BC can substantially ab-
sorb solar radiation and causes atmospheric heating (Jacob-
son, 2001; Ramanathan et al., 2005; Ji et al., 2015). More-
over, BC can be suspended as fine particles in the atmosphere
for approximately one week, transported far away from its
emission sources, and then removed by dry and wet deposi-
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tion (Oshima et al., 2012; Cooke et al., 2002; Jurado et al.,
2008). When BC is deposited on snow and ice, it can signif-
icantly reduce the surface albedo (Flanner et al., 2007; He
et al., 2017) and accelerate the melting of glaciers and snow
cover, impacting the regional climate, hydrology, and water
resources (Li et al., 2018; Ming et al., 2008; Ramanathan and
Carmichael, 2008).

The Tibetan Plateau (TP), containing the region generally
known as the “Third Pole”, is the highest plateau with a large
number of glaciers and snow cover (Kang et al., 2010; Lu
et al., 2010; Yao et al., 2012). Even though the TP is a re-
mote region that is generally unaffected by anthropogenic
activities, previous observations have indicated that BC is
an important contributor to the rapid shrinking of glaciers
over the TP due to its decreasing of the surface albedo and
atmospheric warming (Xu et al., 2009; Yang et al., 2015;
X. Li et al., 2017; Y. Zhang et al., 2017; Qu et al., 2014; Ji,
2016; Xu et al., 2016; Lee et al., 2017). Moreover, previous
studies have also suggested that the emissions from south-
ern Asia and eastern Asia are the major sources of BC on
the TP (Li et al., 2016a; Lu et al., 2012; He et al., 2014b;
Zhang et al., 2015; Yang et al., 2018), and the high emis-
sions from southern Asia can be transported across the Hi-
malayas and farther onwards to the inland TP (Lüthi et al.,
2015; Xu et al., 2014; Cong et al., 2015a; Kang et al., 2016;
Wan et al., 2015). Meanwhile, the seasonality of BC aerosols
is closely related to the atmospheric circulation that helps
to bring the BC aerosols across the Himalayas (Cong et al.,
2015a, b; Yang et al., 2018). Additionally, a large number of
studies have demonstrated that the BC and dust from central
Asia and northern Africa could also be transported to the TP
(Wang et al., 2016; Lu et al., 2012; Zhao et al., 2012; Wu et
al., 2010; Zhang et al., 2015).

Mt. Everest could be regarded as a very sensitive area un-
der the influence of BC aerosols. Previous research on atmo-
spheric BC in the Mt. Everest region was mainly based on
the thermal–optical analytical method, which uses quartz fil-
ter samples (Cong et al., 2015a). However, there is still a lack
of investigations of the diurnal and seasonal variations in BC
in this region. Therefore, to fill such gaps and understand the
variations in and sources of BC in this pristine region, there
is a need for an efficient approach and additional studies. The
Aethalometer can provide real-time high-resolution observa-
tion data on the BC concentration, which are very important
and necessary for an improved depiction of the characteris-
tics of BC and its effects on the environmental change.

In comparison with the observations, numerical models
can better represent the atmospheric physical and chemical
processes. Many studies have used global climate models
(GCMs) and chemical transport models (CTMs) to investi-
gate the origin and transportation of BC over the TP (Lu et
al., 2012; Zhang et al., 2015; Menon et al., 2010; Kopacz
et al., 2011; He et al., 2014a). However, due to the coarse
resolution, it is difficult for the CTMs and GCMs to cap-
ture the surface details of the TP (Ji et al., 2015; Gao et

al., 2008). Regional climate models (RCMs) can compensate
for the shortcomings of coarser global model grids by en-
abling high-resolution simulations. In recent decades, RCMs
have been developed to include multiple modules and atmo-
spheric chemistry processes. In addition, the advanced re-
gional climate-chemistry model, the Weather Research and
Forecasting (WRF) model (Skamarock et al., 2005), coupled
with chemistry and referred to as WRF-Chem, was success-
fully applied to air quality research on the TP (Yang et al.,
2017, 2018).

Here, we present real-time data of the BC concentra-
tion measured by the new Aethalometer model AE-33 from
15 May 2015 to 31 May 2017. The observed results are used
to characterize the temporal variation and provide important
information on the possible sources and transport mecha-
nisms of BC. By combining high-resolution measurements
of the BC concentration with the WRF-Chem model, we in-
vestigated the concentration level, temporal variation, and
sources of BC in the Mt. Everest region. The purpose of
this study is to understand the impact of transboundary atmo-
spheric BC on the Mt. Everest region and depict the transport
pathways of BC at different spatiotemporal scales.

2 Materials and methods

2.1 Sampling site and meteorological conditions

Mt. Everest (27.98◦ N, 86.92◦ E, 8844 m a.s.l.), known as the
summit of the world, is located in the central Himalayas. The
southern slope of Mt. Everest is adjacent to the Indian con-
tinent, and the climate is warm and humid under the influ-
ence of the Indian summer monsoon. Conversely, the north-
ern side is cold and dry since the warm and humid airflow
cannot reach it. The Qomolangma (Mt. Everest) Station for
Atmospheric and Environmental Observation and Research,
Chinese Academy of Sciences (QOMS, 28.36◦ N, 86.95◦ E,
4276 m a.s.l.) (Fig. 1) is located on the northern slope of Mt.
Everest, which was established for the continuous monitor-
ing of the atmospheric environment (Cong et al., 2015a; Ma
et al., 2011).

The meteorological parameters, i.e., air temperature, air
pressure, humidity, wind speeds and wind directions, were
recorded by an automatic weather station at QOMS in 10 min
time intervals. Meanwhile, the precipitation data were col-
lected by artificial measurements, as shown in Fig. S1 in
the Supplement. The entire year was divided into four sea-
sons according to the Indian monsoon transition characteris-
tics, which includes pre-monsoon (March to May), monsoon
(June to September), post-monsoon (October to November),
and winter (December to February) (Praveen et al., 2012;
X. Zhang et al., 2017). A clear seasonal cycle of temperature
and humidity can be observed in Fig. S1. Specifically, the
temperature was high during the monsoon season and low
during winter, with a maximum in July and a minimum in
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Figure 1. Distribution of BC concentrations over the TP based on the observed values at QOMS in this study (black circle) and from previous
studies (red circles), i.e., at QOMS (Cong et al., 2015a), Nam Co (Wan et al., 2015), Lhasa (Li et al., 2016b), Ranwu (Wang et al., 2016),
Qilian Shan (Zhao et al., 2012), Beiluhe (Wang et al., 2016), Qinghai Lake (Li et al., 2013), Muztagh Ata (Cao et al., 2009), Manora Peak,
India (Ram et al., 2010), and NCO-P, Nepal (Marinoni et al., 2010).

January. Humidity followed a similar trend, with high values
recorded from late July to early August and low values from
December to February. During the observation period, the
wind speed increased significantly from November to April.
The wind direction at QOMS is affected by the local topog-
raphy, which consists of a series of small valleys. During the
pre-monsoon season (dry period), the westerly and southerly
winds begin to develop and play an important role in at-
mospheric pollution circulation. However, during the mon-
soon season, the southwesterly winds prevail and bring much
moisture from the Indian Ocean to the Mt. Everest region,
increasing the humidity and precipitation. With the retreat of
the monsoon, the southwesterly winds decrease and the pre-
vailing wind direction changes to westerly and northeasterly
in winter, containing limited moisture (Fig. S1).

2.2 BC measurements

There are several available methods capable of measuring
BC concentrations, and these methods can be classified into
three categories. The first is the thermal–optical method,
which uses a quartz filter to collect aerosols and thermally
volatilizes aerosols in several temperature steps (Schauer
et al., 2003). The signals of evolving carbon measured by
thermal–optical transmission (TOT) or thermal–optical re-
flectance (TOR) can be converted to the concentration of BC
(Chow et al., 1993, 2001). However, the time difference be-
tween sampling and detection, the impact of mineral dust,

and the determination of the split between organic carbon
(OC) and elemental carbon (EC, which is similar to BC) can
cause deviations (C. Li et al., 2017; Schauer et al., 2003). The
second category is the technique of the single particle soot
photometer (SP2), which can quantify BC by laser-induced
incandescence because BC is the predominant refractory ab-
sorbing aerosol that can be heated by an intense laser beam
and emit significant thermal radiation (Stephens et al., 2003).
This method measures the mass of BC in individual parti-
cles, but the accuracy depends on the selected calibration
material (Schwarz et al., 2010; Laborde et al., 2012). Finally,
the optical method measures the reduction in light intensity
induced by BC aerosols collected on the sampling medium
(Hansen et al., 1984; Petzold and Schonlinner, 2004). The
Aethalometer is a widely used instrument based on the opti-
cal method that can provide real-time BC concentration mea-
surements, but all filter-based optical methods exhibit load-
ing effects that can lead to the underestimation of BC con-
centrations (Bond et al., 1999; Virkkula et al., 2007; Park
et al., 2010; Hyvärinen et al., 2013; Drinovec et al., 2015).
However, the newly developed Aethalometer model AE-33
uses a real-time loading effect compensation algorithm that
can provide high-quality data, which are very helpful for the
accurate determination of BC concentrations and source ap-
portionment (Drinovec et al., 2015).

Therefore, the airborne BC concentrations at QOMS were
monitored by the new Aethalometer model AE-33 (Magee
Scientific Corporation, USA). The instrument was placed in
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an indoor room with an inlet installed at approximately 3 m
above the ground level and was operated at an airflow rate
of 4 L min−1 with a 1 min time resolution. AE-33 has seven
fixed wavelengths (i.e., 370, 470, 520, 590, 660, 880 and
950 nm), which can acquire the BC concentration according
to the light absorption and attenuation characteristics from
the different wavelengths (Hansen et al., 1984; Drinovec
et al., 2015). Generally, the BC concentration measured at
880 nm is used as the actual BC concentration in the atmo-
sphere, as the absorption of other types of aerosols is greatly
reduced in this wavelength (Sandradewi et al., 2008a, b; Fi-
alho et al., 2005; Yang et al., 2009; Drinovec et al., 2015).
Compared to previous Aethalometer models, the AE-33 uses
dual-spot measurements and a real-time calculation of the
“loading compensation parameter”, which can compensate
for the “spot loading effect” and obtain high-quality BC con-
centrations (Drinovec et al., 2015). The main structure of this
algorithm is as follows:

BC(reported)= BC(zero loading)× (1− kATN) , (1)
ATN=−100ln(I/I0), (2)
BC1= BC× (1− kATN1), (3)
BC2= BC× (1− kATN2), (4)

where BC (reported) is the uncompensated BC concentra-
tion; BC (zero loading) is the desired ambient BC value that
would be obtained in the absence of any loading effect; k is
the loading effect compensation parameter; I and I0 are the
light intensity of the measurement spot and reference spot;
and ATN is the attenuation of light through filter tape. The
BC component of the aerosols is analyzed on two parallel
spots, which are drawn from the same input stream in AE-
33 but are collected at different rates of accumulation. This
means that we can obtain different ATN but the same load-
ing parameter k (Drinovec et al., 2015). Combining Eqs. (3)
and (4), the compensation parameter k and the desired value
of BC compensated back to zero loading can be calculated.
Based on the dual-spot technology, the new real-time com-
pensation algorithm allows extrapolation to zero loading and
obtains the accurate BC concentration (Drinovec et al., 2015;
Crenn et al., 2015; Zhu et al., 2017). Previous studies have
evaluated the real-time compensation algorithm of dual-spot
Aethalometer model AE-33 and indicated that AE-33 agrees
well with the post-processed loading effect compensated data
obtained using earlier Aethalometer models and other filter-
based absorption photometers, implying the effective perfor-
mance of this new algorithm (Drinovec et al., 2015; Rajesh
and Ramachandran, 2018).

2.3 Model simulation and datasets

Version 3.6 of WRF-Chem was used to analyze the spa-
tial distribution, transport mechanism, and source apportion-
ment of BC during the four observed pollution episodes. The
WRF-Chem model is an expansion of the WRF meteorologi-

cal model and considers complex physical and chemical pro-
cesses such as emission and deposition, advection and dif-
fusion, gaseous and aqueous chemical transformation, and
aerosol chemistry and dynamics (Grell et al., 2005). Here, the
numerical experiments were performed at a 25 km horizontal
resolution with 122 and 101 grid cells in the west–east and
north–south directions, respectively. The simulated domain
was centered at 25◦ N, 82.5◦ E and had a 30-layer structure
with a top pressure of 50 hPa. The key physical and chemi-
cal parameterization options for the WRF-Chem model were
based on a previous study on the TP (Yang et al., 2018).
The initial meteorological fields were taken from the Na-
tional Centers for Environmental Prediction (NECP) reanaly-
sis data with a horizontal resolution of 1◦× 1◦ at 6 h time in-
tervals. The anthropogenic emission inventory was obtained
from the Intercontinental Chemical Transport Experiment-
Phase B (INTEX-B) (Zhang et al., 2009) with a resolution
of 0.5◦× 0.5◦. The biogenic emissions were obtained from
the Model of Emission of Gases and Aerosol from Nature
(MEGAN) (Guenther et al., 2006), and the fire emissions in-
ventory was based on the fire inventory from the National
Center for Atmospheric Research (NCAR-FINN) (Wiedin-
myer et al., 2011). Additionally, the Model for Ozone and
Related chemical Tracers (MOZART, http://www.acom.ucar.
edu/wrf-chem/mozart.shtml, last access: 31 August 2018)
(Emmons et al., 2010) dataset was used to create improved
initial and boundary conditions for the BC simulations dur-
ing these pollution episodes.

Furthermore, to predict the source region of BC, we used
the Hybrid Single-Particle Lagrangian Integrated Trajectory
(HYSPLIT-4) model to calculate the backward trajectories
of the air masses (Stein et al., 2015), and the calculation
data were obtained from the National Centers for Environ-
mental Prediction/National Center for Atmospheric Research
(NCEP/NCAR) reanalysis data (2.5◦× 2.5◦). The parameter
settings for the backward trajectory calculation in the HYS-
PLIT model were chosen according to a previous study in
this area (Xu et al., 2014). The active fire product provided
by the Fire Information for Resource Management System
(FIRMS, https://firms.modaps.eosdis.nasa.gov, last access:
31 August 2018) was chosen to investigate the biomass burn-
ing emissions over the region in different seasons.

3 Results and discussion

3.1 Temporal variations in BC

3.1.1 Monthly variation in BC

The monthly mean BC concentrations at QOMS are shown
in Fig. 2a. There was a significant increase in the BC con-
centrations in winter, and the highest value occurred dur-
ing the pre-monsoon season (923.1±685.8 ng m−3 in April).
Meanwhile, during the monsoon, lower BC concentrations
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Figure 2. (a) monthly mean BC concentrations at QOMS from May 2015 to May 2017 in this study; (b) monthly mean EC at NCO-P from
March 2006 to February 2008 from Marinoni et al. (2010); (c) monthly mean EC at QOMS from August 2009 to July 2010 from Cong et
al. (2015a); (d) monthly mean EC at Nam Co station from January to December during 2012 from Wan et al. (2015).

were recorded, and the lowest value was observed in July
(88.5± 29.8 ng m−3). This seasonal change was consistent
with the previous studies of elemental carbon (EC, which is
similar to BC) at Nepal Climate Observatory, Pyramid station
(NCO-P, 27.95◦ N, 86.82◦ E, 5079 m a.s.l.) from March 2006
to February 2008 (Fig. 2b) (Marinoni et al., 2010) and at
QOMS from August 2009 to July 2010 (Fig. 2c) (Cong et al.,
2015a), indicating a similar BC source between the southern
and northern sides of the Himalayas. As EC was sampled
by quartz filters and detected using the thermal–optical an-
alytical method in previous studies, there may be some dif-
ferences in the values of EC compared to those of BC, for
instance, the overestimation of EC due to the potential ef-
fect of carbonates in mineral dust of the samples when using
the thermal–optical method (C. Li et al., 2017). The monthly
variation in EC at Nam Co Monitoring and Research Sta-
tion for Multisphere Interactions (Nam Co station, 30.77◦ N,
90.98◦ E, 4730 m a.s.l.) from January to December during
2012 (Fig. 2d) (Wan et al., 2015) also showed a similar vari-
ation, but the peak value of EC occurred in winter. Addition-
ally, the monthly mean EC concentrations at Nam Co station
were generally lower than those at QOMS, suggesting that
the impact of the anthropogenic activities on the inland TP
was weaker than that on the southern edge of the TP. Previ-

ous studies have demonstrated that the influence of polluted
air masses from the “atmospheric brown clouds” over south-
ern Asia could reach the southern foothills of the Himalayas
and that the mountain-valley breeze circulation carried the
polluted air masses to the TP (Lüthi et al., 2015; Cong et
al., 2015a; Bonasoni et al., 2008; Yang et al., 2018). There-
fore, the seasonal cycle of BC concentrations at QOMS was
likely affected by the atmospheric circulation and the emis-
sions from southern Asia, which will be further explained in
Sect. 3.3.

3.1.2 Daily variation in BC

Figure 3 shows the daily mean BC concentrations at QOMS,
which present a significant seasonal pattern, with a maximum
during the pre-monsoon season (2772.3 ng m−3) and a min-
imum during the monsoon season (36.4 ng m−3). During the
monsoon season, the BC concentration was observed to be
lower than 150 ng m−3, but it gradually increased during the
post-monsoon and winter seasons. The mean concentration
of daily BC at QOMS was 298.8±341.3 ng m−3, which was
close to the previous result (250± 220 ng m−3) (Cong et al.,
2015a).

www.atmos-chem-phys.net/18/12859/2018/ Atmos. Chem. Phys., 18, 12859–12875, 2018



12864 X. Chen et al.: Concentration, temporal variation, and sources of black carbon

Figure 3. Daily mean BC concentrations at QOMS during study period (the gray bars represent the continuously high values more than
1000 ng m−3).

The comparison between daily mean BC concentrations
(Fig. 3) and the meteorological parameters (Fig. S1) sug-
gested that the increasing precipitation during the monsoon
led to the washout of atmospheric particles, promoting the
wet deposition of BC. This process caused a decrease in BC
concentrations during the monsoon, representing the back-
ground level during the period. The prevailing wind direction
was southwesterly during the monsoon period and westerly
during the non-monsoon periods. Therefore, the variations in
BC might be linked to the influence of meteorological condi-
tions and the contribution of long-distance transport from ur-
banized areas to QOMS. Moreover, it cannot be ignored that
there were continuously high concentrations of BC above
1000 ng m−3 during 8–10 June 2015, 19–22 March 2016,
9–30 April 2016, and 11–14 April 2017, indicating that the
heavy pollution episodes happened at QOMS during those
days. A detailed analysis of these pollution events is pre-
sented in Sect. 3.4.

3.1.3 Diurnal variation in BC

Diurnal variation characteristics can be used to analyze the
impact of local meteorological processes and anthropogenic
activities on the BC concentrations at QOMS. The half-
hourly mean BC concentrations are presented in Fig. 4.
In the pre-monsoon season, the diurnal BC concentrations
remained significantly high from late at night to morning
(00:00–12:00 BJT; Beijing time, or UTC+ 8 is 2 hrs ear-
lier than local time) and increased gradually after the lowest
value at approximately 15:30 BJT. Elevated BC concentra-
tions were also observed in the afternoon during the post-
monsoon and winter periods, and high BC concentrations
occurred from late at night to morning. The BC concentra-
tions during the monsoon season were significantly lower
than those during the other seasons but peaked in the morn-
ing (08:00 BJT) and at noon (14:00 BJT). Previous studies

have demonstrated that the local wind system on the northern
slope of Mt. Everest is composed of a morning “valley wind”,
a late morning–afternoon “glacier wind” weakened by “val-
ley wind”, and an evening–early night “mountain wind” (Zou
et al., 2008). The QOMS is located in the s-shape valley north
of Mt. Everest (Ma et al., 2011). The glacier wind and down-
ward mountain wind from the south developed in the after-
noon and at night, which provided the potential possibility
for pollutants from long-distance sources to be transported to
QOMS along the valley and increased the BC concentrations
in the non-monsoon periods. The valley wind from the north
in the morning could bring the short-distance emissions from
cooking or heating in several villages that are located north
(approximately 5 km away) of QOMS. The BC concentra-
tions were remarkably low in the monsoon season but peaked
in the morning and at noon, which might be due to the local
emissions carried by the valley wind from the north.

To explain the significantly high values from late at night
to morning (00:00–12:00 BJT) in the pre-monsoon season,
the wind direction frequency at QOMS during 00:00–12:00
and 12:00–24:00 BJT is presented in Fig. 5. During the sam-
pling period in the pre-monsoon season, winds from the west
prevailed from late at night to morning (Fig. 5a), account-
ing for 18.1 % of the total wind direction, followed by ENE
(east-northeast) winds (16.4 %). This is consistent with the
discussion above that there are potential impacts on the BC
concentrations at QOMS from long-distance human activity
emissions, which can be carried by the westerly winds, i.e.,
downward mountain winds (Cong et al., 2015b). Moreover,
the WRF-Chem simulation results showed that the profile of
equivalent potential temperature (EPT) increased with alti-
tude and the planetary boundary layer height (PBLH) and
wind speed were much lower from late at night to morn-
ing (Fig. S2), indicating a more stable atmosphere that ob-
structs the diffusion of BC aerosols. ESE (east-southeast)
and NE (northeast) winds prevailed from late morning to
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Figure 4. Diurnal variation in BC concentrations (every half an hour) at QOMS during study period.

Figure 5. Wind direction frequency at QOMS in the pre-monsoon season: (a) 00:00–12:00 BJT; (b) 12:00–24:00 BJT.

night (12:00–24:00 BJT) (Fig. 5b), accounting for 17.6 %
and 15.3 % of the total wind directions, respectively, imply-
ing a strengthened glacier wind or mountain wind (from the
south) that caused an increase in BC, which was contributed
to by long-distance sources. During the pre-monsoon season,
the strong mountain winds and glacier winds could trans-
port large amounts of trans-Himalayan pollution from heav-
ily polluted areas of southern Asia to QOMS; therefore, the
long-distance sources play a major role in the diurnal varia-
tion in the BC concentrations at QOMS during this period.

3.2 Comparison of the BC concentrations with other
sites on the TP

A previous study has revealed that low BC concentrations in
China can be found on the TP, with values of approximately
200–1000 ng m−3 in PM2.1 and 300–1500 ng m−3 in PM9.0
(Xin et al., 2015). To better understand the BC loading level,
we compared our results with previous studies from other
locations over the TP. As shown in Fig. 1, the BC concen-
trations at Muztagh Ata and Qilian Shan presented low val-
ues, which can be regarded as the background concentration
level for inland Asia (Cao et al., 2009; Zhao et al., 2012).

www.atmos-chem-phys.net/18/12859/2018/ Atmos. Chem. Phys., 18, 12859–12875, 2018
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In contrast, the BC concentration at the city of Lhasa was
higher than that at other sites on the TP, of which a main con-
tributor was local fossil fuel combustion (Li et al., 2016b).
In addition, impacted by the long-range transport of anthro-
pogenic emissions from the east and significant dust input
from the west, the BC concentration at Qinghai Lake also
showed a relatively high value (Li et al., 2013). The BC con-
centration at Beiluhe was slightly higher than that at Qinghai
Lake, and the BC is mainly from the arid regions in north-
western China in spring and from the southern slope of the
Himalayas in winter (Wang et al., 2016). Therefore, the long-
range transportation from central Asia and eastern Asia con-
tributed greatly to the BC aerosols in the northern TP. For
the sites in the central and southeastern regions of the TP
(e.g., Nam Co and Ranwu), which are isolated from anthro-
pogenic activities and have relatively clean atmospheric en-
vironments, the BC concentrations at these two sites were
above 130 ng m−3, likely due to the influence of long-range
transport from southern Asia (Wan et al., 2015; Wang et al.,
2016). Compared with the locations on the southern slope of
the Himalayas (e.g., NCO-P and Manora Peak), the BC con-
centration at QOMS was close to that at NCO-P but much
lower than that at Manora Peak, which is near the polluted ar-
eas in southern Asia and is largely affected by anthropogenic
emissions (Marinoni et al., 2010; Ram et al., 2010). This im-
plies that the combustion emissions from southern Asia af-
fect not only the lower latitudes in the vicinity but also the
higher latitudes in the Himalayas and the interior of the TP
due to long-range transport.

3.3 Potential sources and transport mechanisms of BC
in different seasons

The seasonal variation in the BC concentrations was cor-
related with the combustion intensity of sources and atmo-
spheric circulation. The “atmospheric brown clouds” over
southern Asia contain large amounts of aerosol components
such as the high loading emissions of BC from biomass burn-
ing, which can reach the TP within a few days (Ramanathan
et al., 2005; Ramanathan and Ramana, 2005; Lüthi et al.,
2015). A previous study quantified biomass burning sources
contributing to BC aerosols from the Himalayan region of
Nepal and India and showed that the major fires were concen-
trated from March to June; additionally, most fires occurred
in the low-elevation areas dominated by forests and crop-
lands (Vadrevu et al., 2012). Therefore, we further checked
the biomass burning emissions in the Mt. Everest region and
its vicinities using the active fire product from the MODIS
data during four seasons (August 2015 to April 2016) pro-
vided by the FIRMS (Fig. 6). It is clearly shown that there
were large numbers of active fire spots in northern and cen-
tral India, Pakistan, and Nepal in winter and the pre-monsoon
season. Moreover, referring to Cong et al. (2015a), the active
fire spots represent agricultural combustion and forest fires
in this region, which might substantially contribute to BC

Figure 6. Distribution of fire spots in different seasons from Au-
gust 2015 to April 2016.

aerosols. During the monsoon season, insignificant fire spots
appeared in southern Asia, representing less biomass burning
in that period.

To further explore the sources and the long-range transport
mechanism of BC aerosols at QOMS, we calculated the fre-
quency plots for 5-day backward trajectories arriving 1 km
above ground level (Fig. 7). During the non-monsoon sea-
sons, the air masses were affected by the westerly winds. The
air masses reaching the Mt. Everest region were mostly from
the northwest, indicating that the biomass burning emissions
in Pakistan, northern India, and Nepal could be transported
to the Mt. Everest region. However, for the difference in the
combustion intensity, high concentrations of BC were found
only during the pre-monsoon season. During the monsoon
season, the southerly winds dominated in the Mt. Everest
region, and the air masses were mainly from the Arabian
Sea and the Bay of Bengal and were substantially moist.
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Figure 7. Frequency plots for 5-day backward trajectories calculated by HYSPLIT model at QOMS in different seasons from August 2015
to April 2016.

Figure 8. Mean BC concentration simulated by WRF-Chem model at QOMS and its vicinities: (a) event A; (b) event B; (c) event C;
(d) event D.
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Figure 9. Mean BC concentration and wind at 850, 500, and 200 hPa simulated by WRF-Chem model at QOMS and its vicinities: event A
(the first row); event B (the second row); event C (the third row); event D (the last row).

During this period, the precipitation on the southern side of
the Himalayas was above 1200 mm (Xu et al., 2014), which
can improve the wet removal efficiency of BC. Moreover,
the biomass combustion emissions in southern Asia in this
period were very low. Therefore, the BC concentrations at
QOMS were close to the background level during the mon-
soon season. Meanwhile, the local meteorological conditions
also play a very important role in the transport of pollutants
across the Himalayas from southern Asia. Previous studies
have shown that the local wind system was mainly composed

of up-valley wind on the southern slope and down-valley
wind on the northern slope, which facilitates the exchange
of air between the bottom and upside of the atmosphere, and
facilitates the coupling of air flow between the southern and
northern slopes, which allows the pollutants from southern
Asia to easily cross the Himalayas and be transported to the
TP from the valley (Zou et al., 2008; Chen et al., 2012; Cong
et al., 2015b; Tripathee et al., 2017; Dhungel et al., 2018).
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Figure 10. Vertical profiles of mean BC concentration along the QOMS’s longitude of 86.95◦ E: (a) event A; (b) event B; (c) event C;
(d) event D.

3.4 Analysis of pollution episodes by WRF-Chem
modeling

In this section, we analyzed four pollution events with
BC concentrations above 1000 ng m−3 in detail, includ-
ing event A during 8–10 June 2015, event B during 19–
22 March 2016, event C during 9–30 April 2016, and event D
during 11–14 April 2017. Figure 8 shows the spatial char-
acteristics of the WRF-Chem modeled surface BC concen-
trations during the four pollution episodes. It can be seen
that the high values of surface BC concentrations always
appeared in southern Asia, although the high-value cen-
ters changed in different pollution events. For event A, the
most serious pollution appeared in Nepal and northern In-
dia. There was relatively less BC near Mt. Everest in event B
than in the other events. However, for event C, the high BC
concentration areas were mainly along the southern slope of
the Himalayas in Nepal and eastern India, which can highly

impact the BC concentrations in the Mt. Everest region. In
event D, the high BC concentrations occurred in Nepal and
some parts of India. To evaluate the model performance, the
temporal variation in measured and simulated BC concen-
trations at QOMS during these four pollution episodes are
displayed in Fig. S3. As shown in Fig. S3, for the four pol-
lution episodes, the WRF-Chem model captured the varia-
tion trends of the observed BC concentrations with correla-
tion coefficients above 0.8. This implies that the model could
reproduce the distribution of BC concentrations in this re-
gion. Additionally, comparisons between the modeled wind
and precipitation and the wind and precipitation from reanal-
ysis data and in situ observations indicated that the WRF-
Chem model could capture the spatiotemporal variations in
the meteorological elements (Figs. S4 and S5).

The sources and transport mechanisms of BC aerosols dur-
ing these pollution episodes can be indicated by analyzing
the air flow. Figure 9 shows the variation in the BC con-
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centrations and wind fields at different altitudes in the at-
mosphere (850, 500, and 200 hPa). For event A during the
monsoon season, there was a cyclone in northern India at
850 hPa that moved near-surface BC aerosols upward. Then,
the southerly winds at 500 and 200 hPa transported the BC
aerosols to the Mt. Everest region. For events B–D in the pre-
monsoon season, the northwesterly winds prevailed in south-
ern Asia at 850 hPa and brought BC from northern India to
the southern slope of the Himalayas, and the westerly winds
at 500 and 200 hPa transported a relatively smaller amount of
BC from northwestern India and central Asia to the Mt. Ever-
est region. Previous studies also pointed out that BC can be
transported across the Himalayas to the Mt. Everest region by
the mountain-valley wind system (Zou et al., 2008; Cong et
al., 2015b; Dhungel et al., 2018). Thus, we needed to further
analyze the impact of the mountain-valley wind on the trans-
portation of BC. Figure 10 shows the vertical profile of the
BC concentration along the QOMS’s longitude of 86.95◦ E.
During event A, high concentrations of BC appeared in the
upper atmosphere of southern Asia, and many BC aerosols
were transported to most parts of the TP (Fig. 10a) due to the
large-scale transport process. However, for events B–D, high
concentrations of BC occurred along the southern slope of
the Himalayas, and BC aerosols were only transported to a
few areas on the northern slope of the Himalayas such as the
Mt. Everest region (Fig. 10b–d) due to the local mountain-
valley wind. As shown in Fig. S6, for events B–D, the up-
valley wind on the southern side of the Himalayas can move
BC aerosols up in the daytime, and the down-valley wind can
cause the aerosols to descend over the Mt. Everest region at
night.

To sum up, we found that the transport processes of BC
aerosols from southern Asia to the QOMS were different
as the seasons changed. In the monsoon season, as seen in
event A, BC aerosols were moved upward by the cyclone in
the lower atmosphere and were transported to QOMS by the
southerly winds in the upper atmosphere. However, in the
pre-monsoon season, as seen in events B–D, the mountain-
valley wind played an important role in transporting the BC
aerosols from the southern slope of the Himalayas to the Mt.
Everest region.

4 Conclusions

In this study, BC concentrations were measured from
15 May 2015 to 31 May 2017 at QOMS on the south
edge of the TP. Monthly, daily, and diurnal variations in
BC concentrations were calculated to investigate the tem-
poral characteristics and potential sources of BC at QOMS.
The results showed that the monthly mean BC concentra-
tions reached the highest value in the pre-monsoon season
(923.1±685.8 ng m−3) and the lowest value in the monsoon
season (88.5± 29.8 ng m−3). The average daily BC concen-
tration was equal to 298.8± 341.3 ng m−3, with a maximum

in the pre-monsoon season (2772.3 ng m−3) and a minimum
in the monsoon season (36.4 ng m−3). For the diurnal vari-
ation in BC, there was an increase in the afternoon during
the non-monsoon periods, and high BC concentrations oc-
curred from late at night to morning, implying that the po-
tential origin of BC was from long-range transport. The BC
concentrations remained low but peaked in the morning and
at noon during the monsoon period, which might be due to
local anthropogenic activities. In addition, the substantially
high values of diurnal variation in the BC concentrations
in the pre-monsoon season suggest the high contributions
of long-distance emissions carried by mountain winds and
glacier winds.

The seasonal cycle of BC concentrations at QOMS closely
correlated with the variation in the atmospheric circulation
and combustion emissions in southern Asia. In the non-
monsoon seasons, affected by the westerly winds, the air
masses in the Mt. Everest region were largely from Pak-
istan, northern India, and Nepal due to the high loading
emissions from vegetation fires. In the monsoon season, the
southerly winds prevailed in the Mt. Everest region, and the
air masses were mainly from the Arabian Sea and the Bay
of Bengal. Under intense precipitation, scavenging of BC,
and extremely low levels of combustion emissions in south-
ern Asia, the BC concentrations at QOMS were close to the
background level in the monsoon season.

In the four heavy pollution episodes that occurred at
QOMS with BC concentrations above 1000 ng m−3, we
found that the transport processes of the BC aerosols from
southern Asia to the Mt. Everest region changed depend-
ing on the season. In the monsoon season (using the pol-
lution event during 8–10 June 2015 as an example), BC
aerosols were efficiently driven upward by the cyclone in
the lower atmosphere in southern Asia and transported to the
Mt. Everest region by the southerly winds in the upper at-
mosphere. However, during the pre-monsoon season (using
the other three pollution events as examples), the mountain-
valley wind played an important role in transporting the BC
aerosols across the Himalayas to the Mt. Everest region.
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