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Abstract. With the rising anthropogenic emissions from hu-
man activities, elevated concentrations of air pollutants have
been detected in the hemispheric air flows in recent years,
aggravating the regional air pollution and deposition issues.
However, the regional contributions of hemispheric air flows
to deposition have been given little attention in the literature.
In this light, we assess the impact of hemispheric transport
on sulfur (S) and nitrogen (N) deposition for six world re-
gions: North America (NA), Europe (EU), South Asia (SA),
East Asia (EA), Middle East (ME) and Russia (RU) in 2010,
by using the multi-model ensemble results from the 2nd
phase of the Task Force Hemispheric Transport of Air Pol-
lution (HTAP II) with 20 % emission perturbation experi-
ments. About 27 %–58 %, 26 %–46 % and 12 %–23 % of lo-
cal S, NOx and NH3 emissions and oxidation products are
transported and removed by deposition outside of the source
regions annually, with seasonal variation of 5 % more in win-
ter and 5 % less in summer. The 20 % emission reduction in
the source regions could affect 1 %–10 % of deposition in
foreign continental regions and 1 %–14 % in foreign coastal
regions and the open ocean. Significant influences are found
from NA to the North Atlantic Ocean (2 %–14 %), and from
EA to the North Pacific Ocean (4 %–10 %) and to western
NA (4 %–6 %) (20 % emission reduction). The impact on de-

position caused by short-distance transport between neigh-
boring regions (i.e., from EU to RU) occurs throughout the
whole year (slightly stronger in winter), while the long-range
transport (i.e., from EA to NA) mainly takes place in spring
and fall, which is consistent with the seasonality found for
hemispheric transport of air pollutants. Deposition in the
emission-intensive regions such as US, SA and EA is dom-
inated (∼ 80 %) by own-region emissions, while deposition
in the low-emission-intensity regions such as RU is almost
equally affected by foreign exported emissions (40 %–60 %)
and own-region emissions. We also find that deposition of the
coastal regions or the near-coastal open ocean is twice more
sensitive to hemispheric transport than the non-coastal conti-
nental regions, especially for regions in the downwind direc-
tion of emission sources (i.e., west coast of NA). This study
highlights the significant impacts of hemispheric transport of
air pollution on the deposition in coastal regions, the open
ocean and low-emission-intensity regions. Further research
is proposed to improve the ecosystem and human health, with
regards to the enhanced hemispheric air flows.
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1 Introduction

The increasing consumption of energy by human activities
has largely increased the deposition of nitrogen (N) over the
terrestrial and marine ecosystem (Kim et al., 2011; Galloway
et al., 2008; Duce et al., 2008). The impact is estimated to
continue increasing in the near future (Bleeker et al., 2011;
Lamarque et al., 2013, 2005; Kanakidou et al., 2016; Paulot
et al., 2013; Bian et al., 2017). The NOx emissions have in-
creased by about 10 Tg(N) from 2001 to 2010, due to the
large increase in Asian regions (Tan et al., 2018), while re-
cent studies have reported the year 2011 as the turning point
for NOx emissions from China (Li et al., 2017; Liu et al.,
2016). On the other hand, the global sulfur (S) emissions
have declined by about 5 Tg(S) from 2000 to 2010 (Tan et
al., 2018). The global amounts of SO2 emissions from fos-
sil fuels have been decreasing since 1980, owing to the sig-
nificant decline of emissions from Europe (EU) and the US
(Chin et al., 2014). The SO2 emission in China experiences
increases from 2000 to 2005 due to energy consumption and
decreases after 2006 thanks to the implementation of flue-gas
desulfurization systems on power plants. Deposition supplies
the ecosystem with nutrients, but too much deposition could
cause various adverse impacts on the environment, includ-
ing acidification and eutrophication of both forest and wa-
ter (Bouwman et al., 2002; Bergstrom and Jansson, 2006;
Dentener et al., 2006; Phoenix et al., 2006), soil acidifica-
tion which slows down crop production (Guo et al., 2010;
Janssens et al., 2010) and even destroying plant biodiversity
(Bobbink et al., 2010; Clark and Tilman, 2008). The preven-
tion and control of exceeding deposition have become grow-
ing worldwide concerns.

Hemispheric transport of air pollutants is found to aggra-
vate regional air pollution issues (Wild and Akimoto, 2001;
Sudo and Akimoto, 2007; Fu et al., 2012; Fiore et al., 2009),
as well as enlarge the local deposition burden (Glotfelty et
al., 2014; Sanderson et al., 2008). The mass of aerosols ar-
riving at the coasts of North American (NA) is comparable
to that emitted domestically (Yu et al., 2012). Air pollution
from Asia contributes to the PM2.5 concentration in the west-
ern US by 1.5 µg m−3 (Tao et al., 2016), the O3 concentration
by 3–10 ppbv (Zhang et al., 2009, 2008; Yienger et al., 2000;
Reidmiller et al., 2009; Jacob et al., 1999; Brown-Steiner and
Hess, 2011) and the peroxyacyl nitrate (PAN) concentration
by 26 ppbv (Berntsen et al., 1999) in spring. The long-range
transport of air pollution from NA is estimated to contribute
3–5 ppb (7 %–11 %) to the O3 concentration in the EU an-
nually (Auvray and Bey, 2005; Guerova et al., 2006; Der-
went et al., 2004; Li et al., 2002) and the increment can
reach 25–28 ppbv during particular events (Guerova et al.,
2006). European outflow affects the surface O3 concentra-
tion in western China by 2–6 ppbv in spring and summer (Li
et al., 2014) and North Africa by 5–20 ppbv in summer (Dun-
can et al., 2008; Duncan and Bey, 2004). The study by Yu et
al. (2013) found that the long-range transport contribute 6 %–

16 % and 22 %–40 % to aerosol optional depth and direct ra-
diative forcing in four regions including NA, EU, East Asia
(EA) and South Asia (SA). Recent studies have reported an
increasing trend in the hemispheric transport of air pollution
from Asia to NA from mid-1980s to late-2000s. The Asian
plume has contributed ∼ 10 ppbv (30 %) to the O3 concen-
tration over western NA from mid-1980s to mid-2000s (Jaffe
et al., 2003; Parrish et al., 2004), with an annal increase of
0.34–0.50 ppbv O3 (Parrish et al., 2009). A more recent study
showed that the contribution is about 5–7 ppbv in 2006 with
a 1–2 ppb increase from 2000 to 2006 (Zhang et al., 2008).
The trend agreed well with the rapid growth of Asian emis-
sions (Richter et al., 2005; Lu et al., 2010; Verstraeten et al.,
2015; Zhang et al., 2007; van der A et al., 2006, 2008).

Compared to the impact of hemispheric transport on
air pollution, the impact on deposition has not been fully
studied. Arndt and Carmichael (1995) developed a source–
receptor (S–R) relationship for S deposition among the Asian
regions in early 1990s. Zhang et al. (2012) found that foreign
anthropogenic emissions contribute to 6 % and 8 % of the ox-
idized nitrogen (NOy) and reduced nitrogen (NHx) deposi-
tion in the contiguous US, respectively. A systematic study
by Sanderson et al. (2008) shed light on the impact of long-
range transport on NOy deposition at a global scale. The
study used the model ensemble results from the 1st phase
of the Task Force Hemispheric Transport of Air Pollution
(HTAP I) to calculate the S–R relationship for NOy depo-
sition in 2001 among four regions: EU, NA, SA and EA. Re-
sults showed that about 12 %–24 % of the NOx emissions
were transported and deposited out of the source regions.
About 3 %–10 % of the emissions were deposited on the
other three regions than the source region and affects their de-
position by about 1 %–3 %. However, these studies focused
on the emission-intensive regions, where the foreign distur-
bance could be relatively small compared to huge own-region
emissions. The foreign impact on the low-emission-intensity
regions was not evaluated in the same detail. Furthermore,
both the magnitude and spatial distribution of S and N emis-
sions and deposition have been changed considerably during
the last 10 years (2001–2010) (Tan et al., 2018). It is nec-
essary to update the S–R relationship for more recent years
with regards to these changes.

To explore these questions, this study assesses the impact
of hemispheric transport of S, NOx and NH3 emissions and
oxidation products on S and N deposition, with multi-model
ensemble results from the 2nd phase of HTAP (HTAP II).
Additional to the four regions used in Sanderson’s study for
HTAP I (NA, EU, SA and EA), we include two more regions:
Middle East (ME) and Russia, Belarus, and Ukraine (RU) in
this study. These two regions are featured with low S and
N emissions relative to their areal extent, but located close
to the high-emission regions such as EU, SA and EA. We
calculate the amount of deposition brought by hemispheric
transport by comparing model results between the base case
and the 20 % emission perturbation cases. The experimen-
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tal design is described in Sect. 2. In Sect. 3, we explore the
following questions:

1. What fractions (percentages) of the S or N emissions are
transported and deposited outside of the source regions?
What are the fractions of emissions that finally deposit
on the other five regions and the open ocean? What is
the seasonality of the exported fractions?

2. As receptor regions, how much deposition is brought
by hemispheric transport? What is the impact on local
deposition? Is there any seasonality for this impact?

3. For each region, what are the contributions of hemi-
spheric transport and own-region emissions on local de-
position? In line with the analysis for other pollutants, to
this purpose we evaluate the so-called response to extra-
regional emission reduction (RERER) metric. We dis-
cuss the impacts of hemispheric transport on the coastal
regions specifically. The inter-model variations are also
illustrated.

Section 4 is a summary of the findings in this study and
some suggestions for future study.

2 Methodology

2.1 HTAP II and experiment setup

The HTAP was created in 2004 under the Convention on
Long-range Transboundary Air Pollution (CLRTAP). It in-
volves efforts from international scientists aiming at under-
standing the hemispheric transport of air pollutants and its
impact on regional and global air quality, public health and
near-term climate change. Until now, two phases of HTAP
experiments have been conducted successfully. HTAP I in-
volved more than 20 models from international modeling
groups, with 2001 as the base year for modeling studies.
A comprehensive report of the major findings of HTAP I
was released in 2010 and could be downloaded from http:
//www.htap.org/ (last access: 6 April 2018). The HTAP II
was launched in 2012, with 2010 as the base simulation year.
HTAP II required all models to use the same prescribed an-
thropogenic emissions instead of using the best estimates of
emissions by each modeling group as HTAP I. This facil-
itates an inter-model comparison between models. In addi-
tion, HTAP II had a refined definition for the boundaries of
regions, which enabled an update in the S–R relationships
among regions.

This study uses the ensemble of 11 global models
from HTAP II (including CAM-Chem, CHASER_re1,
CHASER_t106, EMEP_rv48, GEMMACH, GEOS5,
GEOSCHEMAJOINT, OsloCTM3v.2, GOCARTv5,
SPRINTARS and C-IFS_v2). A detailed description of the
experimental setup can be found in Galmarini et al. (2017).

The S deposition includes SO2 deposition and SO2−
4 depo-

sition. The N deposition is categorized by NOy deposition
and NHx deposition. The NOy deposition is a sum of all
oxidized N except N2O, including the deposition of NO2,
HNO3, NO−3 , PAN and other organic nitrates other than
PAN (Orgn). The NHx deposition includes NH3 deposition
and NH+4 deposition. To form the multi-model ensemble,
we regrid all models to a uniformed horizontal resolution of
0.1◦× 0.1◦. We use the multi-model mean (MMM) of all
models to present the ensemble results, a procedure which
has been proven previously to have a better agreement with
observations than single model result (Dentener et al., 2006;
Tan et al., 2018). The MMM values of the compositions of S
or N deposition are calculated separately and then combined
to compute the total S or N deposition. More details can be
found in Tan et al. (2018).

2.2 Simulation scenarios

The base simulation uses anthropogenic emissions in 2010
(Janssens-Maenhout et al., 2015), which is called “base case”
in this study. The MMM performance on wet deposition has
been evaluated with observations from the National Atmo-
spheric Deposition Program (NADP) (http://nadp.sws.uiuc.
edu/, last access: 6 April 2018) for the NA region, Euro-
pean Monitoring and Evaluation Programme (EMEP) Chem-
ical Coordinating Centre (CCC) reports (http://www.nilu.no/
projects/ccc/reports.html, last access: 6 April 2018) for the
EU region and the Acid Deposition Monitoring Network
in East Asia (EANET; http://www.eanet.asia/, last access: 6
April 2018) for the EA region in the previous study of Tan
et al. (2018). The following are some brief results of the
evaluation. Modeled sum of gas-phase SO2 wet deposition
and aerosol SO2−

4 wet deposition is evaluated with observed
SO2−

4 wet deposition. About 76 % of the stations of all net-
works are predicted within ±50 % of observation. Negative
model biases (−20 %) are found at some East Asian stations.
Modeled sum of gas-phase HNO3 wet deposition and aerosol
NO−3 wet deposition is compared with observed NO−3 wet
deposition. About 83 % of the stations of all networks are
predicted within ±50 % of observation. The European and
Southeast Asian stations with high observed NO−3 wet de-
position are somewhat underestimated. Modeled sum of gas-
phase NH3 wet deposition and aerosol NH+4 wet deposition
is compared with observed NH+4 deposition. About 81 % of
modeled NH+4 wet deposition at stations of all networks are
predicted within ±50 % of observation. A general underesti-
mation is found in modeled NH+4 wet deposition, especially
at East Asian stations. In terms of dry deposition, due to the
lack of directly measured data, we compare the modeled dry
deposition with inferential data from the Clean Air Status
and Trends Network (CASTNET) over US. The CASTNET
data are calculated with observed aerosol concentration and
modeled dry deposition velocity, therefore it might have high
uncertainties. Comparison shows that the modeled dry depo-
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Figure 1. Boundaries of regions and coastal areas (dashed). Six regions with perturbation experiments: 3 – North America (NA), 4 – Europe
(EU), 5 – South Asia (SA), 6 – East Asia (EA), 11 – Middle East (ME) and 14 – Russia, Belarus, and Ukraine (RU). Others: 1 – Global, 2
– Ocean, 7 – Southeast Asia, 8 – Australia, 9 – North Africa, 10 – Sub-Saharan Africa, 12 – Mexico, Central America, the Caribbean, the
Guyanas, Venezuela, and Columbia (Central America), 13 – South America, 15 – Central Asia, 16 – Arctic and 17 – Antarctic.

sition is generally higher than the CASTNET inferential data
by a factor of 1–2. This is a common feature of many global
and regional models (WMO, 2017). According to the anal-
ysis, the model bias for dry deposition mainly comes from
the model over-prediction of air pollutant concentration (Tan
et al., 2018). The CASTNET sites are generally located in
remote regions with relatively lower air pollutant concentra-
tions than urban regions, but the models fail to represent this
characteristic with coarse spatial resolution (Tan et al., 2018).

HTAP II defines the boundaries of 17 regions as shown in
Fig. 1. The emission perturbation experiments are conducted
separately for six regions (regions with color in Fig. 1) with
high priority: NA, EU, SA, EA, ME and RU. In the pertur-
bation experiments, the anthropogenic emissions (including
NOx , SO2, NH3, VOC, CO and PM) of a specific region are
reduced by 20 % from the amounts in the base case simula-
tion, while the emissions in other regions are kept constant.
In addition, a global perturbation experiment referred to as
“GLO” is conducted with 20 % reduction of global anthro-
pogenic emissions. We estimate the impact of hemispheric
transport on deposition by comparing the model results un-
der perturbation experiments with those under the base case
simulation. In order to validate the quality of model outputs,
we check the mass balance between emissions and deposi-
tion at the global scale. The mass balance check for the base
case simulation is shown in Tan et al. (2018), therefore we
show the mass balance check for perturbation experiments in
this study. We compare the global total amounts of changes
in deposition (1 Depo) with changes in emissions (1 Emis)
for all perturbation cases (Table S1). Model results are ex-
cluded if their global 1 Depo values fall outside the range of
±20 % of their global 1 Emis. According to our results, the

amounts of 1 Depo are all within the scopes for all pertur-
bation cases except the NHx deposition under the EA case.
The 1 Depo of NHx deposition under EA case is not avail-
able due to lack of modeled NH+4 wet deposition under 20 %
emission perturbation in EA.

3 Results

3.1 Export of S and N emissions from source regions

This section studies the export of S and N emissions and ox-
idation products from the source regions. Table 1 shows the
S–R relationship of S and N deposition among the six re-
gions. The numbers are the sensitivity (SENr→s) of deposi-
tion in the receptor or source regions to emission changes in
the source regions (Sanderson et al., 2008). The metric is cal-
culated as 1 Depo in the receptor or source regions divided
by 1 Emis in the source regions following Eq. (1).

SENr→s =
1Depo (r/s)

1Emis (s)
× 100%, (1)

where s is the source region and r is the receptor region.
1 Depo (r/s) is the deposition change in the receptor or
source regions and 1 Emis (s) is the emission change in
the source regions. The metric indicates the percentages of
emissions of the source regions that are deposited locally or
exported to foreign regions.

The numbers outside of the parenthesis in Table 1 are for
coastal and non-coastal regions together, and the numbers in
the parenthesis are specifically for coastal regions (defined
in Fig. 1). “Others” means other regions of the world other
than the six regions (white color in Fig. 1). The NA region
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Table 1. Source–receptor relationship of S, NOy and NHx deposition (%) for regions (including continental coastal and non-coastal regions).
The values in the parentheses are for coastal regions as a subset of the total.

Source regions

Receptor regions NA EU SA EA ME RU

S deposition NA 68.9 (8.9) 0.2 (0.1) 0.2 (0.0) 1.5 (0.6) 0.3 (0.1) 1.2 (0.6)
EU 1.1 (0.6) 60.4 (14.4) 0.0 (0.0) 0.2 (0.1) 2.1 (0.2) 6.9 (2.5)
SA 0.5 (0.1) 1.2 (0.3) 66.4 (10.0) 0.9 (0.4) 7.9 (1.6) 0.3 (0.1)
EA 0.6 (0.2) 1.8 (0.4) 8.8 (1.3) 73.4 (11.5) 4.6 (0.8) 5.2 (1.4)
ME 0.0 (0.0) 2.6 (0.6) 0.6 (0.3) 0.0 (0.0) 42.4 (8.2) 0.8 (0.2)
RU 0.4 (0.1) 13.6 (2.2) 0.1 (0.1) 5.1 (2.2) 5.0 (1.1) 62.2 (4.4)
Others 28.5 20.1 23.8 19.1 37.7 23.4

NOy deposition NA 71.5 (7.8) 0.8 (0.2) 0.5 (0.1) 1.0 (0.3) 0.5 (0.1) 1.0 (0.3)
EU 1.3 (0.6) 66.2 (17.5) 0.2 (0.1) 0.3 (0.1) 3.5 (0.9) 9.8 (2.9)
SA 0.2 (0.0) 0.2 (0.0) 66.2 (8.6) 0.5 (0.2) 7.9 (1.3) 0.2 (0.0)
EA 0.6 (0.1) 1.2 (0.2) 6.2 (0.7) 74.4 (14.3) 2.4 (0.3) 4.3 (0.9)
ME 0.4 (0.1) 1.6 (0.3) 0.9 (0.4) 0.1 (0.0) 54.4 (8.0) 0.8 (0.2)
RU 0.6 (0.1) 10.3 (1.3) 0.1 (0.0) 5.1 (2.2) 4.9 (1.3) 61.4 (3.1)
Others 25.6 19.7 25.8 18.6 26.4 22.5

NHx deposition NA 88.4 (5.6) 0.2 (0.1) 0.3 (0.1) –∗ 0.7 (0.3) 0.4 (0.2)
EU 0.6 (0.3) 83.2 (17.8) 0.0 (0.0) – 4.6 (1.2) 11.9 (3.1)
SA 0.0 (0.0) 0.1 (0.0) 85.1 (7.6) – 8.6 (2.4) 0.0 (0.0)
EA 0.0 (0.0) 0.4 (0.1) 4.2 (0.3) – 2.6 (0.5) 3.8 (1.0)
ME 0.1 (0.0) 1.3 (0.3) 0.4 (0.2) – 49.4 (5.9) 1.5 (0.4)
RU 0.4 (0.1) 10.3 (1.3) 0.1 (0.0) – 7.3 (1.5) 76.9 (4.1)
Others 10.5 4.4 9.7 – 26.9 5.7

∗ Lack of NH+4 wet deposition under EA emission perturbation experiment from all models.

has 69 % of its S emissions deposited within itself, includ-
ing 9 % deposited on its coastal region. The remaining 31 %
is exported to the other regions, mostly to the “Others” and
less than 3 % is deposited on the other five regions (EU, SA,
EA, ME and RU). A relatively large fraction (14 %) of Euro-
pean S emissions are exported to the RU region. Other major
pathways of export of S emissions and reaction products are
from SA to EA (9 %), from EA to RU (5 %), and from RU to
EU (7 %) and EA (5 %). ME has considerable high percent-
ages of S emissions exported to its nearby regions such as
SA (8 %), EA (5 %) and RU (5 %). The S–R relationship of
NOy deposition is similar to that of S deposition, except that
EU and ME have 66 % and 54 % of NOx emissions deposited
within the source region, which are 6 % and 12 % higher than
those of S emissions, likely due to somewhat longer lifetimes
of S emissions compared to NOx emissions and the high
emission altitude of S emissions. In terms of NHx deposi-
tion, about 20 % more NH3 emissions are deposited within
the source regions (except ME) compared with S and NOx

emissions, due to its short lifetime in the atmosphere.
The seasonal variations in the export of S and N emissions

from source regions are shown in Fig. S1. In terms of S emis-
sions, there are 5 %–10 % seasonal differences around the
annual average export fractions for all regions except SA.
SA exports almost half of its S emissions in spring, which

is twice the number in summer (20 %) and fall (25 %), re-
lated to the specific dry period and monsoon circulation. The
seasonal export fractions of NOx and NH3 emissions are
similar to that of S emissions in the pattern, but generally
lower in values in all seasons. Generally, the source regions
export the highest percentage of their emissions in winter
and spring and lowest in summer. More proficient oxidation
chemistry in summer results in more soluble components,
and local weather systems, especially the episodes of pre-
cipitation have a large influence on this seasonality. For most
continental regions, the wet deposition accounts for 50 %–
70 % of total deposition (Tan et al., 2018; Vet et al., 2014;
Dentener et al., 2006). Therefore, local precipitation plays an
important role in the removal process of local pollution. On
the other hand, for regions with low local precipitation like
ME, the percentage of emissions removed within own region
would be lower than the other regions. In addition, the strong
westerly winds in winter and spring favor the hemispheric
transport in the mid-latitudes of the Northern Hemisphere.
While the rapid vertical convections in summer slowdown
the zonal transport of air flows and accelerates the local re-
moval process.

A comparison is conducted with previous studies. Bey et
al. (2001) estimated that 70 % of the emitted NOx from Asia
is lost within its boundary by HNO3 deposition in spring.

www.atmos-chem-phys.net/18/12223/2018/ Atmos. Chem. Phys., 18, 12223–12240, 2018
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The estimations in our study are 70 % for EA and 61 % for
SA, close to Bey’s result. Li et al. (2004) reported that about
20 % of anthropogenic NOx emitted by NA is deposited out
of its boundary (about 1000 km offshore). Stohl et al. (2002)
calculated that 9 %–22 % of surface NOx emissions are ex-
ported out of the boundary of NA. Our estimation is about
30 %, higher than Li’s and Stohl’s results. The HTAP I study
by Sanderson et al. (2008) developed a S–R relationship for
NOy deposition among NA, EU, SA and EA. The results
showed that about 12 %–24 % of the emitted NOx is de-
posited out of the source regions. This study of HTAP II
finds a higher percentage of export (26 %–34 %). It should
be noted that the estimations of different studies are not
fully comparable since they are influenced by several factors:
(1) definition of the boundaries of the source and receptor re-
gions. For instance, Li et al. (2004) defined the boundary of
NA by a squared domain: 25–55◦ N, 65–130◦W, while we
use the continental boundaries defined by HTAP II. There
are also changes in the boundaries of regions from HTAP I
to HTAP II. For instance, Mexico and Central America are
included in NA in HTAP I, but they are defined as a separate
region in HTAP II (region 12 in Fig. 1). The boundary of EU
is also changed in HTAP II. (2) Design of the perturbation
simulations. The perturbation simulations in HTAP I only
change the NOx emissions, but HTAP II simulations also re-
duce the other anthropogenic emissions, including SO2 and
PM. The joint effects of controlling multiple species may re-
sult in more reduction in NOy deposition, but it is hard to
estimate the influence in this study.

3.2 Impact of hemispheric transport on deposition

This section investigates the impact of hemispheric transport
on deposition in the receptor regions. Figure 2 shows the an-
nual response of S deposition to 20 % emission reduction in
the source regions calculated as Eq. (2).

Response=
1Depo(perturbation)

Depo(base)
× 100%, (2)

where 1 Depo (perturbation) is the 1 Depo between per-
turbation case and base case. Depo (base) is the deposition
under base case. The negative values mean that the deposi-
tion decreases with reduction in emissions. Table S2 summa-
rizes the regional median deposition fluxes under base case
and emission perturbation cases. Figure 2a shows the global
response of S deposition to 20 % emission reduction in NA.
The largest deposition change is found in the source region
(NA), with a 4 %–20 % decrease in S deposition in the non-
coastal region and 14 %–16 % decrease around the east coast.
The impact on the North Atlantic Ocean declines gradually
from the near-coastal region (12 %–14 %) to the open ocean
(2 %–12 %) and Eurasia (< 1 %). Figure 2b shows the global
response of S deposition to 20 % emission reduction in EU.
Although the impact on continental non-coastal regions is
also high (6 %–18 %), the impact on the coastal regions is

generally less than 6 %, much lower than NA’s impact on its
east coast (14 %–16 %). The deposition in North Africa, cen-
tral Asia and western RU is affected by 2 %–6 %. The 20 %
emission reduction in SA (Fig. 2c) shows large influences
over its southwest coast and the Arabian Sea (4 %–12 %).
The SA’s outflow affects the deposition in southeastern ME
and eastern Sub-Saharan Africa by 1 %–4 % and western EA
and Southeast Asia (mainly Bangladesh) by 2 %–6 %. Fig-
ure 2d shows the impact on S deposition from 20 % emission
reduction in EA. On one hand, the impact is strong on the east
coast of China (12 %–16 %) and decreases gradually over the
North Pacific Ocean (4 %–10 %). Although the majority of S
emissions are deposited on the North Pacific Ocean, the in-
fluence on western NA can still reach 4 %–6 %. On the other
hand, the impacts on Southeast Asia and SA are much lower
(2 %–5 % and < 1 %), due to the block of air flows by the
Himalaya mountains (Fig. S4). The 20 % emission reduction
in ME mainly affects the S deposition in Africa by 2 %–10 %
and western EA by 2 %–4 %. Figure 2f shows the change of S
deposition with 20 % emission reduction in RU. The regions
of impact are mainly located at high latitudes of the Northern
Hemisphere, including northern EU (2 %–6 %) and western
Arctic Circle (1 %–4 %). The Russian flow enters the Arctic
in the lower troposphere in the winter season (Stohl, 2006).

Figure 3 shows the impacts of reducing NOx emissions
on NOy deposition. The overall impact is qualitatively sim-
ilar to that of S emissions in the spatial pattern, with some
differences in the values. Some regions receive lower impact
on NOy deposition than S deposition. For instance, SA’s im-
pact on eastern Africa is about 1 %–4 % on S deposition, but
is < 1 % on NOy deposition. ME’s impact on the western
Africa and Gulf of Guinea is about 2 %–4 % on S deposition,
but is < 1 % on NOy deposition. These smaller sensitivities
reflect differences in lifetimes, and the lower formation of
aerosol NO−3 under warm conditions in tropical regions. Un-
der the NA perturbation case (Fig. 3a), 8 %–12 % changes
of NOy deposition are found on the west coast of Califor-
nia, due to high NOx emissions in California from mobile
sources, which is not seen in S deposition. The impacts of
emission reduction in EU and EA on their coastal regions are
generally 2 %–4 % higher for NOy deposition than S deposi-
tion (Fig. 3b and d). The impact on NHx deposition is similar
to that on NOy deposition (Fig. S2). It should be noted that
this is the result of 20 % emission reduction in the source
regions, therefore the actual impact (100 % emission reduc-
tion) could be 5 times higher when assuming a linear rela-
tionship between 20 % and 100 % emission reduction on de-
position.

We quantify the amount of deposition carried by hemi-
spheric transport and study its seasonality. Figure 4 shows
the monthly changes in S deposition for 20 % emission re-
ductions in the source regions. The values are meridional
sum with a west–east resolution of 0.1◦, and display well
the locations of the source regions. The negative values indi-
cate the amounts of pollutants transported from the source
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Figure 2. The response of S deposition to 20 % emission reduction in the source regions. The values are the percentage changes (%) in
deposition calculated as (changes in deposition with 20 % emission reduction) / (base case deposition)× 100 %. The unit is % per 0.1◦×0.1◦

grid box.

regions to the receptor regions. According to Fig. 4a, NA
has about (1− 10)× 104 kg (S) month−1 per 0.1◦ longitude
of its S emissions transported and deposited over the North
Atlantic Ocean (15–75◦W) throughout the whole year. We
also find about (1− 3)× 104 kg (S) month−1 per 0.1◦ lon-
gitude decrease in S deposition at about 90 and 120◦ E in
spring and fall, which gives evidence to NA’s influence on
Eurasia via the transatlantic flow, although this amount ac-
counts for less than 1 % of local S deposition (white in
Eurasia in Fig. 2a). Figure 4b shows that about (1− 3)×

104 kg (S) month−1 per 0.1◦ longitude of EU’s emissions are
transported and deposited at 30–60◦ E in RU throughout the
whole year and at 100–120◦ E in EA in spring and fall. Ac-
cording to Fig. 4c, SA exports its S emissions to 30–60◦ E

in ME and eastern Africa in early spring and to 90–180◦ E
in EA and the North Pacific Ocean from late spring until
fall. In particular, the influence on EA can reach (5− 10)×

104 kg (S) month−1 per 0.1◦ longitude in mid-spring. Ac-
cording to Fig. 4d, EA’s S emissions are widely transported
and deposited over the North Pacific Ocean throughout the
whole year. The Asian outflow arrives at the west coast of NA
(∼ 130◦W) in all seasons except summer, but only reaches
far in western NA (∼ 90◦W) in spring and brings about
1× 104 kg (S) month−1 per 0.1◦ longitude of S deposition.
The export to SA is only found during the Asia winter mon-
soon. Figure 5 shows the monthly changes in NOy deposi-
tion with perturbation experiments. Compared to S deposi-
tion, the change in NOy deposition by hemispheric transport
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Figure 3. Same as Fig. 2 but for NOy deposition. The unit is % per 0.1◦× 0.1◦ grid box.

is generally smaller. For instance, the NA’s impact on Eura-
sia is (1− 3)× 104 kg (S) month−1 per 0.1◦ longitude for S
deposition, but is less than 0.5×104 kg (N) month−1 per 0.1◦

longitude for NOy deposition. The SA’s impact on EA (90–
120◦ E) can reach (5−10)×104 kg (S) month−1 per 0.1◦ lon-
gitude for S deposition, but the amount is 4 times lower for
NOy deposition. This result is in accordance with the S–R
results in Sect. 3.1 that more S emissions are transported
out of the source regions than N emissions, probably due
to longer chemical lifetimes and higher emission altitudes.
Patterns similar to NOy deposition are found in the monthly
changes in NHx deposition (Fig. S3).

The deposition changes due to transport between neigh-
boring regions are found throughout the whole year and are
slightly stronger in winter, such as between EU and RU
(∼ 30◦ E; Fig. 4b and f) and from EA to the North Pacific
Ocean (∼ 130◦ E; Fig. 4d). This is consistent with the sea-

sonality we found for the export of emissions from source
regions in Sect. 3.1. In addition, most source regions reduce
more S and NOx emissions in winter than the other seasons
(Table S3), thus more emissions are exported abroad in this
season. On the contrary, the deposition change by transport
over long distance mainly occurs in spring and fall, espe-
cially the hemispheric transport from NA to EU, from EU
to EA and from EA to NA. The seasonality of long-range
transport for NA, EU and EA well fits the characteristic of
westerlies, which is the prevailing winds in the mid-latitude
of the Northern Hemisphere. This agrees with the seasonal-
ity of the transpacific, transatlantic and trans-Eurasia flows
of air pollutants that spring is the most efficient season for
long-range transport in the mid-latitudes (Holzer et al., 2005;
Liu et al., 2005, 2003; Liang et al., 2004; Brown-Steiner and
Hess, 2011; Li et al., 2014; Auvray and Bey, 2005; Wild et
al., 2004). Although the westerlies are also strong in win-
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Figure 4. The monthly changes in S deposition with 20 % emission reduction in the source regions. The x axis values are meridional total
values versus time (y axis) with a west–east resolution of 0.1◦. The unit is×104 kg (S) month−1 per 0.1◦ longitude. Negative values indicate
decline in deposition with reduction in emissions.

ter, the concentrations of air pollutants in the air flows are
lower than spring. The formations of secondary species like
PAN are suppressed by slow oxidation in the cold environ-
ment (Berntsen et al., 1999; Deolal et al., 2013; Moxim et
al., 1996), which plays an important role as a reservoir for

NOx in the long-range transport of air plumes (Lin et al.,
2010; Hudman et al., 2004).
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Figure 5. Same as Fig. 4 but for NOy deposition. The unit is ×104 kg (N) month−1 per 0.1◦ longitude.

3.3 Own region and foreign contributions to deposition

This section compares the contributions of hemispheric
transport and own-region emission control on local deposi-
tion. A metric called RERER is calculated by dividing the
1 Depo due to foreign emission reduction by 1 Depo due
to global (foreign+ own region) emission control following
Eq. (3).

RERERi =
1Depoi(foreign)

1Depoi(global)
, (3)

where i is the region of focus. 1 Depoi (foreign) is the
1 Depo in region i due to 20 % foreign emission reduction.
It is calculated by subtracting the 1 Depo due to 20 % own-
region emission control from 1 Depo due to 20 % global
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Table 2. Extra-regional emission reduction (RERER) values of S, NOy and NHx deposition for continent, non-coastal and coastal regions.
The RERER values are calculated by dividing the 1 Depo due to foreign emission reduction by 1 Depo due to global (foreign+ own region)
emission control. The total column gives the RERER for coastal and non-coastal together.

S deposition NOy deposition NHx deposition

Regions Total Non-coastal Coastal Total Non-coastal Coastal Total Non-coastal Coastal

NA 0.17 0.12 0.40 0.17 0.12 0.43 0.07 0.05 0.31
EU 0.36 0.27 0.53 0.34 0.27 0.48 0.12 0.09 0.22
SA 0.18 0.14 0.35 0.17 0.12 0.37 0.04 0.03 0.17
EA 0.16 0.14 0.28 0.16 0.12 0.27 – – –
ME 0.32 0.27 0.46 0.32 0.27 0.50 0.42 0.36 0.67
RU 0.61 0.56 0.84 0.59 0.52 0.90 0.55 0.49 0.85

emission reduction. 1 Depoi (global) is the 1 Depo in re-
gion i due to 20 % global emission reduction. This metric
indicates the importance of foreign or local emissions on lo-
cal deposition. A low RERER value (close to 0) indicates a
predominant effect of own-region emissions on local depo-
sition, while a high RERER value (close to 1) means strong
impacts from hemispheric transport.

Table 2 shows the RERER values for total (include both
non-coastal and coastal regions), non-coastal and coastal re-
gions. For both non-coastal and coastal regions, the own-
region impact includes control of both its coastal and non-
coastal regions, and the foreign impact comes from emission
reduction of both foreign coastal and foreign non-coastal re-
gions. As we expected, NA (0.07, 0.17 and 0.17), SA (0.04,
0.17 and 0.18) and EA (0.16 and 0.16) regions have relatively
low RERER values, due to large local emissions compared to
the foreign contributions. EU (0.12, 0.34 and 0.36) and ME
(0.32, 0.32 and 0.42) have relatively higher RERER values.
RU is the only region with all RERER values (0.55, 0.59 and
0.61) higher than 0.5, which means its deposition is almost
equally sensitive to the foreign exported air pollution and
own-region control. The RERER values of NOy deposition
are of similar magnitudes to those of S deposition, while the
RERER values of NHx deposition are 0.1 lower than those
two, probably due to the lack of data for the EA perturbation
case, so that the contributions from EA are not included.

The RERER values of coastal regions are generally 0.1–
0.3 higher than those of non-coastal regions. Even regions
with low non-coastal RERER values such as NA and SA
have high RERER values in coastal regions. For instance, the
RERER values of NA reaches 0.3–0.4 for its coastal region,
more than double of the RERER values in its non-coastal
regions (0.05–0.12). Coastal regions receive high propor-
tions of deposition from the hemispheric transport. Except
large-scale circulation like prevailing westerlies, the coastal
regions are featured with complex small-scale circulations.
For instance, the low-level jet (zonal winds with high speed)
contributes to rainfall in coastal regions in Asia (Xavier et
al., 2018). The orographic effects enhance the precipitation
over coastal mountain regions such as the west coast of NA

and EU, and the southeast coast of RU (James and Houze,
2005). According to Table 1, EA exports 5 % of its S and
N emissions to RU, almost half of which are deposited on
RU’s coastal regions. RU exports 7 %–12 % of S and N emis-
sions to EU, 30 % of which are deposited on EU’s coastal
regions. The impact of hemispheric transport is identical or
even larger than the effect of controlling own-region emis-
sions for some coastal or near-coastal regions. According
to Fig. 2, 20 % emission reduction in EA can reduce 2 %–
6 % of S deposition in the west coast of NA. This effect
is even larger than 20 % emission reduction in its own re-
gion (< 1 %). Similarly, 20 % emission reduction in NA can
change 2 %–5 % of S deposition in the west coast of EU,
which is almost identical to the effect of 20 % emission con-
trol in EU. On one hand, the emissions in western NA and
western EU are relatively low, thus the effect of own-region
control is not significant. On the other hand, these coastal
regions are in the downwind directions of eastern EA and
eastern NA, which are the main source regions of S and N
emissions. Coastal regions serve as transit places for air–sea
exchanges with vulnerable ecosystems (Jickells, 2006; Jick-
ells et al., 2017). The over-richness of deposition in coastal
water and ecosystems can evoke a number of environmen-
tal issues, of which some are specifically for coastal regions
such as threats to coastal benthic and planktonic system and
sustainability of fishery (Paerl, 2002; Doney et al., 2007).

Figure 6 shows the source concentrations of deposi-
tion from hemispheric transport and own-region emissions.
Other (OTH, pattern fill in the figure) is calculated as
1 Depo(GLO)−

∑
−1 Depo(case) (case= 6, including NA,

EU, SA, EA, ME and RU). It indicates the deposition change
due to other reasons than the total effects of separate emis-
sion reduction in the six regions. It could come from the
emission reduction in the rest of the world, especially nearby
regions such as from Central Asia and North Africa to EU
and ME. It could also come from the joint effects of emission
control in multiple source regions, which possibly change
the oxidant chemistry, atmospheric mixing and lifetimes of
reactive pollutants. However, the model simulations do not
allow us to separate these contributions in this study. For re-
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Figure 6. Source contribution to S and N deposition from the hemispheric transport from foreign regions and from own-region emissions.
Other (OTH, pattern fill) is the contribution by other reasons than the total effects of separate emission reduction of the six regions (see
manuscript for details).

gions with low RERER values (NA, SA and EA), the own-
region emissions dominate the local deposition by more than
80 %. For these regions, determined by vicinity and transport
patterns, the foreign impact is somewhat dominated by cer-
tain source regions, such as from EA to NA (2 %–4 % out of
4 %–5 %), from ME to SA (5 %–6 % out of 7 %–11 %) and
from SA to EA (3 %–4 % out of 4 %–7 %). For regions with
higher RERER values (i.e., EU and ME), there is an about
20 % contribution from “OTH”. Besides this, RU contributes
4 %–5 % to EU’s deposition and EU contributes 5 % to ME’s
deposition. The high RERER region (i.e., RU) has a differ-
ent pattern than the other regions. The contributions of hemi-
spheric transport from the other five regions (23 %–45 %) are
almost equivalent to its own-region emission control (39 %–
45 %), with significant impacts from EA (20 %–24 %) and
EU (13 %–15 %).

Figure 7 shows the inter-model variations on simulating
the 1 Depo of S, NOy and NHx deposition under emission
perturbation cases, separately for wet and dry deposition. The
values are global integrated changes in the components of
deposition between base case and perturbation experiments

from MMM results, with error bars showing the maximum
and minimum values of models. The figure only shows the
main compositions of S and N deposition, which together
account for more than 95 % of total deposition. In terms of S
deposition (Fig. 7a), the modeled 1 Depo by multiple models
(defined as maximum value of multi-model minus minimum
value of multi-model) ranges from 0.06 to 0.23 Tg(N) yr−1

and from 0.01 to 0.22 Tg(N) yr−1 for SO2 dry and wet de-
position, respectively, and from 0.01 to 0.03 Tg(N) yr−1 and
from 0.009 to 0.17 Tg(N) yr−1 for SO2−

4 dry and wet de-
position, respectively (ranges are for different cases). High
uncertainty is found in the EA perturbation case, where the
model divergences are mainly from SO2 wet and dry depo-
sition and SO2−

4 wet deposition. In terms of NOy deposition
(Fig. 7b), the differences among models range from 0.003
to 0.07 Tg(N) yr−1 for NO2 dry deposition, and from 0.07 to
0.55 Tg(N) yr−1 and from 0.03 to 0.75 Tg(N) yr−1 for NO−3
dry and wet deposition, respectively. The EA perturbation
case also has the largest inter-model variation, with high un-
certainties in simulating both the NO−3 wet and dry deposi-
tion. In terms of NHx deposition (Fig. 7c), the differences
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Figure 7. Inter-model variations in the change of wet and dry deposition (unit: Tg (S or N) yr−1) under emission perturbation experiments.
The values are global integrated changes in components of S and N deposition between base case and perturbation experiments from multi-
model mean (MMM) results. The error bars are the max and min values among all models. Species without error bars are derived from results
of a single model.

among models range from 0.04 to 0.09 Tg(N) yr−1 for NH3
dry deposition, and from 0.008 to 0.15 Tg(N) yr−1 and from
0.002 to 0.11 Tg(N) yr−1 for NH+4 dry and wet deposition,
respectively. Both EA and SA perturbation cases have rela-
tively high uncertainties in NH+4 dry deposition. Overall, the
inter-model variations are considerably high under emission
perturbation in Asian regions, especially EA. On one hand,
the EA perturbation case assumes the largest amounts of
emission reduction among all perturbation cases (Table S3).
On the other hand, model evaluation (Tan et al., 2018) re-
ported high model bias in simulating the deposition in this
region, and suggest an incomplete knowledge from the com-
bined picture provided by observations and models.

4 Conclusion

This study assesses the impact of hemispheric transport on S
and N deposition for six regions: North America (NA), Eu-
rope (EU), South Asia (SA), East Asia (EA), Russia (RU)
and Middle East (ME), by using multi-model ensemble re-
sults from 11 models of HTAP II, with simulations under
base case and 20 % emission perturbation scenario for each
region.

We investigate the export of S and N emissions and oxi-
dation products from the source regions. Results show that
about 27 %–58 %, 26 %–46 % and 12 %–23 % of the emit-
ted S, NOx and NH3 emissions are deposited outside of the
source regions (ranges are for different source regions). The
most significant exports of emissions are (1) transport be-
tween EU and RU, 10 %–14 % of EU’s emissions are trans-
ported to RU and 7 %–12 % of RU’s emissions are trans-
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port to EU; (2) transport between EA and RU, 5 % of EA’s
emissions are transported to RU and 4 %–5 % of RU’s emis-
sions are transported to EA; and (3) transport from SA to
EA (4 %–9 %). Most regions export 5 %–10 % more emis-
sions in winter than summer, which is highly influenced by
chemistry, precipitation amount and frequency, atmospheric
mixing, and transport patterns.

We explore the impacts of hemispheric transport on depo-
sition in the receptor regions. Overall, 20 % emission reduc-
tion in the source regions could affect 1 %–10 % of deposi-
tion in foreign continental regions and 1 %–14 % in foreign
coastal regions and the open ocean. The most significant im-
pacts are from NA to the North Atlantic Ocean (2 %–14 %),
and from EA to the North Pacific Ocean (2 %–12 %) and to
western NA (4 %–6 %). The amounts of deposition brought
by hemispheric transport range 104–105 kg (S or N) month−1

per 0.1◦ longitude (meridional sum). The impact via short-
distance transport between neighboring regions (i.e., EU
to RU) is generally found throughout the whole year and
slightly stronger in winter, while the long-range transport
(i.e., from EA to NA) mainly occurs in spring and fall.

We compare the contributions of own-region emissions
and hemispheric transport on local deposition. The deposi-
tion in NA, SA and EA is dominated (∼ 80 %) by their own-
region emissions, while EU, ME and RU receive 40 %–60 %
of deposition from hemispheric transport. In particular, Rus-
sian deposition is even equally contributed by foreign inputs
and own-region emissions, with high contributions from two
neighboring source regions: EA (∼ 20 %) and EU (∼ 15 %).
For some regions, the upmost half of the exported emissions
from foreign regions is deposited over their coastal regions.
Deposition in coastal regions or the near-coastal open ocean
is found to be twice as sensitive to long-range transport than
non-coastal regions. For some coastal regions, such as the
west coast of NA and the west coast of the EU, the impact
of hemispheric transport is identical or even larger than con-
trolling own-region emissions.

This study highlights the impact of hemispheric transport
on aggravating the deposition burden in coastal regions and
the open ocean, which has not been fully studied in the liter-
ature. We therefore suggest further research on the impact of
the mitigation of coastal and oceanic ecosystem, with regards
to the increasing air pollutants in the hemispheric outflow.
We also find a significant impact of hemispheric transport on
deposition in relatively low-emission-intensity regions such
as RU. Meanwhile, there is still a portion of foreign impacts
that have not been attributed in this study (aggregated as
“OTH” in Fig. 6). For instance, at least four regions (NA, EU,
SA and ME) have shown considerable impacts (2 %–10 %)
on the S and N deposition in North Africa. But since North
Africa is not included as a receptor or source region in the
perturbation experiments, it is hard to quantify the amount.
Meanwhile, Southeast Asia is regarded as a big emission
contributor in Asia. It is important to establish an S–R re-
lationship with other Asian regions. We suggest the future

HTAP simulations to include these regions in the perturba-
tion experiments.
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