

Supplement of

Technical note: Comparison and interconversion of pH based on different standard states for aerosol acidity characterization

Shiguo Jia et al.

Correspondence to: Xuemei Wang (eciwxm@jnu.edu.cn) and Liming Yang (cheylm@nus.edu.sg)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

#	Location	Year	Particle size	Model	F/ R ^a	S/ MS ^b	Particulate species	Gases	рН	References
<u>Mo</u>	lality based pH									
1	Beijing, China	2014	PM2.5	E-AIM-IV	F&R	S	Na^+ , NH_4^+ , SO_4^{2-} , NO_3^- , Cl^- , K^+ (K^+ taken as Na^+)	NH ₃ , HNO ₃	3.5 to 5.3 for forward mode and -2 to 10 for reverse mode.	(Song et al., 2018)
				ISORROPIA-II	F&R	S&MS	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , NH ₄ ⁺ , SO ₄ ²⁻ , NO ₃ ⁻ , Cl ⁻			
2	Guangzhou, China	2013	PM2.5	E-AIM-III	F	S	Na ⁺ , NH ₄ ⁺ , SO ₄ ^{2–} , NO ₃ ⁻ , Cl ⁻	NH3, NO3, HCl	2.4 ± 0.3	(Jia et al., 2018)
3	Southeastern US	2013	PM1 and PM2.5	AIOMFAC	R	MS	$\rm NH_{4}^{+}$, $\rm SO_{4}^{2-}$, organic compounds ^c	_ g	1.4±1.2 (EQLB) 1.3±1.2 (CLLPS)	(Pye et al., 2018)
				AIOMFAC	R	MS	Na ⁺ , NH4 ⁺ , SO4 ²⁻ , NO3 ⁻ , Cl ⁻ , organic compounds ^c	_ g	1.5±2.0 (EQLB) 1.3±2.1 (CLLPS)	
				ISORROPIA-II	R	_ g	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , NH ₄ ⁺ , SO ₄ ²⁻ , NO ₃ ⁻ , Cl ⁻	_ g	0.7±2.5	
				ISORROPIA-II	F	_ g	$Na^+, K^+, Ca^{2+}, Mg^{2+}, NH_4^+, SO_4^{2-}, NO_3^-, Cl^-$	NH ₃	1.1±0.7	

Table S1. Summary of reported aerosol pH calculated by thermodynamic models

#	Location	Year	Particle	Model	F/R ^a	S/ MS ^b	Particulate species	Gases	рН	References
			size							
4	Beijing, China	2015& 2016	PM2.5	ISORROPIA	F	MS	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , NH ₄ ⁺ , SO ₄ ²⁻ , NO ₃ ⁻ , Cl ^{- d}	NH3, NO3, HCl	4.2 ± 0.5	(Liu et al., 2017)
5	Baltimore & Chicago, US	2011 to 2015	PM2.5	ISORROPIA-II	F	MS	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , NH ₄ ⁺ , SO ₄ ²⁻ , NO ₃ ⁻ , Cl ⁻	NH ₃	~1.0 to 2.7 °	(Battaglia et al., 2017)
6	Southeastern US	2010	PM1 & PM2.5	ISORROPIA-II	F	MS	Na ⁺ , K ⁺ , NH ₄ ⁺ , SO ₄ ²⁻ , NO ₃ ⁻ Cl ⁻	NH ₃ , NO ₃ , HCl	1.9±0.5 for PM1 and 2.7±0.3 for PM2.5	(Guo et al., 2017a)
7	Beijing & Xi'an, China	2013	PM1 & PM2.5	ISORROPIA-II	F	MS	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , NH ₄ ⁺ , SO ₄ ²⁻ , NO ₃ ⁻ Cl ⁻	NH ₃	4.5 for Beijing and 5 for Xi'an	(Guo et al., 2017b)
8	Atlanta, US	2016	${<}18~\mu m^{\rm f}$	ISORROPIA-II	F	_ g	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , NH ₄ ⁺ , SO ₄ ²⁻ , NO ₃ ⁻ Cl ⁻	NH3, NO3, HCl ^h	1 to 2 for fine particle;	(Fang et al., 2017)
									~6 to ~7 for coarse particle ^e	
9	Finokalia, Greece	2012	PM1 and PM10	ISORROPIA-II	F	MS	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , NH ₄ ⁺ , SO ₄ ²⁻ , NO ₃ ⁻ , Cl ^{- d}	NH ₃ ⁱ	0.5 to 2.8	(Bougiatioti et al., 2016)
10	Northeastern US	2015	PM1	ISORROPIA-II	F	MS	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , NH ₄ ⁺ , SO ₄ ²⁻ , NO ₃ ⁻ , Cl ⁻	NH ₃ ^h	0.77 ± 0.96	(Guo et al., 2016)
11	Southeastern US	2012& 2013	PM1 and PM 2.5	ISORROPIA-II	F	MS	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , NH4 ⁺ , SO4 ²⁻ , NO3 ⁻ , Cl ^{- d}	NH ₃	0.94 ± 0.59	(Guo et al., 2015)
12	Southeastern US	2013	PM1	ISORROPIA-II	F	MS	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , NH ₄ ⁺ , SO ₄ ²⁻ , NO ₃ ⁻ , Cl ⁻	NH ₃	0-2	(Xu et al., 2015)

#	Location	Year	Particle	Model	F/R ^a	S/ MS ^b	Particulate species	Gases	рН	References
			size							
Mo	larity based pH	L								
13	Beijing, China	2013	PM _{2.1}	E-AIM-IV	R	_ g	Na ⁺ , NH4 ⁺ , SO4 ²⁻ , NO ₃ ⁻ , Cl ⁻	_ g	1.1	(Tian et al., 2018)
14	Chengdu, China	2011	0.18 to 1.8 μm	E-AIM-II	R	_ g	SO ₄ ²⁻ , NH ₄ ⁺ , NO ₃ ⁻	_ g	-1.11	(Cheng et al., 2015)
15	Singapore	2011	PM2.5	E-AIM-III	R	_ g	Na ⁺ , NH ₄ ⁺ , SO ₄ ^{2–} , NO ₃ ⁻ , Cl ⁻	_ g	0.48 & 0.72 (day & night)	(Behera et al., 2013)
16	Jinan, China	2006 & 2007	PM ₁	E-AIM-II	R	_ g	NH4 ⁺ , SO4 ²⁻ , NO3 ⁻	_ g	-1	(Cheng et al., 2011)
17	Hong Kong	2008 &2009	PM2.5	E-AIM-III	R	_ g	Na ⁺ , NH ₄ ⁺ , SO ₄ ²⁻ , NO ₃ ⁻ , Cl ⁻	_ g	-0.45 to 0.59	(Xue et al., 2011)
18	Beijing, China	2005	PM2.5	AIM-II	R	_ g	NH4 ⁺ , SO4 ²⁻ , NO3 ⁻	_ g	-0.52 ± 0.62	(Pathak et al., 2009)
	Shanghai, China	2005			R				-0.77 ± 0.67	
	Lanzhou, China	2006,			R				-0.38 ± 0.64	
	Guangzhou, China	2004			R				0.61±0.71	
19	Hong Kong	2001	PM10	AIM-II	R	_ g	NH4 ⁺ , SO4 ²⁻ , NO3 ⁻	_ g	0.25	(Pathak et al., 2004)

#	Location	Year	Particle	Model	F/R ^a	S/ MS ^b	Particulate species	Gases	рН	References
			size				-		-	
Ma	le fraction base	<u>d pH</u>								
20	Southeastern US	1999 to 2014	PM2.5	ISORROPIA-II	F	_ g	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , NH ₄ ⁺ , SO ₄ ²⁻ , NO ₃ ⁻ , Cl ⁻	NH3 ⁱ	0-2	(Weber et al., 2016)
21	Mexico City, US	2006	PM2.5	ISORROPIA-II	R	MS	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , NH ₄ ⁺ , SO ₄ ²⁻ , NO ₃ ⁻ , Cl ⁻	_ g	1.98	(Hennigan et al., 2015)
				E-AIM-II and IV	R	S	Na^+ , $NH4^+$, $SO4^{2-}$, NO_3^- , and Cl^- for AIM-IV and $NH4^+$, $SO4^{2-}$ and NO_3^- for AIM-II	_ g	2.36	
				ISORROPIA-II,	F	MS	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , NH ₄ ⁺ , SO ₄ ²⁻ , NO ₃ ⁻ , Cl ⁻	NH ₃ , HNO ₃	3.31	
				E-AIM-II and IV	F	S	Na^+ , NH_4^+ , SO_4^{2-} , NO_3^- , Cl^- for AIM-IV and NH_4^+ , SO_4^{2-} , NO_3^- for AIM-II	NH ₃ and HNO ₃	3.24	
22	Po Valley, Italy	2009	PM2.5	E-AIM-IV	R	_ g	Na ⁺ , NH4 ⁺ , SO4 ²⁻ , NO ₃ ⁻ , Cl	_ g	2.7 to 3.8	(Squizzato et al., 2013)
23	Beijing, China	2005& 2006	PM _{2.5}	E-AIM-II	R	_ g	$\rm NH_4^+$, $\rm SO_4^{2-}$ and $\rm NO_3^{-}$	_ g	1.2 ± 1.1	(He et al., 2012)
24	Pittsburgh, US	2002	PM1	E-AIM-II	R	_ g	SO4 ²⁻ , NH4 ⁺ , NO3 ⁻	_ g	~0.5 to 5 $^{\rm f}$	(Zhang et al., 2007)

#	Location	Year	Particle	Model	F/ R ^a	S/ MS ^b	Particulate species	Gases	рН	References
			size							
<u>pH</u>	not specified									
25	Beijing, China	2014& 2015	PM2.5	ISORROPIA-II	F	S	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , NH ₄ ⁺ , SO ₄ ²⁻ , NO ₃ ⁻ , Cl ⁻	NH ₃ ^j	7.6 ± 0.1	(He et al., 2018)
26	Beijing , China	2014	PM2.5	ISORROPIA-II	F	MS	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , NH4 ⁺ , SO4 ²⁻ , NO3 ⁻ , Cl ⁻	_ g	4.1	(Tan et al., 2018)
27	Tianjin , China	2014& 2015	PM2.5	ISORROPIA-II	F	MS	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , NH4 ⁺ , SO4 ²⁻ , NO3 ⁻ , Cl ⁻	NH ₃	4.9 ± 0.4	(Shi et al., 2017)
28	Beijing, China	2015	PM1	ISORROPIA-II	F	S ^k	NH ₃ , NH ₄ +, SO ₄ ²⁻ , NO ₃ ⁻ , Cl ⁻	NH ₃	7.6 ± 0.0	(Wang et al., 2016)
	Xi'an, China	2012	PM2.5	ISORROPIA-II	F	S ^k	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , NH ₄ ⁺ , SO ₄ ²⁻ , NO ₃ ⁻ , Cl ⁻		7.0 ± 1.3	
						MS			4.4 ± 0.6	
29	Beijing, China	2013	PM2.5	ISORROPIA-II	F	MS	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , NH ₄ ⁺ , SO ₄ ²⁻ , NO ₃ ⁻ , Cl ⁻ e	NH3 ^j	5.4	(Cheng et al., 2016)
					R			_ g	6.2	
30	São Paulo, Brazil	2012	${<}18~\mu m^{\rm f}$	E-AIM	R	_ g	_ g	_ g	4.1 to 5.4 °	(Vieira-Filho et al., 2016)
31	Hong Kong	1996 to 1998	PM1	AIM-II	R	_ g	NH4 ⁺ , SO4 ²⁻ , NO3 ⁻	_ g	-2.5 to 1.5	(Yao et al., 2007)

#	Location	Year	Particle	Model	F/ R ^a	S/ MS ^b	Particulate species	Gases	рН	References
			size							
32	Hong Kong	2000	PM2.5	AIM-II	R	_ g	NH4 ⁺ , SO4 ²⁻ , NO3 ⁻	_ g	-0.4	(Yao et al., 2006)
				SCAPE2	F	_ g	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , NH4 ⁺ , SO4 ²⁻ , NO3 ⁻ , Cl ⁻	NH3, NO3, HCl	2.3	
				ISORROPIA-I	F	_ g	Na ⁺ , NH ₄ ⁺ , SO ₄ ²⁻ , NO ₃ ⁻ , Cl ⁻	NH3, NO3, HCl	3.9	
				SCAPE2	F	_ g	Na ⁺ , NH ₄ ⁺ , SO ₄ ²⁻ , NO ₃ ⁻ , Cl ⁻	NH3, NO3, HCl	1.9	

Note: ^a *F* means forward and *R* means reverse. ^b *S* means stable and *MS* means metastable. ^c Organic compounds were considered either in complete liquid–liquid phase separation (CLLPS) or equilibrium (EQLB) mode; Ca²⁺, K⁺ and Mg²⁺ were taken as Na⁺. ^d Aerosol water content associated with organic compounds considered; ^e Data extracted from figure; ^f Size segregated samples; ^g - means not specified; ^h Assuming NH₄⁺ (total) = NH₃ (gas phase) +NH₄⁺ (particle phase); ⁱ Estimated based on iteration; ^j NH₃ estimated based on empirical equation; ^k Obtained from Song et al. (2018).

Parameter	E-AIM-IV	ISORROPIA-II	AIOMFAC	
Molar fraction				
x_H	output	Eq. (7)	output	
f_H	output	1 ^a	Eq. (4)	
Molality				
m_H	output	output	output	
γ_H	Eq. (4)	1 a	output	
Molarity				
\mathcal{C}_H	Eq. (8) ^b	Eq. (8) ^b	Eq. (8) ^b	
\mathcal{Y}_{H}	Eq. (6)	1 ^a	Eq. (6)	

Table S2. A summary of estimation methods of parameters for pH calculation based on different standard states.

Note: ^a Activity coefficient is assumed to be 1; ^b the density of aerosol solution is based on the result from E-AIM-IV.

Figure S1. Comparison of the rank of pH_x and pH_m

Reference

- Battaglia, M. A., Douglas, S., and Hennigan, C. J.: Effect of the Urban Heat Island on Aerosol pH, Environ. Sci. Technol., 51, 13095-13103, 10.1021/acs.est.7b02786, 2017. Behera, S. N., Betha, R., Liu, P., and Balasubramanian, R.: A study of diurnal variations of PM2.5 acidity and related chemical species using a new thermodynamic
- equilibrium model, Sci. Total Environ., 452–453, 286-295, http://dx.doi.org/10.1016/j.scitotenv.2013.02.062, 2013.
- Bougiatioti, A., Nikolaou, P., Stavroulas, I., Kouvarakis, G., Weber, R., Nenes, A., Kanakidou, M., and Mihalopoulos, N.: Particle water and pH in the eastern Mediterranean: source variability and implications for nutrient availability, Atmos. Chem. Phys., 16, 4579-4591, 10.5194/acp-16-4579-2016, 2016.
- Cheng, C., Wang, G., Meng, J., Wang, Q., Cao, J., Li, J., and Wang, J.: Size-resolved airborne particulate oxalic and related secondary organic aerosol species in the urban atmosphere of Chengdu, China, Atmos. Res., 161-162, 134-142, https://doi.org/10.1016/j.atmosres.2015.04.010, 2015.
- Cheng, S.-h., Yang, L.-x., Zhou, X.-h., Xue, L.-k., Gao, X.-m., Zhou, Y., and Wang, W.-x.: Size-fractionated water-soluble ions, situ pH and water content in aerosol on hazy days and the influences on visibility impairment in Jinan, China, Atmos. Environ., 45, 4631-4640, https://doi.org/10.1016/j.atmosenv.2011.05.057, 2011.
- Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael, G., Pöschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China, Science Advances, 2, 10.1126/sciadv.1601530, 2016.
- Fang, T., Guo, H., Zeng, L., Verma, V., Nenes, A., and Weber, R. J.: Highly Acidic Ambient Particles, Soluble Metals, and Oxidative Potential: A Link between Sulfate and Aerosol Toxicity, Environ. Sci. Technol., 51, 2611-2620, 10.1021/acs.est.6b06151, 2017.
- Guo, H., Xu, L., Bougiatioti, A., Cerully, K. M., Capps, S. L., Hite Jr, J. R., Carlton, A. G., Lee, S. H., Bergin, M. H., Ng, N. L., Nenes, A., and Weber, R. J.: Fine-particle water and pH in the southeastern United States, Atmos. Chem. Phys., 15, 5211-5228, 10.5194/acp-15-5211-2015, 2015.
- Guo, H., P., S. A., Pedro, C. J., C., S. J., D., L. H. F., E., D. J., L., J. J., A., T. J., S., B. S., Athanasios, N., and J., W. R.: Fine particle pH and the partitioning of nitric acid during winter in the northeastern United States, J. Geophys. Res.: Atmos., 121, 10,355-310,376, doi:10.1002/2016JD025311, 2016.
- Guo, H., Liu, J., Froyd, K. D., Roberts, J. M., Veres, P. R., Hayes, P. L., Jimenez, J. L., Nenes, A., and Weber, R. J.: Fine particle pH and gas-particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign, Atmos. Chem. Phys., 17, 5703-5719, 10.5194/acp-17-5703-2017, 2017a.
- Guo, H., Weber, R. J., and Nenes, A.: High levels of ammonia do not raise fine particle pH sufficiently to yield nitrogen oxide-dominated sulfate production, Scientific Reports, 7, 12109, 10.1038/s41598-017-11704-0, 2017b.
- He, K., Zhao, Q., Ma, Y., Duan, F., Yang, F., Shi, Z., and Chen, G.: Spatial and seasonal variability of PM_{2.5} acidity at two Chinese megacities: insights into the formation of secondary inorganic aerosols, Atmos. Chem. Phys., 12, 1377-1395, 10.5194/acp-12-1377-2012, 2012.
- He, P., Alexander, B., Geng, L., Chi, X., Fan, S., Zhan, H., Kang, H., Zheng, G., Cheng, Y., Su, H., Liu, C., and Xie, Z.: Isotopic constraints on heterogeneous sulfate production in Beijing haze, Atmos. Chem. Phys., 18, 5515-5528, 10.5194/acp-18-5515-2018, 2018.
- Hennigan, C. J., Izumi, J., Sullivan, A. P., Weber, R. J., and Nenes, A.: A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles, Atmos. Chem. Phys., 15, 2775-2790, 10.5194/acp-15-2775-2015, 2015.
- Jia, S., Sarkar, S., Zhang, Q., Wang, X., Wu, L., Chen, W., Huang, M., Zhou, S., Zhang, J., Yuan, L., and Yang, L.: Characterization of diurnal variations of PM2.5 acidity using an open thermodynamic system: A case study of Guangzhou, China, Chemosphere, 202, 677-685, https://doi.org/10.1016/j.chemosphere.2018.03.127, 2018.
- Liu, M., Yu, S., Tian, Z., Zhenying, X., Caiqing, Y., Mei, Z., Zhijun, W., Min, H., Yusheng, W., and Tong, Z.: Fine particle pH during severe haze episodes in northern China, Geophys. Res. Lett., 44, 5213-5221, doi:10.1002/2017GL073210, 2017.
- Pathak, R. K., Yao, X., and Chan, C. K.: Sampling Artifacts of Acidity and Ionic Species in PM2.5, Environ. Sci. Technol., 38, 254-259, 10.1021/es0342244, 2004.
- Pathak, R. K., Wu, W. S., and Wang, T.: Summertime PM_{2.5} ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere, Atmos. Chem. Phys., 9, 1711-1722, 10.5194/acp-9-1711-2009, 2009.

- Pye, H. O. T., Zuend, A., Fry, J. L., Isaacman-VanWertz, G., Capps, S. L., Appel, K. W., Foroutan, H., Xu, L., Ng, N. L., and Goldstein, A. H.: Coupling of organic and inorganic aerosol systems and the effect on gas-particle partitioning in the southeastern US, Atmos. Chem. Phys., 18, 357-370, 10.5194/acp-18-357-2018, 2018.
- Shi, G., Xu, J., Peng, X., Xiao, Z., Chen, K., Tian, Y., Guan, X., Feng, Y., Yu, H., Nenes, A., and Russell, A. G.: pH of Aerosols in a Polluted Atmosphere: Source Contributions to Highly Acidic Aerosol, Environ. Sci. Technol., 51, 4289-4296, 10.1021/acs.est.6b05736, 2017.
- Song, S., Gao, M., Xu, W., Shao, J., Shi, G., Wang, S., Wang, Y., Sun, Y., and McElroy, M. B.: Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models, Atmos. Chem. Phys., 18, 7423-7438, 10.5194/acp-18-7423-2018, 2018.
- Squizzato, S., Masiol, M., Brunelli, A., Pistollato, S., Tarabotti, E., Rampazzo, G., and Pavoni, B.: Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy), Atmos. Chem. Phys., 13, 1927-1939, 10.5194/acp-13-1927-2013, 2013.
- Tan, T., Hu, M., Li, M., Guo, Q., Wu, Y., Fang, X., Gu, F., Wang, Y., and Wu, Z.: New insight into PM2.5 pollution patterns in Beijing based on one-year measurement of chemical compositions, Sci. Total Environ., 621, 734-743, https://doi.org/10.1016/j.scitotenv.2017.11.208, 2018.
- Tian, S., Pan, Y., and Wang, Y.: Ion balance and acidity of size-segregated particles during haze episodes in urban Beijing, Atmos. Res., 201, 159-167, https://doi.org/10.1016/j.atmosres.2017.10.016, 2018.
- Vieira-Filho, M., Pedrotti, J. J., and Fornaro, A.: Water-soluble ions species of size-resolved aerosols: Implications for the atmospheric acidity in São Paulo megacity, Brazil, Atmos. Res., 181, 281-287, https://doi.org/10.1016/j.atmosres.2016.07.006, 2016.
- Weber, R. J., Guo, H., Russell, A. G., and Nenes, A.: High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years, Nature Geosci, 9, 282-285, 10.1038/ngeo2665, 2016.
- Xu, L., Guo, H., Boyd, C. M., Klein, M., Bougiatioti, A., Cerully, K. M., Hite, J. R., Isaacman-VanWertz, G., Kreisberg, N. M., Knote, C., Olson, K., Koss, A., Goldstein, A. H., Hering, S. V., de Gouw, J., Baumann, K., Lee, S.-H., Nenes, A., Weber, R. J., and Ng, N. L.: Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States, Proceedings of the National Academy of Sciences, 112, 37-42, 10.1073/pnas.1417609112, 2015.
- Xue, J., Lau, A. K. H., and Yu, J. Z.: A study of acidity on PM2.5 in Hong Kong using online ionic chemical composition measurements, Atmos. Environ., 45, 7081-7088, j.atmosenv.2011.09.040, 2011.
- Yao, X., Yan Ling, T., Fang, M., and Chan, C. K.: Comparison of thermodynamic predictions for in situ pH in PM2.5, Atmos. Environ., 40, 2835-2844, j.atmosenv.2006.01.006, 2006.
- Yao, X., Ling, T. Y., Fang, M., and Chan, C. K.: Size dependence of in situ pH in submicron atmospheric particles in Hong Kong, Atmos. Environ., 41, 382-393, j.atmosenv.2006.07.037, 2007.
- Zhang, Q., Jimenez, J. L., Worsnop, D. R., and Canagaratna, M.: A Case Study of Urban Particle Acidity and Its Influence on Secondary Organic Aerosol, Environ. Sci. Technol., 41, 3213-3219, 10.1021/es061812j, 2007.