

Supplement of

Spatial-temporal patterns of inorganic nitrogen air concentrations and deposition in eastern China

Wen Xu et al.

Correspondence to: Xuejun Liu (liu310@cau.edu.cn) and Zhaozhong Feng (fzz@rcees.ac.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Sect. S1. Information on measuring methods, sample replications and collection

The DELTA system comprises contains a sampling train consisted of two potassium carbonate/glycerol-coated denuders in series for trapping acidic trace gases (HNO₃ SO₂ and HCl), followed by two citric acid-coated borosilicate glass denudes for NH₃ and finally by two sets of cellulose filter papers in a 2-stage filter pack at the end of the sampling train. These filters were impregnated with the same alkaline solution as the denuders to capture NH₄⁺, and with the same acid solution for the collection of NO₃⁻, SO₄²⁻ and Cl⁻. The empirically determined effective size cut-off for particle sampling is of the order of 4.5 μ m (E. Nemitz, personal communication). The air was drawn through the sampling train at a rate of 0.2-0.4 L min⁻¹ and directly into the first denuder with no inlet line to avoid sampling losses. The total sampled air volume of the DELTA system was recorded by the gas meter which was checked every month for data reading, performance and maintenance.

The Gradko passive sampler consists of a 71.0 mm long \times 11.0 mm internal diameter acrylic tube with coloured and white thermoplastic rubber caps. Gaseous NO₂ is absorbed into a 20% triethanolamine/deionised-water solution coated onto two stainless steel wire meshes within the coloured cap. A constant gas diffusion coefficient based on an assumption of 25 °C was used for the calculation of NO₂ concentration, in accordance with the Gradko introduction manual and previous studies (Luo et al., 2013; Shen et al., 2013).

The sampling trains and tubes for field measurements were prepared and measured in the analytical laboratory at China Agricultural University (CAU), Beijing. Each batch of new trains and field (travel) blanks was sealed in individual airtight storage bags and sent monthly to monitoring sites to replace the old ones. After sampling, the blank and exposed trains and tubes were sealed in individual airtight storage bags and sent back to the laboratory, being stored at 4 °C prior to analysis.

Sect. S2. The information on the evaluation of GEOS-Chem model

To evaluate the model simulations, we compared modeled annual wet deposition fluxes of NH_4^+ -N and NO_3^- -N for the year 2010 with their respective observed fluxes (5-year averages). The comparison results are shown in Fig. S12 in the Supplement. The model can partly capture the spatial variations of measured bulk deposition fluxes of NH_4^+ and NO_3^- with correlation coefficients of 0.6 and 0.4, respectively. Compared with measurements, model results were 23% higher for bulk NH_4^+ deposition, and 23%

lower for bulk NO_3^- -N deposition. The model biases were reasonable since simulated N deposition fluxes were for 2010 whereas the observations cover a period from 2000 to 2015. Both NH₃ and NO_x emissions change over the time periods, resulting in difference in subsequence N deposition. Besides emissions, inter-annual variations of meteorological conditions especially precipitation can also affect wet deposition fluxes. So model simulated wet deposition fluxes show larger biases. In addition, the model biases also reflect the incapability of the coarse model resolution (about 50 km) to distinguish different land use types (e.g., the forest, rural and urban sites) at such regional scale. Future work is needed to conduct high resolution simulation using regional models combined with improved N_r emission inventories.

References

- Luo, X. S., Liu, P., Tang, A. H., Liu, J. Y., Zong, X. Y., Zhang, Q., Kou, C. L., Zhang,
 L. J., Fowler, D., Fangmeier, A., Christie, P., Zhang, F. S., and Liu, X. J.: An evaluation of atmospheric Nr pollution and deposition in North China after the Beijing Olympics, Atmos. Environ., 74, 209–216, https://doi.org/10.1016/j.atmosenv.2013.03.054, 2013.
- Shen, J. L., Li, Y., Liu, X.J., Luo, X. S., Tang, A. H., Zhang, Y. Z., and Wu, J. S.: Atmospheric dry and wet nitrogen deposition on three contrasting land use types of an agricultural catchment in subtropical central China, Atmos. Environ., 67, 415–424, <u>https://doi.org/10.1016/j.atmosenv.2012.10.068</u>, 2013.

Figure captions

Figure S1. Annual mean concentrations of (a) NH_3 ; (b) NO_2 ; (c) HNO_3 ; (d) pNH_4^+ ; (e) pNO_3^- ; and (f) total N_r : sum of all measured N_r in air at twenty-seven sites. Trend analysis (annual concentration vs. time) was conducted at each site. The slope of the Theil regression and *p* value for each site are labeled in black and yellow. U, R, and B denote urban, rural, and background sites, respectively.

Figure S2. Annual volume-weighted mean concentrations of $NH_4^+(\mathbf{a})$; $NO_3^-(\mathbf{b})$ and total inorganic N (TIN): sum of NH_4^+ and $NO_3^-(\mathbf{c})$ in precipitation at twenty-seven sites. Trend analysis (annual concentration vs. time) was conducted at each site. The slope of the Theil regression and *p* value for each site are labeled in black and red. U, R, and B denote urban, rural, and background sites, respectively.

Figure S3. Annual dry deposition fluxes of (**a**) NH_3 ; (**b**) NO_2 ; (**c**) HNO_3 ; (**d**) pNH_4^+ ; (**e**) pNO_3^- ; and (**f**) total N_r : sum of all measured N_r in air at twenty-seven sites. Trend analysis (annual concentration vs. time) was conducted at each site. The slope of the Theil regression and *p* value for each site are labeled in black and green. U, R, and B denote urban, rural, and background sites, respectively.

Figure S4. Annual wet/bulk deposition of NH_4^+ (**a**); NO_3^- (**b**) and total inorganic N (TIN): sum of NH_4^+ and NO_3^- (**c**) in precipitation at twenty-seven sites. Trend analysis (annual concentration vs. time) was conducted at each site. The slope of the Theil regression and *p* value for each site are labeled in black and red. U, R, and B denote urban, rural, and background sites, respectively.

Figure S5. Total (dry plus wet/bulk) deposition fluxes at the three land use types in eastern China and its northern and southern regions. The number of sixteen selected sites with the same land use type in each region can be found in Figure S6 and Table S1. The error bars are the standard errors of means, and values without same letters on the bars denote significantly difference between the land use types at p<0.05.

Figure S6. Annual total (dry plus wet/bulk) deposition fluxes during 2011-2105 period at different observation scales: the annual deposition fluxes at sixteen sites (a), and averaged deposition fluxes during the 2011-2012 and 2013-2015 periods for three land use types (b). The number of sixteen selected sites with the same land use type in each region can be found in Table S1. The error bars are the standard errors of means. Trend analysis (annual concentration vs. time) was conducted at each site. The slope

of the Theil regression and p value for each site are labeled in black and blue. U, R, and B denote urban, rural, and background sites, respectively.

Figure S7. Correlations between NNDMN_NH₃ concentration and IASI_NH₃ columns at twenty-seven sites. Sites with non-significant correlation were marked in red.

Figure S8. Correlations between NNDMN_NO₂ measurements and OMI_NO₂ columns at twenty-seven sites. Sites with non-significant correlation were marked in green.

Figure S9. HYSPLIT back-trajectories analysis on the path of air parcels (NO₂, particulate NH_4^+ and particulate NO_3^-) prior to arrival at five selected sites (Nanjing, Baiyun, Taojing, Ziyang and Huinong) in southern region of eastern China during different seasons (January-Winter, April-Spring, July-Summer, October-Autumn).

Figure S10. Seasonal mean concentrations of reduced (the sum of NH₃ and pNH₄⁺) and oxidized (the sum of HNO₃, NO₂ and pNO₃⁻) N in air at different land use types in eastern China and its northern and southern regions. The number of sites with the same land use type in each region can be found in Table S1. The error bars are the standard errors of means, and values without same letters on the bars denote significantly difference between the seasons at p<0.05. U, R, and B denote urban, rural, and background sites, respectively.

Figure S11. Seasonal mean precipitation amount at different land use types in eastern China and its northern and southern regions. The number of sites with the same land use type in each region can be found in Table S1. The error bars are the standard errors of means, and values without same letters on the bars denote significantly difference between the seasons at p<0.05. U, R, and B denote urban, rural, and background sites, respectively.

Figure S12. Seasonal dry deposition velocities of NH₃, NO₂, HNO₃, pNH₄⁺ and/or pNO₃⁻ at different land use types in eastern China and its northern and southern regions. The number of sites with the same land use type in each region can be found in Table S1. The error bars are the standard errors of means, and values without same letters on the bars denote significantly difference between the seasons at p<0.05. U, R, and B denote urban, rural, and background sites, respectively.

Figure S13. Comparison of model simulated NH_4^+ wet deposition, NO_3^- wet deposition for 2010 with surface observations (5-year averages) at twenty-seven sites.

The background colors show the model results and the overplotted dots show the observations. The correlation coefficients (r) and normalized mean bias $(NMB=\sum_{i=1}^{N}(M_i - O_i) / \sum_{i=1}^{N} O_i)$ between N observed and corresponding modeled values are shown inset.

Figure S14. Annual variations in precipitation amounts at sixteen selected sites.

Figure S4

Figure S6

NNDMN_monthly concentrations of gaseous NH_3 (µg N m⁻³)

NNDMN_monthly concentrations of gaseous NO₂ ($\mu g \ N \ m^{-3}$)

Cito nomo	Land use	Decion	Coordinata	Monitoring period			
Site name	type	Region	Coordinate	Dry deposition	Wet deposition		
China Agricultural							
University (CAU)	Urban	Northern region	116.28 ° E, 40.02 ° N	Jan. 2011-Dec. 2015	Jan. 2011-Dec. 2015		
Zhengzhou (ZZ)	Urban	Northern region	113.63 ° E, 34.75 ° N	Jan. 2011-Dec. 2015	Jan. 2011-Dec. 2011		
Dalian (DL)	Urban	Northern region	121.58 ° E, 38.92 ° N	Jan. 2011-Dec. 2015	Jan. 2011-Dec. 2015		
Shangzhuang (SZ)	Rural	Northern region	116.20 ° E, 40.11 ° N	Jan. 2011-Dec. 2015	Jan. 2011-Dec. 2015		
Quzhou (QZ)	Rural	Northern region	114.94 ° E, 36.78 ° N	Jan. 2011-Dec. 2015	Jan. 2011-Dec. 2015		
Yangqu (YQ)	Rural	Northern region	112.89 ° E, 38.05 ° N	Jan. 2011-Dec. 2015	Jan. 2011-Dec. 2015		
Zhumadian (ZMD)	Rural	Northern region	114.05 ° E, 33.02 ° N	Jan. 2011-Dec. 2015	Jan. 2011-Dec. 2011 Jan. 2014-Dec. 2015		
Yanglin (YL)	Rural	Northern region	108.01 ° E, 34.31 ° N	Jan. 2011-Dec. 2015	Jan. 2011-Dec. 2015		
Yucheng (YC)	Rural	Northern region	116.63 ° E, 36.94 ° N	Jan. 2013-Dec. 2015	Jan. 2013-Dec. 2015		
Gongzhuling (GZL)	Rural	Northern region	124.83 ° E, 43.53 ° N	Jan. 2011-Dec. 2015	Jan. 2011-Dec. 2015		
Lishu (LS)	Rural	Northern region	124.17 ° E, 43.36 ° N	Jan. 2011-Dec. 2015	Jan. 2011-Dec. 2015		
Lingshandao (LSD)	Background	Northern region	120.18 ° E, 35.77 ° N	Feb. 2011-Dec. 2015	Feb. 2011-Dec. 2015		
Changdao (CD)	Background	Northern region	120.75 ° E, 37.93 ° N	Jan. 2011-Dec. 2015	Jan. 2011-Dec. 2015		
Nanjing (NI)	Urbon	Southarn ragion	119 95 ° E 21 9/ ° N	Jan. 2011-Dec. 2011	Jan. 2011-Dec. 2011		
Inalighing (INJ)	UIDall	Southern region	110.03 E, 31.04 N	Jan. 2015-Dec. 2015	Jan. 2015-Dec. 2015		
Baiyun (BY)	Urban	Southern region	113.27 ° E, 23.16 ° N	Jan. 2011-Dec. 2015	Jan. 2011-Dec. 2015		
Wenjiang (WJ)	Urban	Southern region	103.84 ° E, 30.55 ° N	Jan. 2011-Dec. 2015	Jan. 2011-Dec. 2015		
Wuxue (WX)	Rural	Southern region	115.79 ° E, 30.01 ° N	Jan. 2012-Dec. 2015	Jan. 2012-Dec. 2015		
Taojing (TJ)	Rural	Southern region	111.97 ° E, 28.61 ° N	Jan. 2011-Dec. 2015	Jan. 2011-Dec. 2015		
Fengyang (FYA)	Rural	Southern region	117.56 ° E, 32.88 ° N	Feb. 2013-Dec. 2015	Feb. 2014-Dec. 2015		

Table S1.	ary of the twenty-seven	monitoring sites location	s and periods.

Zhanjiang (ZZ)	Rural	Southern region	110.33 ° E, 21.26 ° N	Jan. 2011-Dec. 2015	Jan. 2013-Dec. 2015
Fuzhou (FZ)	Rural	Southern region	119.36 ° E, 26.17 ° N	Jan. 2011-Dec. 2015	Jan. 2011-Dec. 2015
Fenghua (FH)	Rural	Southern region	121.53 ° E, 29.61 ° N	Jan. 2011-Dec. 2015	Jan. 2011-Dec. 2015
Ziyang (ZY)	Rural	Southern region	104.63 ° E, 30.13 ° N	Jan. 2011-Dec. 2015	Jan. 2011-Dec. 2015
Yanting (YT)	Rural	Southern region	105.47 ° E, 31.28 ° N	Jan. 2012-Dec. 2013 Jan. 2015-Dec. 2015	Jan. 2012-Dec. 2013
Jiangjin (JJ)	Rural	Southern region	106.18 ° E, 29.06 ° N	Jan. 2013-Dec. 2015	Jan. 2013-Dec. 2015
Huinong (HN)	Background	Southern region	113.41 ° E, 28.52 ° N	Jan. 2011-Dec. 2015	Jan. 2011-Dec. 2014
Xishan (XS)	Background	Southern region	113.31 ° E, 28.61 ° N	Jan. 2011-Dec. 2015	Jan. 2011-Dec. 2015

Sito	1	NH ₃ (µg	N m ⁻³)		1	NO ₂ (µg	N m ⁻³)		H	NO ₃ (με	g N m ⁻³	⁵)	p	$\mathrm{NH_4^+}(\mathrm{\mu})$	g N m ⁻³)		pl	NO ₃ ⁻ (μg	N m ⁻³))
Sile	Min	Max	Avg	Ν	Min	Max	Avg	N ^a	Min	Max	Avg	Ν	Min	Max	Avg	Ν	Min	Max	Avg	Ν
CAU	2.86	22.43	11.21	60	6.35	24.03	12.87	60	0.36	4.93	1.98	60	1.96	19.40	8.72	60	1.01	13.38	5.34	60
ZZ	2.75	18.59	9.76	60	7.74	24.75	13.66	60	0.07	4.30	1.89	60	1.35	33.10	12.53	60	0.44	32.06	7.40	60
DL	0.27	8.53	3.40	60	2.54	21.04	8.60	60	0.10	2.58	1.00	60	0.65	9.54	4.45	60	0.01	7.16	2.53	60
SZ	1.00	21.23	9.44	60	3.96	16.27	8.16	60	0.29	3.50	1.54	60	1.48	15.95	6.95	60	1.00	9.43	3.53	60
QZ	1.36	34.80	15.43	60	3.23	19.48	7.97	60	0.14	4.40	1.59	60	1.89	57.20	19.68	60	0.22	20.78	6.06	60
YQ	0.58	13.81	4.88	60	3.62	13.61	6.98	60	0.04	2.73	1.18	60	0.99	10.69	5.11	60	0.21	7.26	2.72	60
ZMD	4.73	27.30	10.31	60	5.65	14.47	9.36	60	0.22	4.09	1.90	60	0.92	21.87	9.52	60	0.47	14.50	4.75	60
YL	1.91	19.77	8.30	60	4.30	17.64	7.55	60	0.14	3.73	1.35	60	0.59	21.55	5.56	60	1.07	16.22	4.29	60
YC	4.39	25.36	11.88	36	5.02	16.78	9.74	36	0.10	3.82	1.52	36	4.70	46.53	13.66	36	1.00	11.81	4.50	36
GZL	0.48	18.62	6.35	60	1.79	14.52	5.29	60	0.21	2.41	1.09	60	0.40	18.14	4.97	60	0.51	5.52	2.07	60
LS	1.42	38.89	11.79	60	0.55	9.45	4.16	60	0.22	3.27	1.00	60	1.61	26.67	7.51	60	0.29	5.79	1.93	60
LSD	0.30	16.02	5.30	59	1.32	16.97	5.31	59	0.08	1.69	0.92	59	0.39	20.69	5.34	59	0.21	6.15	2.05	59
CD	0.30	10.55	4.04	60	3.40	12.37	5.97	60	0.50	2.92	1.13	60	0.54	12.97	4.91	60	0.97	6.55	2.74	60
NJ	1.57	20.06	6.02	24	5.89	15.38	9.73	24	0.64	3.65	1.80	24	0.56	9.28	5.87	24	1.13	5.64	3.17	24
BY	1.13	17.22	7.86	60	4.75	14.97	8.86	60	0.16	2.58	1.38	60	0.60	8.57	3.81	60	0.73	4.62	2.62	60
WJ	3.53	39.57	12.47	60	2.52	29.06	7.58	60	0.09	3.27	1.70	60	2.00	32.21	14.09	60	1.09	11.50	3.04	60
WX	1.39	17.12	5.91	48	2.82	15.93	6.81	48	0.32	3.24	1.27	48	0.70	12.42	5.22	48	0.10	8.55	1.98	48
TJ	0.16	8.70	3.31	60	1.00	6.85	2.91	60	0.14	1.71	0.82	60	0.24	9.03	4.19	60	0.03	4.41	1.32	60
FYA	1.73	20.25	6.81	35	3.70	14.58	7.01	35	0.18	2.25	1.41	35	0.73	11.85	5.71	35	0.83	9.21	3.01	35
ZJ	1.07	14.80	6.68	60	1.84	7.41	4.52	60	0.09	1.68	0.77	60	0.39	10.23	3.58	60	0.19	9.83	2.23	60
FZ	0.19	7.20	1.77	60	0.57	6.15	3.05	60	0.05	1.62	0.45	60	0.17	3.79	2.22	60	0.22	2.20	1.20	60
FH	0.76	13.83	5.90	60	2.26	13.04	6.24	60	0.29	2.63	1.13	60	0.45	8.01	4.04	60	0.31	3.88	1.81	60

Table S2. Summary of monthly mean N_r concentrations measured during the 2011-2015 period.

ZY	1.16	12.46	5.12	60	1.45	6.85	3.83	60	0.22	2.24	0.96	60	0.11	16.08	4.99	60	0.11	5.53	1.78	60
YT	0.43	18.31	4.18	36	0.99	5.07	2.75	36	0.08	1.20	0.49	36	0.88	15.80	3.01	36	0.11	2.54	1.01	36
JJ	0.70	12.99	4.48	36	0.82	8.61	4.75	36	0.13	3.09	1.48	36	1.26	16.74	7.85	36	0.34	7.61	3.03	36
HN	0.64	18.86	3.78	60	0.89	9.59	4.31	60	0.12	2.68	0.74	60	0.44	12.58	4.21	60	0.16	14.77	1.62	60
XS	0.21	7.97	2.38	60	1.41	12.81	5.18	60	0.08	1.96	0.87	60	0.43	9.19	3.74	60	0.15	5.27	1.25	60

^aMultiply by 3 to obtain a total numbers of NO₂ samples.

Sito	$H_{4}^{+}-N (mg N L^{-1})$		N	$O_3^{-}-N$ (m	ng N L ⁻	¹)	TIN (mg N L ⁻¹)					
Sile	Min	Max	Avg	Ν	Min	Max	Avg	Ν	Min	Max	Avg	Ν
CAU	0.16	19.15	3.91	47	0.22	15.75	4.20	47	0.46	32.37	8.10	47
ZZ	1.37	10.67	4.11	10	1.01	27.89	5.30	10	2.38	38.56	9.41	10
DL	0.13	15.93	2.94	53	0.70	14.40	4.22	53	1.13	25.57	7.15	53
SZ	0.44	13.08	3.21	42	0.40	8.99	2.86	42	0.84	19.52	6.08	42
QZ	0.16	16.60	3.76	47	0.21	14.40	3.04	47	0.53	29.27	6.80	47
YQ	0.16	17.56	2.79	48	0.22	12.45	3.18	48	0.69	30.01	5.96	48
ZMD	0.03	9.31	2.66	34	0.07	5.81	2.21	34	0.11	12.29	4.87	34
YL	0.46	10.51	3.29	53	0.07	8.32	2.83	53	0.55	17.86	6.12	53
YC	0.97	26.77	6.80	32	0.84	23.52	4.81	32	2.22	50.29	11.61	32
GZL	0.12	7.34	2.37	60	0.53	10.06	2.67	60	0.81	15.05	5.05	60
LS	0.27	12.72	2.22	48	0.28	9.46	2.61	48	0.55	14.73	4.82	48
LSD	0.29	8.44	2.38	45	0.14	11.10	2.41	45	0.54	17.67	4.80	45
CD	0.34	11.27	2.48	54	0.46	19.92	4.00	54	1.06	29.65	6.47	54
NJ	0.33	2.82	1.27	26	0.28	8.31	2.11	26	0.62	10.06	3.38	26
BY	0.01	13.88	0.97	53	0.11	6.23	1.70	53	0.34	19.98	2.67	53
WJ	0.19	13.62	2.65	52	0.10	28.92	4.75	52	0.91	34.64	7.41	52
WX	0.16	2.88	1.01	44	0.10	7.39	1.30	44	0.31	8.75	2.31	44
TJ	0.24	8.36	2.02	59	0.11	7.23	1.53	59	0.35	15.03	3.55	59
FYA	0.24	9.63	2.32	24	0.34	28.77	3.06	24	0.61	38.40	5.38	24
ZJ	0.10	2.04	0.42	29	0.07	3.77	0.79	29	0.23	4.16	1.21	29
FZ	0.04	4.96	0.74	60	0.09	4.93	0.85	60	0.22	8.88	1.59	60
FH	0.12	5.62	1.03	55	0.34	6.61	1.25	55	0.52	12.23	2.27	55
ZY	0.16	5.08	1.79	53	0.47	11.52	2.20	53	1.20	15.74	3.99	53
YT	0.16	3.81	1.31	32	0.16	3.13	1.17	32	0.54	6.27	2.48	32
JJ	0.35	12.73	3.27	36	0.26	10.31	2.63	36	0.61	23.04	5.89	36
HN	0.19	5.26	1.40	48	0.17	3.74	0.91	48	0.36	8.86	2.30	48
XS	0.03	3.78	1.22	60	0.06	3.52	0.81	60	0.09	6.09	2.03	60

Table S3. Summary of monthly volume-weighted mean N_r concentrations in precipitation measured during the 2011-2015 period.

C:too	Air concentra	ations			Dry deposition fluxes					
Sites	Spring	Summer	Autumn	Winter	Spring	Summer	Autumn	Winter		
CAU	$12.1 \pm 1.9 b$	$16.0 \pm 2.4a$	$11.2\pm1.6b$	$5.6 \pm 1.5c$	$3.8\pm0.6b$	7.8 ± 1.1a	$4.1\pm0.6b$	$1.3 \pm 0.3c$		
ZZ	$11.7 \pm 1.4a$	$12.2 \pm 3.9a$	$8.9\pm3.2ab$	$6.3 \pm 1.1b$	$3.4 \pm 0.4a$	$3.4 \pm 1.1a$	$2.2\pm0.8ab$	$1.5\pm0.3b$		
DL	$3.8 \pm 1.0a$	$5.1 \pm 1.2a$	$3.5 \pm 1.3a$	$1.2\pm0.4b$	$4.2 \pm 1.1a$	5.5 ± 1.3a	$4.1 \pm 1.5a$	$0.6 \pm 0.2 b$		
SZ	$9.7 \pm 1.9b$	$14.9 \pm 2.5a$	$9.0\pm2.9b$	$4.2 \pm 1.4c$	$3.1 \pm 0.6b$	$7.3 \pm 1.2a$	$3.4 \pm 1.1 b$	$1.0 \pm 0.3c$		
QZ	$17.4 \pm 5.7a$	$18.2 \pm 4.6a$	$13.3 \pm 3.8a$	$12.8 \pm 8.8a$	4.8 ± 1.6a	$5.8 \pm 1.5a$	3.7 ± 1.1a	$3.0 \pm 2.1a$		
YQ	$7.7 \pm 0.8a$	$6.0 \pm 0.6a$	$3.1\pm0.7b$	$2.7 \pm 2.1b$	$2.0 \pm 0.2a$	$2.0 \pm 0.2a$	$0.9\pm0.2b$	$0.6\pm0.5b$		
ZMD	$11.3 \pm 4.0a$	$9.8 \pm 4.1a$	$10.8 \pm 2.9a$	$9.3 \pm 0.9a$	$3.8 \pm 1.3a$	3.1 ± 1.3a	$2.9\pm0.8a$	$2.2 \pm 0.2a$		
YL	$7.6 \pm 2.8a$	$10.9 \pm 6.3a$	$8.5\pm3.8a$	$6.3 \pm 2.1a$	$2.4\pm0.9ab$	$4.3 \pm 2.5a$	$2.7\pm1.3ab$	$1.5\pm0.5b$		
YC	$10.9\pm2.2b$	$17.0 \pm 2.0a$	12.2 ± 2.3 ab	$9.2 \pm 2.1b$	$2.6\pm0.5b$	$4.9 \pm 0.6a$	$3.1\pm0.6b$	$2.1\pm0.5b$		
GZL	$7.3\pm0.6b$	$11.7 \pm 2.4a$	$5.2\pm0.3b$	$1.3 \pm 0.6c$	$1.8\pm0.2b$	5.5 ± 1.2a	$1.8\pm0.1b$	$0.2 \pm 0.1 c$		
LS	$17.0 \pm 3.5a$	13.2 ± 2.5 ab	$11.9 \pm 1.9 b$	$5.1 \pm 1.7c$	$4.0\pm0.8b$	$5.5 \pm 1.1a$	$3.6\pm0.6b$	$1.0\pm0.4c$		
LSD	$5.0\pm0.9b$	$9.4 \pm 2.4a$	$4.8 \pm 2.2 bc$	$1.9 \pm 0.4c$	$2.6\pm0.5b$	$5.2 \pm 1.4a$	$2.4 \pm 1.1 b$	$0.5 \pm 0.1c$		
CD	$4.9\pm0.7b$	$6.9 \pm 1.2a$	$3.3\pm0.9b$	$1.1 \pm 0.5c$	$3.6\pm0.5ab$	$4.8 \pm 1.0a$	$3.0\pm0.8b$	$0.6 \pm 0.3c$		
NJ	7.7 ± 1.7	10.2 ± 2.1	3.6 ± 1.1	3.8 ± 0.1	2.6 ± 0.6	3.8 ± 0.8	1.1 ± 0.3	0.9 ± 0.0		
BY	$7.4 \pm 1.2b$	$9.9 \pm 2.0a$	$9.4\pm0.8ab$	$4.7\pm0.8c$	$2.2\pm0.4b$	$3.1 \pm 0.6a$	$3.3\pm0.3a$	$1.4 \pm 0.2c$		
WJ	$14.8\pm3.8a$	$16.2 \pm 6.9a$	$10.1 \pm 3.8a$	$8.8 \pm 1.7a$	4.5 ± 1.1 ab	$5.9 \pm 2.5a$	$2.6 \pm 1.0 b$	$2.1\pm0.4b$		
WX	$6.3 \pm 1.9 b$	$9.6 \pm 1.7a$	$5.1\pm0.9 bc$	$3.2 \pm 0.5c$	$1.9\pm0.6b$	$3.3 \pm 0.6a$	$1.8\pm0.3b$	$0.8 \pm 0.1 c$		
TJ	$4.0 \pm 2.5 ab$	$5.3 \pm 1.4a$	$2.4 \pm 1.2b$	$1.5\pm0.8b$	$1.1 \pm 0.7 ab$	$1.8 \pm 0.5a$	$0.9\pm0.4b$	$0.4\pm0.2b$		
FYA	$6.4 \pm 1.6ab$	$11.2 \pm 4.9a$	$5.4 \pm 0.2 ab$	$3.8\pm0.5b$	$2.1\pm0.5ab$	$3.6 \pm 1.8a$	$1.6 \pm 0.0 ab$	$0.8 \pm 0.3 b$		
ZJ	$7.6 \pm 1.5a$	9.3 ± 1.9a	$6.6 \pm 1.6a$	$3.3 \pm 1.3b$	$1.9 \pm 0.4a$	$2.6 \pm 0.5a$	$2.3\pm0.6a$	$0.8 \pm 0.3 b$		
FZ	$1.7 \pm 0.5 ab$	$3.0 \pm 1.2a$	$1.4\pm0.2b$	$1.0\pm0.6b$	$1.2\pm0.4b$	$2.2 \pm 0.9a$	$1.1\pm0.2b$	$0.7 \pm 0.4 b$		
FH	$6.9 \pm 2.3 ab$	$7.5 \pm 2.5a$	$5.9 \pm 1.6 ab$	$3.4\pm1.5b$	$2.5\pm0.9a$	3.1 ± 1.0a	$2.2\pm0.6ab$	$0.8\pm0.4b$		
ZY	$7.7 \pm 1.4a$	$5.7\pm2.0ab$	$4.3 \pm 1.2 bc$	$2.9\pm0.5c$	$2.0\pm0.4a$	$1.9 \pm 0.6a$	$1.1\pm0.3b$	$0.7\pm0.1b$		

Table S4. Seasonal average concentrations and deposition fluxes of gaseous NH₃ at twenty-seven monitoring sites in eastern China.

YT	$3.3\pm0.7b$	$9.3 \pm 0.8a$	$2.6 \pm 1.4b$	$1.5\pm0.7b$	$1.0\pm0.2b$	$3.4 \pm 0.2a$	$0.8\pm0.4b$	$0.4\pm0.2b$
JJ	7.1 ± 1.2a	5.2 ± 2.1 ab	$3.3\pm0.8b$	$2.4\pm0.4b$	$2.1 \pm 0.4a$	$1.9 \pm 0.8a$	$1.1 \pm 0.3 ab$	$0.6\pm0.1b$
HN	$4.1\pm0.7ab$	$7.0 \pm 2.8a$	$2.2\pm0.9b$	$1.8\pm0.6b$	$1.4\pm0.2b$	2.7 ± 1.1a	$0.9\pm0.4b$	$0.4\pm0.2b$
XS	$2.7 \pm 1.3 ab$	3.5 ± 1.3a	$1.8\pm0.7ab$	$1.5\pm0.5b$	$0.9\pm0.5ab$	$1.4 \pm 0.5a$	$0.7\pm0.3ab$	$0.4\pm0.1b$

0:4	Air concentr	ations			Dry deposition fluxes					
Siles	Spring	Summer	Autumn	Winter	Spring	Summer	Autumn	Winter		
CAU	$12.0 \pm 1.7a$	$12.7 \pm 1.7a$	$14.3 \pm 3.3a$	$12.5 \pm 2.1a$	$1.9 \pm 0.2c$	$4.2 \pm 0.6a$	$2.9 \pm 0.8b$	$0.3 \pm 0.0d$		
ZZ	$12.5 \pm 1.8a$	$12.0 \pm 2.2a$	$15.0 \pm 2.0a$	$15.1 \pm 2.3a$	$1.9 \pm 0.2a$	1.7 ± 0.3 ab	$1.4\pm0.2b$	$0.7 \pm 0.1c$		
DL	$9.1 \pm 4.2a$	$8.4\pm4.4a$	$8.6\pm3.7a$	$8.3\pm3.8a$	$0.1 \pm 0.1a$	$0.2 \pm 0.1a$	$0.2 \pm 0.1a$	$0.1 \pm 0.0a$		
SZ	$8.8\pm0.9a$	7.4 ± 1.0a	$7.4 \pm 0.8a$	$9.0 \pm 2.1a$	$1.4 \pm 0.1b$	$2.4 \pm 0.3a$	$1.3\pm0.2b$	$0.2 \pm 0.0c$		
QZ	$6.8 \pm 1.5 b$	$7.3 \pm 1.5 ab$	$8.0\pm0.9ab$	$9.7 \pm 1.7a$	$0.9 \pm 0.2a$	$1.2 \pm 0.2a$	$0.9 \pm 0.1a$	$0.3\pm0.1b$		
YQ	6.7 ± 1.7a	$6.8 \pm 1.6a$	$7.5\pm0.6a$	$6.8 \pm 1.8a$	$0.6\pm0.1b$	$1.4 \pm 0.3a$	$0.8\pm0.1b$	$0.1 \pm 0.0c$		
ZMD	$9.3\pm0.9ab$	$8.0\pm0.5b$	9.5 ± 1.0 ab	$10.5 \pm 1.6a$	$1.9 \pm 0.2a$	$1.5\pm0.1b$	$1.1\pm0.1c$	$0.7\pm0.1d$		
YL	7.2 ± 1.9 ab	$5.9\pm1.1b$	$7.8\pm0.4ab$	$9.3 \pm 1.8a$	$1.3 \pm 0.3a$	$1.5 \pm 0.3a$	$1.1 \pm 0.2a$	$0.3\pm0.1b$		
YC	$9.9 \pm 2.9a$	$8.5 \pm 2.1a$	$9.9 \pm 2.2a$	$11.3 \pm 3.0a$	$0.9\pm0.2ab$	$1.1 \pm 0.3a$	$0.8\pm0.2ab$	$0.3\pm0.1b$		
GZL	$4.3 \pm 1.0a$	$5.8 \pm 1.1a$	$5.0\pm0.5a$	$6.0 \pm 1.5a$	$0.4\pm0.1b$	$1.9\pm0.4a$	$0.6\pm0.2b$	$0.04\pm0.01c$		
LS	$3.8 \pm 1.7a$	$5.5\pm0.6a$	$3.8\pm0.9a$	$3.6 \pm 1.0a$	$0.3\pm0.1b$	$1.5 \pm 0.2a$	$0.4\pm0.1b$	$0.03\pm0.01c$		
LSD	$4.5 \pm 1.4 bc$	$3.4\pm0.7c$	$6.0\pm2.4ab$	$7.5 \pm 0.3a$	$0.4 \pm 0.1a$	$0.4 \pm 0.1a$	$0.5 \pm 0.2a$	$0.3 \pm 0.0a$		
CD	$6.5\pm0.5ab$	$5.1\pm0.5b$	$5.2\pm0.7b$	$7.1 \pm 1.6a$	$0.04\pm0.00a$	$0.04\pm0.00a$	$0.04\pm0.00a$	$0.05\pm0.01a$		
NJ	12.0 ± 0.9	7.8 ± 0.7	8.5 ± 1.6	10.9 ± 0.8	1.5 ± 0.2	1.2 ± 0.1	1.1 ± 0.4	0.4 ± 0.0		
BY	$10.7 \pm 2.0a$	9.4 ± 2.1 ab	$7.6 \pm 1.0b$	$7.7 \pm 0.7 b$	$1.0 \pm 0.2a$	$1.1 \pm 0.2a$	$1.1 \pm 0.1a$	$0.7 \pm 0.1 b$		
WJ	7.4 ± 1.4ab	$5.9 \pm 1.4 b$	$6.6\pm0.6b$	$10.4 \pm 3.4a$	$0.9 \pm 0.2a$	$1.1 \pm 0.3a$	$0.5\pm0.1b$	$0.5\pm0.1b$		
WX	$6.8 \pm 0.3a$	$4.7 \pm 0.7a$	$8.0 \pm 2.7a$	$7.5 \pm 1.4a$	$0.8 \pm 0.0 ab$	$0.8 \pm 0.1 ab$	$1.2 \pm 0.4a$	$0.4 \pm 0.1 b$		
TJ	$2.6\pm0.6bc$	$1.9 \pm 0.2c$	$2.9\pm0.3b$	$4.3 \pm 0.4a$	$0.3 \pm 0.1 bc$	0.3 ± 0.0 ab	$0.4 \pm 0.1a$	$0.2 \pm 0.0c$		
FYA	$6.0 \pm 1.3a$	$5.7 \pm 1.0a$	$8.3 \pm 0.8a$	$8.4 \pm 2.4a$	$0.8 \pm 0.2a$	$0.9 \pm 0.1a$	$0.7 \pm 0.2 ab$	$0.3\pm0.1b$		
ZJ	$5.3 \pm 0.4a$	$3.2\pm0.8b$	$4.5 \pm 0.8a$	$5.1 \pm 0.6a$	$0.4\pm0.0b$	$0.4 \pm 0.1 b$	$0.8 \pm 0.1a$	$0.4 \pm 0.0b$		
FZ	$4.1 \pm 0.5a$	$3.4\pm0.4b$	$1.7 \pm 0.2c$	$3.0 \pm 0.4 b$	$0.9 \pm 0.1a$	$0.8 \pm 0.1a$	$0.4\pm0.1b$	$0.4 \pm 0.1 b$		
FH	$6.7 \pm 1.2b$	$4.4 \pm 1.1c$	$5.5\pm0.6bc$	$8.4 \pm 0.9a$	$1.4 \pm 0.3a$	1.2 ± 0.3 ab	$1.2 \pm 0.2 ab$	$0.8\pm0.1b$		
ZY	$4.5\pm0.8ab$	$2.7 \pm 0.4c$	$3.5 \pm 0.6 bc$	$4.6 \pm 0.2a$	$0.4 \pm 0.1a$	$0.4 \pm 0.1a$	$0.3\pm0.1b$	$0.2 \pm 0.0c$		

Table S5. Seasonal average concentrations and deposition fluxes of gaseous NO₂ at twenty-seven monitoring sites in eastern China.

YT	$3.2\pm0.7ab$	$2.0\pm0.4b$	$2.4\pm0.2ab$	$3.5 \pm 0.4a$	$0.4 \pm 0.1 ab$	$0.4 \pm 0.1a$	$0.3\pm0.0ab$	$0.2\pm0.0b$
JJ	$5.4\pm0.7ab$	$3.5\pm0.4bc$	$3.3 \pm 0.9c$	$6.8 \pm 0.9a$	$0.4 \pm 0.1 ab$	$0.5 \pm 0.1a$	$0.4 \pm 0.1 ab$	$0.2\pm0.0b$
HN	$3.8\pm0.9bc$	$2.7\pm0.9c$	$4.5\pm0.4b$	$6.1 \pm 0.8a$	$0.6 \pm 0.1 bc$	$0.6\pm0.2b$	$0.9 \pm 0.1a$	$0.4\pm0.0c$
XS	$4.9 \pm 1.2 b$	$2.8\pm0.9b$	$4.9\pm0.8b$	$8.2 \pm 2.1a$	$0.7\pm0.2ab$	$0.6\pm0.2b$	$1.0 \pm 0.2a$	$0.5\pm0.1b$

at	Air concentra	ations			Dry deposition fluxes					
Sites	Spring	Summer	Autumn	Winter	Spring	Summer	Autumn	Winter		
CAU	$1.9 \pm 0.8a$	$1.9 \pm 0.2a$	$1.8 \pm 0.3a$	$2.3 \pm 0.8a$	3.5 ± 1.5b	$6.3 \pm 0.6a$	$4.6\pm0.7b$	$0.6\pm0.2c$		
ZZ	$2.3\pm0.5ab$	$2.8 \pm 0.5a$	$1.5 \pm 0.7 bc$	$1.0 \pm 0.7c$	$3.6 \pm 0.7a$	$3.9\pm0.8a$	$0.8\pm0.4b$	$0.2\pm0.2b$		
DL	$1.1 \pm 0.5a$	$1.3 \pm 0.4a$	$1.0 \pm 0.3a$	$0.7 \pm 0.4a$	$1.2 \pm 0.6a$	$1.5 \pm 0.4a$	$1.3 \pm 0.4a$	$0.7\pm0.4a$		
SZ	$1.3 \pm 0.3b$	$1.3\pm0.5b$	1.5 ± 0.3 ab	$2.0 \pm 0.5a$	$2.7\pm0.6b$	4.3 ± 1.5a	$3.5\pm0.6ab$	$0.5\pm0.1c$		
QZ	$1.8 \pm 0.3a$	$1.8 \pm 0.8a$	$1.2 \pm 0.4a$	$1.6 \pm 0.6a$	$2.7 \pm 0.6a$	$2.3 \pm 1.0a$	$1.0\pm0.3b$	$0.4\pm0.2b$		
YQ	$1.3 \pm 0.5a$	$1.0 \pm 0.4a$	$1.0 \pm 0.1a$	$1.3 \pm 0.5a$	$1.0\pm0.4ab$	$1.6 \pm 0.5a$	$0.9\pm0.2b$	$0.2\pm0.1c$		
ZMD	$1.6 \pm 0.5a$	$1.8 \pm 0.3a$	$2.0\pm0.6a$	$2.2\pm0.7a$	$2.9\pm0.9a$	$2.9\pm0.6a$	$1.5\pm0.5b$	$1.2\pm0.3b$		
YL	$1.1 \pm 0.2c$	$1.2 \pm 0.0 bc$	$1.5 \pm 0.2ab$	$1.7 \pm 0.3a$	$1.4 \pm 0.2 ab$	$1.6 \pm 0.0a$	$1.1\pm0.3b$	$0.4\pm0.1c$		
YC	$1.2 \pm 0.1a$	$1.9 \pm 0.1a$	1.9 ± 1.1a	1.3 ± 1.2a	$0.4 \pm 0.0 bc$	$2.1 \pm 0.1a$	$1.1 \pm 0.6b$	$0.2\pm0.2c$		
GZL	$0.9 \pm 0.0a$	$0.9 \pm 0.1a$	$1.2 \pm 0.4a$	$1.3 \pm 0.4a$	$0.6\pm0.1b$	$1.8 \pm 0.1a$	$1.4\pm0.5a$	$0.2\pm0.0c$		
LS	$0.9\pm0.2ab$	$1.0\pm0.4ab$	$0.7\pm0.2b$	$1.4 \pm 0.5a$	$0.6\pm0.1b$	$2.0\pm0.8a$	$0.7\pm0.3b$	$0.2\pm0.1b$		
LSD	$1.1 \pm 0.1a$	0.9 ± 0.3 ab	$0.7 \pm 0.2b$	$1.0 \pm 0.2 ab$	$0.8 \pm 0.1 ab$	$1.2 \pm 0.4a$	$0.6\pm0.2b$	$0.6\pm0.2b$		
CD	$1.1 \pm 0.2a$	$1.2 \pm 0.2a$	$1.0 \pm 0.2a$	$1.2 \pm 0.2a$	$0.9 \pm 0.2a$	$0.8 \pm 0.1a$	$1.0 \pm 0.2a$	$1.1 \pm 0.2a$		
NJ	1.6 ± 0.4	1.8 ± 0.5	1.6 ± 0.6	2.2 ± 0.8	2.3 ± 0.3	2.8 ± 0.7	1.3 ± 0.5	0.5 ± 0.2		
BY	$1.4 \pm 0.4a$	$1.7 \pm 0.4a$	$1.2 \pm 0.6a$	$1.2 \pm 0.2a$	$1.2 \pm 0.4 bc$	$2.3\pm0.6a$	$1.8 \pm 0.8 ab$	$0.6\pm0.2c$		
WJ	$2.0 \pm 0.3a$	$1.5 \pm 0.2b$	1.5 ± 0.3 ab	1.8 ± 0.3 ab	$2.0 \pm 0.3a$	$1.7 \pm 0.2a$	$0.7 \pm 0.2 b$	$0.6\pm0.1b$		
WX	$1.3 \pm 0.2a$	$1.3 \pm 0.3a$	$1.1 \pm 0.5a$	$1.4 \pm 0.3a$	$1.0 \pm 0.2 ab$	$1.5 \pm 0.3a$	$1.1 \pm 0.5a$	$0.4\pm0.1b$		
TJ	$0.9 \pm 0.3a$	$0.7 \pm 0.1a$	$0.7 \pm 0.2a$	$0.9 \pm 0.1a$	$0.8 \pm 0.4a$	$1.0 \pm 0.2a$	$0.9 \pm 0.3a$	$0.3\pm0.0b$		
FYA	$1.3 \pm 0.3a$	$1.4 \pm 0.2a$	$1.4 \pm 0.3a$	$1.5 \pm 0.3a$	$1.9 \pm 0.6a$	$1.7 \pm 0.3a$	$1.0\pm0.4ab$	$0.4\pm0.1b$		
ZJ	$0.8 \pm 0.3a$	$0.4\pm0.1b$	$0.9 \pm 0.2a$	$1.0 \pm 0.1a$	$0.5\pm0.2b$	$0.5\pm0.1b$	$1.4 \pm 0.2a$	$0.6 \pm 0.1 b$		
FZ	0.5 ± 0.1 ab	$0.6 \pm 0.2a$	$0.3 \pm 0.2b$	0.3 ± 0.1 ab	$0.8 \pm 0.2a$	$1.0 \pm 0.3a$	$0.6 \pm 0.3a$	$0.6 \pm 0.2a$		

Table S6. Seasonal average concentrations and deposition fluxes of gaseous HNO₃ at twenty-seven monitoring sites in eastern China.

FH	$1.1 \pm 0.3ab$	$0.9\pm0.2b$	$1.0\pm0.3b$	$1.5 \pm 0.2a$	$2.0\pm0.5a$	$1.5\pm0.3a$	$1.7\pm0.6a$	$2.1\pm0.4a$
ZY	$1.3 \pm 0.5a$	$0.6\pm0.2b$	$0.7\pm0.3b$	$1.2\pm0.2ab$	$0.7 \pm 0.3a$	$0.8 \pm 0.3a$	$0.5\pm0.2ab$	$0.2\pm0.0b$
YT	$0.6 \pm 0.3a$	$0.4 \pm 0.1a$	$0.4\pm0.1a$	$0.5\pm0.2a$	$0.6\pm0.3a$	$0.5\pm0.1a$	$0.4 \pm 0.1a$	$0.2\pm0.0a$
JJ	$1.7 \pm 0.7a$	$1.4\pm0.8a$	$1.2\pm0.6a$	$1.6\pm0.4a$	$0.7\pm0.3ab$	1.9 ± 1.0a	$0.9\pm0.5 ab$	$0.3\pm0.1b$
HN	$0.9 \pm 0.3a$	$0.6 \pm 0.2a$	$0.7\pm0.2a$	$0.7 \pm 0.2a$	$1.1\pm0.4a$	$1.0 \pm 0.3a$	$0.9 \pm 0.3a$	$0.4\pm0.1b$
XS	$0.8 \pm 0.2a$	$0.9 \pm 0.4a$	$0.9\pm0.2a$	$0.9\pm0.4a$	$1.0\pm0.3ab$	$1.3 \pm 0.5a$	$1.2 \pm 0.3a$	$0.5\pm0.2b$

Citas	Air concentrat	ions			Dry deposition	on fluxes		
Siles	Spring	Summer	Autumn	Winter	Spring	Summer	Autumn	Winter
CAU	$7.9 \pm 3.6a$	$10.4 \pm 3.7a$	$7.8 \pm 2.0a$	8.8 ± 1.6a	$1.5 \pm 0.7a$	$2.0 \pm 0.8a$	$1.2 \pm 0.3a$	$1.0 \pm 0.2a$
ZZ	$8.2\pm2.1b$	$12.3\pm4.5b$	$10.7 \pm 1.7 b$	$18.9\pm4.6a$	$1.6\pm0.4a$	$2.5\pm0.9a$	$1.6 \pm 0.3a$	$2.0\pm0.5a$
DL	$3.9\pm0.8a$	4.5 ± 1.6a	$3.9\pm0.3a$	$5.5\pm0.9a$	$0.2\pm0.1b$	$0.3\pm0.1\text{ab}$	$0.3\pm0.0\text{ab}$	$0.4 \pm 0.1a$
SZ	$6.2 \pm 2.2a$	$8.7 \pm 2.1a$	6.3 ± 1.9a	$6.6\pm2.0a$	$1.2\pm0.4ab$	$1.7 \pm 0.4a$	$0.9\pm0.3b$	$0.7\pm0.2b$
QZ	$15.3\pm10.5a$	$24.2\pm12.2a$	$15.7\pm9.7a$	$23.5\pm12.6a$	$2.9 \pm 1.9 a$	$5.1 \pm 2.6a$	$2.2 \pm 1.4a$	2.3 ± 1.3a
YQ	$4.6 \pm 1.4a$	5.1 ± 0.6a	$5.0\pm0.6a$	$5.8 \pm 1.4 a$	$0.9\pm0.3ab$	$1.2 \pm 0.2a$	$0.7\pm0.1b$	$0.6\pm0.2b$
ZMD	$11.5\pm5.4ab$	$12.7\pm4.0a$	$8.8\pm4.2ab$	$5.2\pm0.7b$	$2.1 \pm 1.0a$	$2.1\pm0.6a$	$1.3\pm0.6ab$	$0.6\pm0.1b$
YL	$4.8\pm2.7a$	$6.3\pm2.4a$	4.1 ± 1.8a	$7.0 \pm 4.2a$	$0.9\pm0.5a$	$1.4\pm0.6a$	$0.6 \pm 0.3a$	$0.8\pm0.5a$
YC	$8.9\pm0.8bc$	$27.9 \pm 1.9 a$	$7.3\pm0.9c$	$13.1\pm2.8b$	$1.6\pm0.2b$	$5.0\pm0.3a$	$1.0\pm0.2c$	$1.3 \pm 0.2 bc$
GZL	$4.9\pm2.3a$	$6.1 \pm 2.6a$	$3.9\pm0.8a$	$5.0\pm0.5a$	$0.8\pm0.3ab$	$1.0 \pm 0.5a$	$0.4\pm0.1b$	$0.4\pm0.1b$
LS	8.3 ± 5.1a	9.8 ± 3.1a	5.9 ± 1.0a	$6.0 \pm 1.6a$	$1.3\pm0.8ab$	$1.6 \pm 0.5a$	$0.6\pm0.1b$	$0.4\pm0.1b$
LSD	$4.8\pm0.7a$	$5.6 \pm 3.3a$	$4.5\pm0.8a$	$6.5 \pm 1.4a$	$0.6 \pm 0.1a$	$0.7 \pm 0.4a$	$0.5 \pm 0.1a$	$0.7 \pm 0.2a$
CD	$5.2 \pm 0.8a$	$5.5 \pm 1.0a$	4.6 ± 1.5a	$4.3 \pm 1.4a$	$0.2 \pm 0.0a$	$0.3 \pm 0.0a$	$0.3 \pm 0.1a$	$0.3 \pm 0.1a$
NJ	5.6 ± 2.4	4.4 ± 1.8	5.4 ± 0.3	7.8 ± 0.5	0.9 ± 0.3	0.5 ± 0.2	0.5 ± 0.0	0.9 ± 0.1
BY	$3.6 \pm 0.8a$	$3.8 \pm 0.8a$	3.4 ± 1.1a	$4.5 \pm 0.3a$	$0.5 \pm 0.1a$	$0.3\pm0.1b$	$0.3\pm0.1b$	$0.6 \pm 0.0a$
WJ	$8.9 \pm 0.5a$	3.7 ± 1.5a	$6.5 \pm 2.7b$	$12.3\pm1.3b$	4.3 ± 1.0a	$3.4 \pm 0.6a$	$1.0\pm0.2b$	$1.3 \pm 0.5 b$
WX	$4.2 \pm 1.3a$	4.6 ± 1.7a	$5.2 \pm 0.6a$	$6.5 \pm 1.0a$	$0.6 \pm 0.2a$	$0.4 \pm 0.2a$	$0.6 \pm 0.1a$	$0.7 \pm 0.1a$
TJ	3.6 ± 1.3a	3.3 ± 1.2a	4.5 ± 1.1a	$5.4 \pm 2.5a$	$0.5 \pm 0.2a$	$0.4 \pm 0.1a$	$0.6 \pm 0.2a$	$0.7 \pm 0.3a$
FYA	$4.9 \pm 1.3 b$	$4.4\pm0.4b$	$5.2 \pm 1.2 b$	8.7 ± 1.2a	$0.8\pm0.2a$	$0.6 \pm 0.1a$	$0.6 \pm 0.1a$	$0.8 \pm 0.1a$
ZJ	$3.6 \pm 2.5a$	$2.0 \pm 0.3a$	4.1 ± 0.6a	4.6 ± 1.6a	$0.5 \pm 0.3a$	$0.1 \pm 0.0 b$	$0.4 \pm 0.1 ab$	$0.6 \pm 0.2a$

Table S7. Seasonal average concentrations and deposition fluxes of particulate NH_4^+ at twenty-seven monitoring sites in eastern China.

FZ	$2.8 \pm 0.7a$	$1.6\pm0.3b$	$2.1\pm0.5ab$	$2.4\pm0.6ab$	$0.3 \pm 0.1a$	$0.1\pm0.0b$	$0.2\pm0.0ab$	0.2 ± 0.1 ab
FH	$3.6 \pm 1.0a$	$4.2 \pm 1.4a$	$3.9 \pm 1.5a$	4.5 ± 1.3a	$0.5 \pm 0.1a$	$0.4 \pm 0.1a$	$0.4 \pm 0.2a$	$0.5\pm0.2a$
ZY	$5.0 \pm 2.1 ab$	$3.5\pm1.3b$	$4.2\pm1.4b$	$7.2 \pm 1.4a$	$1.0 \pm 0.4a$	$0.6\pm0.2a$	$0.6 \pm 0.2a$	$1.0\pm0.2a$
YT	$2.9 \pm 1.1a$	$2.7\pm0.8a$	$2.4\pm0.9a$	$2.7\pm0.6a$	$0.5 \pm 0.2a$	$0.4 \pm 0.1a$	$0.3 \pm 0.1a$	$0.4 \pm 0.1a$
JJ	$8.9\pm0.5ab$	$3.7 \pm 1.5c$	$6.5\pm2.7bc$	$12.3 \pm 1.3a$	$1.8 \pm 0.1a$	$0.6\pm0.2b$	$0.9\pm0.4b$	$1.9\pm0.2a$
HN	$3.5 \pm 0.6a$	$3.4 \pm 1.4a$	$4.5 \pm 1.2a$	$5.4 \pm 1.3a$	$0.5\pm0.1 ab$	$0.3\pm0.1b$	$0.6\pm0.2ab$	$0.7 \pm 0.2a$
XS	$3.6 \pm 0.7a$	$3.2\pm0.7a$	$4.0 \pm 1.5a$	4.1 ± 1.6a	$0.5 \pm 0.1a$	$0.3 \pm 0.1a$	$0.5 \pm 0.2a$	$0.5\pm0.2a$

C :4	Air concentr	ations			Dry depositio	n fluxes		
Sites	Spring	Summer	Autumn	Winter	Spring	Summer	Autumn	Winter
CAU	4.7 ± 1.6ab	$4.2 \pm 1.2b$	5.9 ± 1.1ab	$6.5 \pm 0.8a$	$0.9 \pm 0.3a$	$0.8 \pm 0.2a$	$0.9 \pm 0.2a$	0.7 ± 0.1a
ZZ	$4.8 \pm 1.1 \text{b}$	$4.3\pm0.5b$	$7.1\pm2.2b$	$13.3 \pm 4.5a$	$0.9\pm0.2a$	$0.9 \pm 0.1a$	$1.0 \pm 0.3a$	$1.4 \pm 0.5a$
DL	$2.5 \pm 1.3a$	$2.1 \pm 0.8a$	$1.8\pm0.9a$	3.6 ± 1.7a	$0.2\pm0.1\text{ab}$	$0.2\pm0.1 \text{ab}$	$0.1\pm0.1b$	$0.3 \pm 0.1a$
SZ	$3.3 \pm 0.7a$	$2.9\pm0.9a$	$3.9 \pm 0.6a$	$4.0 \pm 1.4a$	$0.6 \pm 0.1a$	$0.5 \pm 0.2a$	$0.6 \pm 0.1a$	$0.5 \pm 0.1a$
QZ	$4.5\pm2.3b$	$3.7 \pm 1.6 \text{b}$	$6.2\pm2.8ab$	$9.7 \pm 4.0a$	$0.9\pm0.4a$	$0.8 \pm 0.3a$	$0.9\pm0.4a$	$0.9 \pm 0.4a$
YQ	$2.7\pm0.9a$	$2.2 \pm 0.6a$	$2.9\pm0.8a$	$3.1 \pm 1.3a$	$0.5\pm0.2a$	$0.5\pm0.2a$	$0.4 \pm 0.1a$	$0.3\pm0.1a$
ZMD	$3.7\pm0.7bc$	$3.1 \pm 0.6c$	$5.4\pm0.8ab$	$6.8\pm2.0a$	$0.7\pm0.1ab$	$0.6\pm0.1b$	$0.8 \pm 0.1 a$	$0.8 \pm 0.2a$
YL	$3.2\pm0.7b$	$2.4\pm0.3b$	$4.1\pm0.7b$	$7.5 \pm 2.2a$	$0.6 \pm 0.1 ab$	$0.5\pm0.1b$	$0.5\pm0.1\text{ab}$	$0.8 \pm 0.2a$
YC	$4.1\pm0.8ab$	$3.0\pm0.3b$	$3.9 \pm 1.2 ab$	6.6 ± 1.5a	$0.7 \pm 0.1a$	$0.6 \pm 0.1a$	$0.5 \pm 0.2a$	$0.6 \pm 0.1a$
GZL	$1.7 \pm 0.4a$	1.7 ± 0.3a	$2.3 \pm 0.8a$	$2.5 \pm 0.8a$	$0.3 \pm 0.1a$	$0.3 \pm 0.0a$	$0.2 \pm 0.1a$	$0.2 \pm 0.0a$
LS	$1.6 \pm 0.8a$	$1.7 \pm 0.4a$	$2.0\pm0.5a$	$2.4\pm0.8a$	$0.3 \pm 0.1a$	$0.3 \pm 0.1a$	$0.2 \pm 0.1 a$	$0.2 \pm 0.1a$
LSD	$2.1\pm0.4ab$	$1.5\pm0.3b$	$1.5\pm0.7b$	$3.1 \pm 0.9a$	$0.3 \pm 0.1a$	$0.2 \pm 0.0a$	$0.2 \pm 0.1a$	$0.3 \pm 0.1a$
CD	$3.1 \pm 0.4a$	$2.4 \pm 0.3a$	$2.7 \pm 0.5a$	$2.7\pm0.7a$	$0.1 \pm 0.0a$	$0.1 \pm 0.0a$	$0.2 \pm 0.0a$	0.2 ± 0.1 a
NJ	3.5 ± 0.8	2.5 ± 0.2	2.7 ± 0.9	3.8 ± 0.5	0.6 ± 0.0	0.2 ± 0.0	0.3 ± 0.1	0.4 ± 0.1
BY	$3.0\pm0.7a$	$2.3\pm0.4a$	$2.2\pm0.6a$	$2.9\pm0.2a$	$0.4\pm0.1a$	$0.2\pm0.0b$	$0.2\pm0.1b$	$0.4 \pm 0.0a$
WJ	$2.7\pm0.8b$	$2.0\pm0.7b$	$2.8\pm0.7ab$	$4.6 \pm 1.5a$	$0.5\pm0.2a$	$0.4 \pm 0.1a$	$0.4 \pm 0.1a$	$0.6 \pm 0.2a$
WX	$1.7\pm0.5a$	$1.3 \pm 0.4a$	$1.9 \pm 1.4 a$	$2.9\pm0.6a$	$0.2\pm0.1 ab$	$0.1\pm0.0b$	$0.2\pm0.2ab$	$0.3 \pm 0.1a$
TJ	$0.9\pm0.3b$	$0.5\pm0.0b$	$1.3\pm0.6b$	$2.5 \pm 1.0a$	$0.1\pm0.0b$	$0.1\pm0.0b$	$0.2\pm0.1\text{ab}$	$0.3 \pm 0.1a$
FYA	$2.8\pm0.4a$	$2.1 \pm 0.1a$	$3.0 \pm 1.4a$	$4.5 \pm 2.3a$	$0.4 \pm 0.1a$	$0.3 \pm 0.0a$	$0.3 \pm 0.2a$	$0.4 \pm 0.1a$
ZJ	$2.3\pm0.7ab$	$1.1\pm0.2b$	$2.2 \pm 0.4 ab$	3.4 ± 1.5a	$0.3 \pm 0.1 ab$	$0.1 \pm 0.0c$	$0.2 \pm 0.0 bc$	$0.4 \pm 0.2a$

Table S8. Seasonal average concentrations and deposition fluxes of particulate NO_3^- at twenty-seven monitoring sites in eastern China.

FZ	$1.4 \pm 0.1a$	$1.1 \pm 0.1a$	$1.1 \pm 0.5a$	$1.2 \pm 0.2a$	$0.2\pm0.0a$	$0.1\pm0.0a$	$0.1\pm0.0a$	$0.1 \pm 0.0a$
FH	$1.9\pm0.3ab$	$1.1\pm0.4c$	$1.6\pm0.7bc$	$2.7\pm0.4a$	$0.3\pm0.0ab$	$0.1\pm0.0c$	$0.2\pm0.1 bc$	$0.3 \pm 0.0a$
ZY	$1.6\pm0.4bc$	$0.7\pm0.4c$	$1.9 \pm 1.0 ab$	$2.9\pm0.5a$	$0.3\pm0.1a$	$0.1\pm0.1b$	$0.3\pm0.1 ab$	$0.4 \pm 0.1a$
YT	$1.3\pm0.4a$	$0.8\pm0.1a$	$0.9\pm0.6a$	$1.2 \pm 0.3a$	$0.2\pm0.1a$	$0.1\pm0.0a$	$0.1\pm0.1a$	$0.2 \pm 0.0a$
JJ	$2.9\pm0.7ab$	$1.7\pm0.8b$	$2.5\pm1.6ab$	$4.9\pm0.8a$	$0.6\pm0.1a$	$0.3\pm0.1a$	$0.4\pm0.2a$	$0.8 \pm 0.1a$
HN	$1.4\pm0.3b$	$0.6\pm0.2b$	$1.3\pm0.5b$	$3.2\pm1.9a$	$0.2\pm0.0b$	$0.1\pm0.0b$	$0.2\pm0.1b$	$0.4 \pm 0.2a$
XS	$1.2 \pm 0.6ab$	$0.7\pm0.1b$	$1.2 \pm 0.4 ab$	$2.0 \pm 1.0a$	$0.2 \pm 0.1a$	$0.1 \pm 0.0a$	$0.2 \pm 0.0a$	$0.2 \pm 0.1a$

C :400	Air concentrat	ions			Dry deposition fluxes				
Siles	Spring	Summer	Autumn	Winter	Spring	Summer	Autumn	Winter	
CAU	38.6 ± 4.5ab	45.3 ± 3.6a	$40.9 \pm 4.2ab$	$35.7 \pm 3.0b$	$11.7 \pm 2.2b$	$21.0 \pm 0.3a$	$13.6 \pm 1.3b$	$3.9 \pm 0.7c$	
ZZ	$39.6\pm2.9b$	$43.6\pm4.1b$	$43.2\pm2.0b$	$54.6\pm9.2a$	$11.4 \pm 1.2a$	$12.5 \pm 1.3a$	$7.0 \pm 1.0b$	$5.9\pm0.9b$	
DL	$20.5\pm6.5a$	$21.3\pm7.1a$	$18.9\pm4.8a$	$19.3\pm4.7a$	$5.9 \pm 1.6a$	$7.7 \pm 1.7a$	$6.0 \pm 1.4a$	$2.1\pm0.2b$	
SZ	$29.4\pm3.4ab$	$35.2 \pm 2.1a$	$28.1\pm5.2ab$	$25.9\pm4.4b$	$9.0 \pm 1.1 b$	$16.3 \pm 1.3a$	$9.6 \pm 1.2b$	$2.9\pm0.6c$	
QZ	$45.9 \pm 18.2a$	$55.2\pm16.5a$	$44.5\pm14.6a$	$57.3\pm22.6a$	$12.2\pm4.2ab$	$15.2 \pm 4.3a$	$8.7\pm2.6ab$	$7.0\pm3.6b$	
YQ	$23.0\pm1.1a$	$21.2\pm2.2ab$	$19.5 \pm 1.1 b$	$19.7\pm2.4b$	$5.1\pm0.5b$	$6.6\pm0.8a$	$3.6\pm0.2c$	$1.9\pm0.4d$	
ZMD	$37.4\pm8.7a$	$35.4\pm7.2a$	$36.6\pm6.2a$	$34.0\pm3.7a$	$11.3 \pm 1.6a$	$10.1 \pm 1.2a$	$7.7\pm0.9b$	$5.5\pm0.6c$	
YL	$23.9\pm6.7a$	$26.6\pm8.2a$	$26.0\pm4.3a$	$31.7 \pm 7.7a$	$6.6 \pm 1.7 ab$	$9.3\pm2.9a$	$6.0 \pm 1.2 b$	$3.8 \pm 1.0 b$	
YC	$34.9\pm5.2b$	$58.4\pm5.0a$	$35.2\pm3.1b$	$41.6\pm3.1b$	$6.2\pm0.7bc$	$13.8\pm0.8a$	$6.5\pm0.5b$	$4.6\pm0.2c$	
GZL	$19.1\pm2.6b$	$26.3 \pm 3.0a$	$17.5 \pm 2.2b$	$16.1 \pm 1.7b$	$3.9\pm0.3b$	$10.5 \pm 1.0a$	$4.4\pm0.7b$	$1.0\pm0.1c$	
LS	$31.6 \pm 8.0a$	$31.2 \pm 4.4a$	$24.3 \pm 2.9ab$	$18.4 \pm 2.3b$	$6.5 \pm 1.2b$	$10.8 \pm 1.7a$	$5.5\pm0.8b$	$1.8\pm0.3c$	
LSD	$17.5 \pm 1.0a$	$20.8\pm4.4a$	$17.5 \pm 2.5a$	$20.1 \pm 2.3a$	$4.7\pm0.4b$	$7.7 \pm 1.8a$	$4.2\pm0.7bc$	$2.4\pm0.4c$	
CD	$20.7 \pm 1.2 ab$	$21.1 \pm 1.8a$	$16.9\pm2.6ab$	$16.4 \pm 3.4b$	$4.9\pm0.4ab$	$6.0 \pm 1.1a$	$4.5\pm0.7b$	$2.3\pm0.3c$	
NJ	30.5 ± 2.0	26.8 ± 1.7	21.7 ± 1.4	28.5 ± 1.0	7.8 ± 0.4	8.6 ± 1.5	4.2 ± 0.8	3.1 ± 0.3	
BY	$26.2 \pm 3.0a$	$27.1 \pm 1.8a$	$23.8 \pm 1.7 ab$	$21.0\pm0.9b$	$5.3\pm0.8b$	$7.0 \pm 0.5a$	$6.8\pm0.6a$	$3.6\pm0.2c$	
WJ	$48.5\pm4.1a$	$44.7 \pm 11.2a$	$27.6\pm3.9b$	$34.7\pm9.0ab$	$12.2 \pm 0.8a$	$12.5 \pm 3.3a$	$5.2\pm1.2b$	$5.1\pm1.2b$	
WX	$20.3\pm2.6a$	$21.4\pm2.4a$	$21.2\pm4.2a$	$21.6 \pm 1.1a$	$4.5\pm0.8b$	$6.2\pm0.6a$	$4.9\pm0.6b$	$2.6\pm0.2c$	
TJ	$12.0\pm2.3a$	$11.8 \pm 1.1a$	$11.8 \pm 2.3a$	$14.6 \pm 2.7a$	$2.9\pm0.8ab$	$3.7\pm0.4a$	$3.0\pm0.8a$	$1.8\pm0.3b$	
FYA	$21.5\pm3.7a$	$24.8\pm4.2a$	$23.3\pm3.2a$	$26.9\pm3.8a$	$6.0\pm0.2ab$	$7.0 \pm 1.5a$	$4.1\pm0.7bc$	$2.7\pm0.4c$	
ZJ	$19.6 \pm 4.3a$	$15.9 \pm 1.6a$	$18.2 \pm 2.7a$	$17.4 \pm 3.1a$	$3.5\pm0.8b$	$3.7\pm0.5b$	$5.0 \pm 0.7a$	$2.8\pm0.4b$	
FZ	$10.6 \pm 1.3a$	9.6 ± 1.3ab	$6.7 \pm 0.6c$	$7.9 \pm 1.5 bc$	$3.3 \pm 0.6ab$	$4.3 \pm 1.0a$	$2.4\pm0.3bc$	$2.0 \pm 0.6c$	
FH	$20.2 \pm 3.7a$	$18.0\pm2.2a$	$17.9 \pm 2.1a$	$20.5 \pm 1.9a$	$6.6 \pm 1.5a$	$6.2 \pm 1.2ab$	$5.6\pm0.7ab$	$4.5\pm0.4b$	

Table S9. Seasonal average concentrations and deposition fluxes of the total N_r at twenty-seven monitoring sites in eastern China.

ZY	$20.1 \pm 2.3a$	$13.2 \pm 3.4c$	$14.6 \pm 3.0 bc$	$18.8 \pm 1.8 ab$	$4.5\pm0.6a$	$3.8 \pm 1.1 ab$	$2.8\pm0.7b$	$2.6\pm0.3b$
YT	$11.2\pm2.1b$	$15.2 \pm 1.3a$	$8.6\pm0.3b$	$9.6\pm0.6b$	$2.7\pm0.8b$	$4.9\pm0.4a$	$1.9\pm0.2bc$	$1.2\pm0.1c$
JJ	$25.9 \pm 1.4 ab$	$15.5\pm4.6c$	$16.8 \pm 5.3 bc$	$28.0\pm1.6a$	$5.5\pm0.5a$	$5.2 \pm 1.9a$	$3.6 \pm 1.2a$	$3.7\pm0.3a$
HN	$13.7 \pm 1.3b$	$14.3 \pm 2.2ab$	$13.2\pm2.1b$	$17.3 \pm 1.5a$	$3.7\pm0.5a$	$4.6 \pm 1.0a$	$3.5\pm0.9ab$	$2.2\pm0.2b$
XS	13.2 ± 1.3 ab	$11.0\pm2.4b$	$12.7 \pm 1.7 ab$	$16.7 \pm 3.6a$	$3.3\pm0.7ab$	3.7 ± 1.1a	$3.6 \pm 0.5a$	$2.1\pm0.2b$

<u> </u>	Volume-	weighted mea	n concentrati	ons	Wet/bulk dep	Wet/bulk deposition fluxes				
Sites	Spring	Summer	Autumn	Winter	Spring	Summer	Autumn	Winter		
CAU	2.8	2.6	2.9	3.9	$1.7 \pm 0.9b$	$10.8 \pm 6.8a$	$2.5 \pm 2.0b$	$0.4 \pm 0.3b$		
ZZ	4.5	3.2	1.6	3.8	2.6	8.0	4.5	1.3		
DL	2.5	0.8	1.1	5.2	$1.8 \pm 0.9 \mathrm{ab}$	$3.1 \pm 0.7a$	$1.2 \pm 0.4 b$	$1.2 \pm 1.1 b$		
SZ	3.2	2.2	1.8	6.1	$1.5 \pm 1.0 b$	$7.6\pm3.9a$	$1.8 \pm 1.6b$	$0.3\pm0.4b$		
QZ	3.0	4.0	2.6	3.8	$2.2\pm1.5b$	$10.5 \pm 5.4a$	$1.9\pm0.9b$	$0.5\pm0.9b$		
YQ	2.8	2.1	1.5	2.7	$2.0\pm0.6b$	$5.0 \pm 1.6a$	$2.2 \pm 1.4b$	$0.2\pm0.1b$		
ZMD	2.0	2.2	2.1	3.8	$2.6 \pm 0.2a$	$5.8 \pm 3.8a$	$5.8 \pm 5.9a$	$1.5 \pm 0.9a$		
YL	2.2	2.3	2.1	6.6	$2.8\pm0.9ab$	$5.6\pm3.9a$	$4.9 \pm 3.7 ab$	$0.5\pm0.4b$		
YC	4.5	3.3	2.8	10.7	$2.5\pm1.8b$	$10.4 \pm 3.1a$	$1.5\pm0.6b$	$3.2\pm3.1b$		
GZL	2.6	1.1	1.1	2.9	2.4 ± 1.3 ab	$3.7 \pm 0.8a$	$1.1 \pm 0.2 bc$	$0.7 \pm 0.1c$		
LS	2.0	1.3	1.9	4.2	$1.6\pm0.5b$	$4.2\pm0.9a$	$1.7 \pm 1.4b$	$0.3 \pm 0.2 b$		
LSD	2.1	1.9	1.9	1.6	$1.9\pm2.4b$	$4.8\pm0.4a$	$2.0 \pm 1.9 b$	$0.6\pm0.4b$		
CD	2.0	1.2	0.9	3.9	$1.2\pm0.3b$	3.7 ± 1.3a	$0.5\pm0.3b$	$1.0\pm0.8b$		
NJ	1.1	1.6	0.7	0.9	1.1 ± 0.3	11.0 ± 1.2	1.0 ± 0.2	0.6 ± 0.1		
BY	0.6	0.3	0.4	1.0	$3.5 \pm 1.3a$	$2.2\pm0.6ab$	$0.7\pm0.4b$	$1.1 \pm 1.0b$		
WJ	2.0	1.2	1.3	6.7	$3.2\pm1.4b$	$6.4 \pm 2.7a$	$2.4\pm0.9b$	$1.0\pm0.9b$		
WX	1.0	1.2	1.0	1.0	$3.8\pm0.8ab$	$5.1 \pm 2.1a$	$2.0 \pm 1.3 bc$	$0.8\pm0.6c$		
TJ	2.8	2.6	2.9	3.9	$5.7 \pm 1.4a$	$3.7 \pm 1.4a$	3.7 ± 1.4a	$5.3 \pm 2.8a$		
FYA	1.2	0.8	2.0	3.4	2.2 ± 0.2	3.3 ± 0.6	2.5 ± 3.3	1.7 ± 0.6		
ZJ	0.3	0.3	0.5	0.3	$0.7 \pm 0.6ab$	$1.7 \pm 0.3a$	1.5 ± 0.6a	$0.1 \pm 0.1b$		

Table S10. Seasonal volume-weighted mean concentrations and wet/bulk deposition fluxes of NH_4^+ -N in precipitation at twenty-seven monitoring sites in eastern China.

FZ	0.7	0.4	0.5	0.5	3.1 ± 1.2a	3.1 ± 1.1a	$1.8 \pm 2.3a$	$1.1 \pm 0.4a$
FH	0.9	0.4	0.4	1.6	$2.8\pm0.8a$	$2.8\pm0.6a$	$1.5 \pm 1.0a$	$3.4 \pm 2.2a$
ZY	1.9	1.0	1.0	3.3	$3.7 \pm 2.3ab$	$5.5 \pm 2.0a$	$1.8 \pm 1.0 b$	$1.0 \pm 1.0b$
YT	1.0	1.0	0.8	1.1	2.2 ± 0.2	5.8 ± 0.8	2.2 ± 0.1	0.3 ± 0.3
JJ	2.5	1.3	1.5	5.6	6.0 ±1.5a	$6.4 \pm 2.4a$	$2.9 \pm 1.8a$	$3.7 \pm 3.3a$
HN	1.0	0.9	0.9	1.4	$5.1 \pm 1.3b$	$3.9\pm2.3ab$	$2.1 \pm 1.1a$	$2.4 \pm 1.3a$
XS	1.1	0.5	1.0	1.6	$6.3 \pm 4.8 b$	$2.4 \pm 1.2a$	$2.3 \pm 1.4a$	$2.6\pm0.7ab$

The data on wet/bulk deposition fluxes are the seasonal means \pm standard deviations of observation periods (sampling periods at all sites are given in Table S1). Different letters in the "wet/bulk deposition fluxes" column indicate significant difference between the seasons at *p*<0.05. The full names of all sites are presented in Table S1.

Citar	Volume-	-weighte	ed mean con	centrations	Wet/bulk depo	osition fluxes (Me	$an \pm SD$)	
Sites	Spring	Sumn	ner Autumn	Winter	Spring	Summer	Autumn	Winter
CAU	3.5	2.0	3.5	4.0	$2.1 \pm 0.6 bc$	$8.3 \pm 2.2a$	$3.1 \pm 1.5b$	$0.4 \pm 0.3c$
ZZ	4.6	2.1	1.6	2.8	2.7	5.1	4.4	0.9
DL	2.7	1.6	3.3	5.5	$1.9 \pm 0.7 bc$	$6.0 \pm 1.8a$	$3.3\pm0.9b$	$1.3 \pm 0.9c$
SZ	2.3	2.4	1.8	3.0	$1.1 \pm 0.6b$	$8.4 \pm 6.1a$	$1.8 \pm 1.4 \mathrm{b}$	$0.1\pm0.2b$
QZ	2.7	2.1	2.0	4.5	$1.9 \pm 2.0b$	5.5 ± 1.6a	$1.5 \pm 1.0b$	$0.6 \pm 1.1 \mathrm{b}$
YQ	2.7	1.9	2.7	3.6	$2.0 \pm 0.5 ab$	$4.5 \pm 1.5a$	$3.8 \pm 2.7a$	$0.2\pm0.2b$
ZMD	2.2	1.7	1.9	2.6	$2.9 \pm 1.5a$	4.5 ± 1.8a	$5.3 \pm 6.2a$	$1.0 \pm 0.2a$
YL	1.8	1.4	1.3	4.3	$2.3 \pm 0.9a$	$3.2 \pm 2.7a$	$3.0 \pm 1.7a$	$0.3 \pm 0.3a$
YC	4.0	2.0	2.7	4.2	2.3 ± 1.8 ab	$6.4 \pm 3.2a$	$1.5 \pm 0.9 ab$	$1.3\pm0.8b$
GZL	2.6	1.4	1.5	2.8	2.5 ± 1.0 ab	$4.6 \pm 2.5a$	$1.5\pm0.5b$	$0.6 \pm 0.1 b$
LS	2.8	1.1	1.5	6.0	$2.3\pm0.6b$	$3.6 \pm 0.9a$	$1.4 \pm 0.4 bc$	$0.4 \pm 0.5c$
WW	3.8	1.4	1.6	2.8	$0.8 \pm 0.8 \mathrm{ab}$	$1.0 \pm 0.4a$	$0.3 \pm 0.2 ab$	$0.1 \pm 0.1 b$
LSD	1.4	1.2	1.9	1.2	$1.2 \pm 0.7 ab$	3.1 ± 1.6a	$2.0 \pm 1.7 ab$	$0.4 \pm 0.2 b$
CD	3.2	1.3	1.6	6.1	$1.9 \pm 0.6b$	$3.9 \pm 0.9a$	$1.0\pm0.5b$	$1.6 \pm 1.0b$
NJ	1.4	1.7	1.2	1.4	1.4 ± 0.7	11.6 ± 2.1	1.7 ± 0.9	1.4 ± 0.2
BY	0.8	0.9	1.5	1.7	4.7 ± 1.8ab	$6.9 \pm 2.8a$	$3.0 \pm 1.1 b$	$1.7 \pm 0.6b$
WJ	4.8	1.0	1.8	7.3	$7.8 \pm 2.2a$	$5.4 \pm 3.2 ab$	$3.2 \pm 0.8 bc$	$1.1 \pm 0.7c$
WX	0.9	1.0	0.8	1.0	$3.4 \pm 0.7a$	4.1 ± 3.9a	$1.7 \pm 0.5a$	$0.8 \pm 0.6a$
TJ	3.5	2.0	3.5	4.0	$4.0 \pm 1.1a$	1.9 ± 0.7a	3.1 ± 1.4a	$4.0 \pm 2.0a$
FYA	1.0	0.9	1.9	2.5	1.8 ± 0.5	3.8 ± 1.7	2.4 ± 2.2	1.3 ± 0.6

Table S11. Seasonal volume-weighted mean concentrations and wet/bulk deposition fluxes of NO_3^-N in precipitation at twenty-seven monitoring sites in eastern China.

ZJ	0.6	0.3	0.7	2.3	$1.2 \pm 0.9a$	$1.9\pm0.3a$	$2.1 \pm 0.6a$	$0.8 \pm 1.0a$
FZ	0.8	0.3	0.6	0.6	$3.6 \pm 2.0a$	$2.8 \pm 1.5 a$	$2.1 \pm 1.8a$	$1.3\pm0.6a$
FH	1.0	0.5	0.7	1.9	3.1 ± 1.2a	$3.7\pm0.7a$	$2.5\pm0.4a$	$4.0\pm2.9a$
ZY	2.0	1.0	1.3	3.5	$3.8 \pm 1.2ab$	$5.1 \pm 1.8a$	$2.2 \pm 0.6 bc$	$1.0\pm0.7c$
YT	0.7	0.5	0.5	2.2	1.5 ± 0.4	3.0 ± 0.2	1.5 ± 0.6	0.7 ± 0.6
JJ	1.5	0.7	1.0	4.4	$3.6 \pm 0.3a$	$3.4 \pm 1.4a$	$2.0 \pm 1.2a$	$3.0 \pm 1.2a$
HN	0.6	0.4	0.6	1.1	$2.9\pm0.8a$	$1.6 \pm 0.4a$	$1.5 \pm 0.8a$	$1.9 \pm 1.0a$
XS	0.5	0.3	0.6	1.2	3.1 ± 1.8a	$1.3 \pm 0.5a$	$1.5 \pm 0.8a$	$1.9\pm0.8a$

The data on wet/bulk deposition fluxes are the seasonal means \pm standard deviations of observation periods (sampling periods at all sites are given in Table S1). Different letters in the "wet/bulk deposition fluxes" column indicate significant difference between the seasons at *p*<0.05. The full names of all sites are presented in Table S1.

Sites	Volume	-weighted	mean con	centrations	Wet/bulk deposition fluxes (Mean \pm SD)					
Siles	Spring	Summer	Autumn	Winter	Spring	Summer	Autumn	Winter		
CAU	6.3	4.6	6.4	7.9	$3.9 \pm 1.2 b$	19.1 ± 8.9a	$5.6\pm2.9b$	$0.8\pm0.6b$		
ZZ	9.1	5.3	3.2	6.6	5.2	13.1	8.9	2.2		
DL	5.2	2.4	4.4	10.7	$3.7 \pm 1.1b$	9.2 ± 1.3a	$4.5\pm1.3b$	$2.4 \pm 1.9 b$		
SZ	5.5	4.6	3.6	9.1	$2.7 \pm 1.5b$	$16.0 \pm 9.8a$	$3.6 \pm 3.0b$	$0.4\pm0.6b$		
QZ	5.7	6.1	4.6	8.3	$4.1 \pm 3.0b$	$16.0 \pm 6.3a$	$3.4 \pm 1.7b$	$1.1 \pm 2.0b$		
YQ	5.5	4.0	4.2	6.3	$4.0 \pm 1.0 bc$	$9.6 \pm 2.9a$	$6.0 \pm 3.8 ab$	$0.4 \pm 0.3c$		
ZMD	4.2	3.9	4.0	6.4	5.5 ± 1.3a	$10.3 \pm 5.3a$	$11.0 \pm 12.0a$	2.5 ± 1.1a		
YL	4.0	3.7	3.4	10.9	5.0 ± 1.6 ab	$8.8\pm6.6a$	7.9 ± 5.1 ab	$0.7 \pm 0.7 b$		
YC	8.5	5.3	5.5	14.9	$4.8 \pm 3.6b$	$16.8 \pm 6.0a$	$3.0 \pm 1.4 b$	$4.4\pm3.9b$		
GZL	5.2	2.5	2.6	5.7	4.9 ± 2.3 ab	$8.3 \pm 3.0a$	$2.6\pm0.5bc$	$1.3 \pm 0.2c$		
LS	4.8	2.4	3.4	10.2	$3.9 \pm 1.0b$	$7.8 \pm 0.6a$	$3.1 \pm 1.7b$	$0.6 \pm 0.8c$		
WW	8.9	4.9	4.9	7.4	$1.8 \pm 1.5 ab$	$3.6 \pm 1.2a$	$1.1\pm0.7b$	$0.3 \pm 0.3 b$		
LSD	3.5	3.1	3.8	2.8	$3.1 \pm 2.7b$	$7.9 \pm 1.8a$	$4.0\pm3.6ab$	$1.0\pm0.5b$		
CD	5.2	2.5	2.5	10.0	$3.1\pm0.9b$	$7.6 \pm 2.0a$	$1.5\pm0.7b$	$2.6 \pm 1.8 \text{b}$		
NJ	2.5	3.3	1.9	2.3	2.6 ± 1.0	22.6 ± 3.3	2.6 ± 0.7	2.0 ± 0.3		
BY	1.4	1.2	1.9	2.7	$8.2 \pm 2.2a$	$9.1 \pm 2.8a$	$3.8 \pm 1.3 b$	$2.7\pm0.8b$		
WJ	6.8	2.2	3.1	14.0	$11 \pm 2.9a$	$11.8 \pm 4.1a$	$5.6 \pm 1.5 b$	$2.1 \pm 1.6b$		
WX	1.9	2.2	1.8	2.0	$7.3 \pm 1.5 ab$	$9.1\pm4.9a$	$3.7 \pm 1.8 ab$	$1.6 \pm 1.2 b$		
TJ	6.3	4.6	6.4	7.9	$9.7 \pm 2.5a$	$5.6 \pm 2.0a$	$6.8 \pm 2.8a$	$9.2 \pm 4.8a$		
FYA	2.2	1.7	3.9	5.9	4.1 ± 0.6	7.1 ± 2.3	4.9 ± 5.4	3.0 ± 1.2		
ZJ	0.9	0.6	1.2	2.6	$1.9\pm0.9ab$	$3.6 \pm 0.3a$	$3.5 \pm 1.0a$	$0.9 \pm 1.1 b$		
FZ	1.5	0.7	1.1	1.1	$6.7 \pm 3.0a$	$5.9 \pm 2.5a$	$3.9 \pm 4.1a$	$2.4\pm0.9a$		

Table S12. Seasonal volume-weighted mean concentrations and wet/bulk deposition fluxes of TIN (the sum of NH_4^+ -N and NO_3^- -N) in precipitation at twenty-seven monitoring sites in eastern China.

FH	1.9	0.9	1.1	3.5	$5.9 \pm 1.8a$	6.6 ± 1.1a	$4.0 \pm 1.0a$	$7.5\pm5.0a$
ZY	3.9	2.0	2.3	6.8	$7.5\pm2.4ab$	$10 \pm 3.0a$	$4.3 \pm 1.0 bc$	$2.0 \pm 1.7c$
YT	1.7	1.5	1.3	3.3	$3.7\pm0.6b$	$8.8\pm1.0a$	$3.7\pm0.7b$	$1.0\pm0.9b$
JJ	4.0	2.0	2.5	10.0	$9.6 \pm 1.8a$	$9.8\pm3.7a$	$4.9\pm3.0a$	$6.7 \pm 3.3a$
HN	1.6	1.3	1.5	2.5	$8.1\pm2.0a$	$5.5 \pm 2.7a$	$3.6 \pm 1.8a$	$4.3 \pm 2.2a$
XS	1.6	0.8	1.6	2.8	$9.4\pm 6.4a$	$3.7 \pm 1.6a$	$3.8 \pm 1.9a$	$4.5 \pm 1.5a$

The data on wet/bulk deposition fluxes are the seasonal means \pm standard deviations of observation periods (sampling periods at all sites are given in **Table S1**). Different letters in the "wet/bulk deposition fluxes" column indicate significant difference between the seasons at *p*<0.05. The full names of all sites are presented in **Table S1**.

	Source Type	Eastern China	Eastern China/China
NH ₃	Fertilizer ^a	7.3	93%
	Livestock	1.8	76%
	Human waste	1.4	93%
	Fuel combustion ^b	0.6	93%
	Natural	0.4	81%
	Total	11.6	90%
NO _x	Industry	3.1	92%
	Power	2.5	88%
	Transportation	2.1	91%
	Residential	0.3	90%
	Natural ^c	0.5	68%
	Total	8.5	89%

Table S13. Annual NH_3 and NO_x emissions over Eastern China and its contribution to total emissions in China (Tg N a⁻¹)

^aFertilizer NH₃ emissions include both chemical fertilizer and manure fertilizer.

^bNH₃ emissions from fuel combustion in power plant, industry, transportation and residential.

^cNatural NO_x emissions from soil, lighting and biomass burning.