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Gosan station 

Gosan station (GSN, 33.25°N, 126.19°E, Jeju Island, Korea) is located on the boundary between 

the Pacific Ocean and the Asian continent (Fig. S1), which experiences a warm wet East Asian 

Summer Monsoon, a cold dry winter, and distinct seasonal wind patterns (strong northern winds 

in winter and a southern influence during summer). These wind patterns are favorable for 

monitoring air masses passing through East Asia, particularly through China and Korea. Clean 

background conditions are observed when a clean stream of air flows in directly from northern 

Siberia in winter and during transport of southerly oceanic winds in summer (Fig. S2). 

 

Fig. S1. Gosan AGAGE (Advanced Global Atmospheric Gases Experiment) station is located on 

a 72-m cliff (air intake elevation: 89 m above sea level) on the remote south-western tip 

of Jeju Island, 100 km south of the Korean peninsula, allowing for monitoring of long-

range air mass transport from the surrounding region.  



Trajectory residence time 

Residence time trajectory analyses are used extensively to identify source locations and preferred 

transport pathways of atmospheric trace elements and particulate species (Ashbaugh et al., 1985). 

Residence times are calculated by the following equation, 

  

S(1) 

 

 

where τabk is the total residence time for all trajectories over grid cell a, b; Sabkh is the length of 

that portion of the h
th

 segment of the k
th

 trajectory over the grid cell a, b; and vkn is the average 

speed of the air parcel as it travels along the h
th

 segment of the k
th

 trajectory.  

The residence time analysis shown in Fig. 2S suggests that the major air masses arriving at 

Gosan station (GSN) vary seasonally, with predominantly northwesterly and northeasterly 

continental outflows from fall through spring, and flows of clean air directly from the Pacific in 

summer and from northern Siberia in winter. 

 

 

Fig. S2. Residence time analysis for 20082015 using 6-day back-trajectories arriving at Gosan 

station. Seasonal residence time distributions show a distinctive seasonally-varying wind 

pattern.  
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Fig. S3. Distribution of averaged residence times of air masses arriving at Gosan for the years 

20082015. Residence times of over 24 h occurred over both northeastern continental 

regions and the central southern part of China. The asterisk denotes Gosan measurement 

station. 

 

 

Fig. S4. 8-year observation records for CCl4 analyzed in this study shown as red points (also 

shown in Fig. 1). For comparison, corresponding observations taken at the Mace Head 

station (53°N, 10°W) in Ireland are represented using blue points. Note that the 

“background” concentrations from GSN agree well with the baseline values at Mace 

Head station, a background station in the Northern Hemisphere, and are declining at a 

similar rate to its global trend.  



Trajectory Statistics  

 

To identify potential CCl4 source regions, we applied statistical analysis coupled with back 

trajectories to the time series of observed enhancements in CCl4 concentrations from 2008 to 

2015. The trajectory statistics method has often been applied to estimate the potential source 

areas of air pollutants (Reimann et al. 2004), and the underlying assumption of this method is 

that elevated concentrations at an observation site are proportionally related to both the average 

concentrations in a specific grid cell over which the observed air mass has passed and the 

residence time of the air mass over that grid cell. Thus, the method simply computes a residence-

time-weighted mean concentration for each grid cell by superimposing the back-trajectory 

domain on the grid matrix. The formula is given by, 

 

 

 

S(2) 

 

 

where Ci is the enhanced concentration of CCl4 at a given i
th 

time; τabi is the residence time of the 

trajectory arriving at Gosan at the i
th 

time spent over grid cell a, b (in 0.5° x 0.5°) within the 

atmospheric boundary layer; and abC  represents the relative strength of the cell a, b as a 

potential source region of CCl4. Back trajectories were calculated using the Hybrid Single 

Particle Lagrangian Integrated Trajectory (HYSPLIT) model of the NOAA Air Resources 

Laboratory (ARL) using meteorological information from the Global Data Assimilation System 

(GDAS) model with 1°×1° grid cell. The HYSPLIT model was run using 6-day backward 

trajectories at 500-m altitude above the measurement site. The residence times were calculated 

using the method of Poirot and Wishinski (1986).
 
To eliminate low confidence level areas, a 

point filter was applied that removed grid cells over which less than 12 trajectories had passed 

(Reimann et al. 2004). 

This trajectory statistics method can also be applied to illustrate the potential location of each 

source factor determined from the Positive Matrix Factorization (PMF) analysis. The formula is 

identical to Eq. S(2) in all respects, except that it uses the normalized strength of each source 

factor. The enhanced concentrations from the j
th 

source contribute to the observation at the k
th

 

time (which is denoted as “fjk” of Eq. (1) in main text). Since the fjk values from all eight sources 

cover a very wide range of concentrations, the fjk values can be normalized against their time 

average for the j
th

 source, with the aim of not biasing the statistical significance of one source 

against the others. Therefore, the normalized time series of fjk values were defined as 

            

   

S(3) 

Eq. S(2) was modified to the following,  
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S(4) 

where jkm is the normalized strength of the j
th

 source at a given k
th 

time; τabk is the residence time 

of the trajectory arriving at Gosan at the k
th 

time spent over the grid cell a, b (in 0.5° x 0.5°) 

within the atmospheric boundary layer; and abjm represents the relative strength of the cell a, b as 

a potential source region of the j
th

 source. 

 

Fig. S5(a). Trajectory attribution: four country domains defined to separate country-specific 

pollution signals from original observations. The Chinese domain is defined as being 

within a regional grid of 100–124°E and 21–45°N.  

 

Fig. S5(b). CCl4 pollution events in 2008–2015 classified according to origin. Air masses from 

China are shown in red, and purple dots represent blended air masses affected both by 

China and other countries. Together, these two groups explain approximately 75% of 
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observed pollution data during 2008–2015. The remaining 25% are shown as gray dots. 

 

 
 

Fig. S6. Observed relationships of CCl4 vs. 26 halocarbons for air masses originating from China. 

The colors by shade indicate statistical significance. The CCl4: HCFC-22 ratio (0.13 

ppt/ppt) has one of the most significant correlation coefficients (R
2
 = 0.79, p < 0.01) of 

the calculated 25-member correlation matrix. 

 

 



 
Fig. S7. Annual HCFC-22 emissions in China for 2008–2015 derived from atmospheric 

measurements data from Gosan station using an inverse technique based on a Lagrangian 

transport model analysis. Red error bars denote estimation uncertainty of 30%; dashed 

and solid gray lines represent the average and its 30% uncertainty ranges, respectively, 

for HCFC-22 emissions during 2008–2015. Estimates are very consistent overall with 

previous top-down studies and a bottom-up estimate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S8. Annual slopes of empirical correlations between observed enhancements of CCl4 vs. 

HCFC-22 (CCl4 vs. HCFC-22). It is important to note that CCl4 production and 

consumption of its dispersive applications in developing countries were phased out in 

2010. The slopes and uncertainties were calculated using a Williamson-York linear least-

squares fitting method. 

Fig. S9. Potential source region distributions of the three emission sources accounting for 89 ± 5% 

of CCl4 enhancements observed at Gosan. The areas in and around Guangzhou of 

Guangdong, Wuhan of Hubei, Zhengzhou of Henan, and Xian of Shaanxi province are 

identified as the dominant contributors. The six blue dots indicate locations of main 

factories producing HFCs, HCFC-22, and fluorocarbons; these are provided in 

http://eng.chinaiol.com/. 



Positive Matrix Factorization Model Calculation 

PMF optimization uses a weighted least squares regression to obtain a best fit to the measured 

enhancements in the concentration data. The main constraints that need to be resolved during the 

analysis are “source factors”, and thus this method is often called factor analysis. The 

mathematical expression of the model is given by Eq. (1), 

 

 

                                                                        (1) 

where xik represents enhanced concentrations in the time series of the “i” halogenated compound 

at the k
th 

sampling time; gij is the concentration fraction of the i
th 

compound from the j
th

 source; fjk 

is the enhanced concentration from the j
th

 source contributing to the observation at the k
th 

time, 

which is given in ppt; eik is the model residual for i
th

 compound concentration measured in the k
th

 

sampling time; and p is the total number of independent sources (i.e., the number of factors) 

(Paatero and Tapper, 1994).
 
The optimal number of factors (p) should be determined by using a 

function Q, defined in Eq. S(5) below, 

 

 

                                                                          S(5) 

where uik are the uncertainties corresponding to each measurement data point. Following the 

guideline provided by Polissar et al. (1998)
 
for PMF model input uncertainties, we considered 

the instrumental measurement uncertainty, monthly standard deviation (1) of background 

concentrations, and 1/3 of the detection limit value as the overall uncertainty assigned to each 

data point. The PMF model input uncertainties (in ppt) were constructed as follows,   

                                                                           

 

S(6) 

where μik is measurement uncertainty; σik is the monthly standard deviation of the background; 

and dik is the analytical detection limit. The average values of these individual input error terms 

are listed for all species in Table S1. In Eq. S(5), hik = 1 if |eik/uik| <α, and otherwise hik is defined 

as |eik/uik|/α. The α is the outlier threshold distance parameter. Appropriate down weighting of 

outliers in PMF datasets has been conducted in many studies (Polissar et al., 1998; Lee et al., 

1999; Lee et al., 2002) using this parameter, to reduce the influence of outliers and extreme 

values. We constrained the PMF analysis with α = 4, which is most commonly used; therefore, 

when the scaled residual exceeded four times that of the standard deviation, the uncertainty, uik, 

was increased to down-weight that concentration. 

The model runs with randomly selected initial values for f and g at a given number of factors (p) 

(varied from 5 to 10 factors) to obtain a minimum Q value in less than 20 iterations (Lee et al., 

1999). As the number of factors increases, the corresponding minimum Q values decreases, with 

a level-off in this case near 7 factors. We carefully examined the solutions with 7, 8, and 9 

factors and determined an optimal value based on both goodness of fit to the data and prior 

knowledge about halogenated compound emissions. The model’s goodness-of-fit was estimated 

from a correlation plot between the measured and model-predicted concentrations. Most of the 
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compounds (16 out of 18 species) showed good correlations (R
2

 > 0.6, see Table S2) for the 

eight-factor solution. Another way to assess a PMF fit is to examine the distribution of scaled 

residuals (eik/uik). We found the most species except COS lie within ±4, which is considered a 

typical limit. The seven-factor model cannot separate the foam-blowing-agent factor from the 

semiconductor/electronics sector factor, which are both well-known sources of halogenated 

compounds. For the nine-factor analysis, the sources for CH2Cl2 and CHCl3 were split. Therefore, 

we concluded that an eight–source model provides the most relevant and meaningful 

interpretation for the enhanced CCl4 concentrations observed at Gosan. 

 

PMF input uncertainties 

 

The uncertainties (in ppt) imposed on individual concentrations are typically determined in the 

PMF community as follows, 

 

           S(7) 

 

where μik is the measurement uncertainty; σik is the monthly standard deviation (1) of the 

background; and dik is the analytical detection limit. The average values of these individual input 

error terms for all species are listed in Table S1. 

 

Table S1. Three individual input error terms and their average values for all species. 

      
      

 
Compounds              

Analytical 

precision (ppt) 

Background 

uncertainty 

(ppt) 

Detection 

limit         

(ppt) 
 

 
CFC-11 0.44  1.40  0.72  

 

 
CFC-12 0.61  0.82  1.33  

 

 
HCFC-22 0.54  1.70  1.47  

 

 
HCFC-141b 0.10  0.70  0.22  

 

 
HCFC-142b 0.07  0.55  0.12  

 

 
HFC-23 0.13  0.26  0.26  

 

 
HFC-134a 0.18  1.10  0.47  

 

 
HFC-152a 0.08  0.53  0.15  

 

 
HFC-32 0.13  0.29  0.28  

 

 
HFC-125 0.05  0.20  0.11  

 

 
HFC-143a 0.09  0.22  0.19  

 

 
CF4 0.09  0.19  0.20  

 

 
C2F6 0.03  0.04  0.06  

 

 
C3F8 0.01  0.02  0.03  

 

 
SF6 0.03  0.08  0.07  

 

 
CH3Cl 1.09  11.00  2.36  

 

 
CH2Cl2 1.55  7.20  3.36  

 

 
CHCl3 0.17  1.40  0.74  
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CH3Br 0.05  0.38  0.11  

 

 
CCl4 0.80  1.09  1.76  

 

 
COS 2.92  14.00  6.36  

 

 
PCE 0.02  0.42  0.04  

 

      
 



Goodness of PMF model fit  

 

The goodness of fit of the PMF model can be assessed by comparing the predicted compound 

concentrations with the original measurements. We found R-squared of larger than 0.6 for most 

of the halogenated compounds, as shown in Table S2. 

 

Table S2. Goodness-of-fit statistics for plot of observed concentrations versus PMF model 

estimates at number of factors (p) = 8. 

CFCs and HCFCs HFCs PFCs and SF6 Others 

Compounds  R2   p  valve Compounds  R2   p  valve Compounds R2  p  valve Compounds  R2   p  valve 

 
CFC-11     0.58   <0.01 

HCFC-22    0.78  <0.01 

HCFC-141b  0.74  <0.01 

HCFC-142b  0.75  <0.01 

 
HFC-23    0.70   <0.01 

HFC-134a  0.68   <0.01 

HFC-143a  0.27   <0.01 

HFC-32    0.88   <0.01 

HFC-125   0.86   <0.01 

 
CF4     0.67   <0.01 

C2F6     0.55   <0.01 

SF6      0.81   <0.01 

 
CCl4       0.76   <0.01 

CHCl3     0.77   <0.01 

CH2Cl2    0.95   <0.01 

CH3Cl     0.99   <0.01 

C2Cl4      0.99   <0.01 

COS       0.99   <0.01 

 

Description of PMF source factors 

 

The factor (D) is characterized by high percentages of CF4 (50 ± 9%) and COS (94 ± 24%). COS 

is mostly emitted from coal and biomass burning, and from various industrial processes 

including primary aluminum production (Blake et al., 2004). The aluminum production industry, 

particularly in China, is a well-known emission source of PFCs (Mühle et al., 2010). Although 

approximately 9 ± 4% of CCl4 enhancements are attributed to this factor, there are no known 

processes that could release CCl4 from this source.  

The source factor (E) is characterized by high percentages of HFCs (89 ± 1% of HFC-125, 78 ± 

1.3% of HFC-32, 52 ± 1.4% of HFC-143a, and 43 ± 5% of HFC-134a). These compounds are 

used in air conditioning and refrigeration applications and are predominantly produced in China 

(Fang et al., 2016). Their azeotropic blends, such as R-410A (50% HFC-32, 50% HFC-125 by 

weight), R404A (52% HFC-143a, 44% HFC-125 and 4% HFC-134a), R-407C (23% HFC-32, 

52% HFC-134a, 25% HFC-125) and R-507A (50% HFC-125 and 50% HFC-143a), are also 

increasingly used in China (Fang et al., 2016). The small percentages of contributions from these 

fourth and fifth sources to CCl4 enhancements are not statistically significant when considering 

the uncertainty range, but they may suggest that CCl4 is emitted to some extent by coal fired 

power plants located close to primary aluminum smelters and to production facilities for air-

conditioning systems and refrigerant units. It is notable that the sixth, seventh, and eighth factors 

do not contribute to observed CCl4 enhancements.  

The factor (F) shown in Fig. 4 in the main text, which is interpreted as arising from refrigerant 

consumption, explains approximately 80 ± 2% of the HCFC-22 and 32 ± 4% of observed HFC-

134a enhancements. HCFC-22 and HFC-134a are the most abundant species in the HCFC and 



HFC families, respectively, and show their increasing use in refrigeration units and air 

conditioning systems as CFCs replacements (Montzka et al., 2011).  

Many species contribute significantly to factor (G); in particular, 88 ± 20% of SF6, 41 ± 3% of 

C2F6, and 40 ± 13% of CF4. SF6 is widely used in the high-voltage electrical equipment sector as 

a gaseous dielectric medium and is also used as an etching/cleaning agent in the 

semiconductor/electronics sector (Forster et al., 2007). There has been a recent increase in the 

use of PFCs (CF4 and C2F6 foremost among them) for plasma etching and chamber cleaning in 

semiconductor/electronics manufacturing processes (Mühle et al., 2010). These large 

contributions of SF6 and PFCs suggest that this source factor is related to processes in the 

semiconductor/electronics industry.  

The last factor (H) shown in Fig. 4 is composed of 92 ± 4% HCFC-142b, the most widely used 

CFC replacement in foam blowing agents for extruded polystyrene boards (Derwent et al., 2007). 

The foam blowing factor also explains 23 ± 2% of CFC-11, indicating that this CFC is still 

emitted from remaining bank use or old building materials.  

 

Chlorination reactions for CCl4 production and use 

 

CH3Cl/ CCl4 plants (Sherry et al., 2018) 

CH3OH+HCl→CH3Cl+H2O 

CH3Cl+Cl2→CH2Cl2+HCl 

CH2Cl2+Cl2→CHCl3+HCl 

CHCl3+Cl2→CCl4+HCl 

 

Feedstock for production of chloromethanes and PCE 

CCl4+H2→CHCl3+HCl (e.g., Zang and Beard, 1998)  

3CCl4+CH4→4CHCl3 (e.g., Bae et al., 2007) 

2CCl4+2H2→C2Cl4+4HCl (Sherry et al., 2018) 

CCl4+ 4Cl2+CH4→C2Cl4+4HCl 

2CCl4+H2→C2Cl6+2HCl 

CCl4+HF→CCl3F[CFC-11] + HCl 
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